Safeguarding Wireless Service Access # Panos Papadimitratos Electrical and Computer Engineering Virginia Tech #### Wireless Service Access #### Wireless Service Access (cont'd) - □ Ad Hoc Networking - □ No fixed infrastructure - □ Collaborative support of the network operation - □ Peer-to-peer interaction - □ Transient associations - □ No administrative boundaries #### Wireless Service Access (cont'd) - □ Stringent service level requirements - Shared and limited network resources - □ 'Quality' of the communication paths becomes important - □ Data rate - □ Delay - □ Path reliability - □ Route discovery protocols that convey path attributes are necessary Virginia ### Problem and Challenges - □ Seemingly legitimate users, with access privileges, can get high-quality service access while systematically depriving other users from their sought service level - □ Adversaries can mislead other nodes that the discovered routes are better or worse than they actually are - □ Authentication cannot solve the problem ### Problem and Challenges (cont'd) - ☐ The ad hoc networking environment introduces vulnerabilities - □ Each and every node can disrupt the network operation - □ No central authority and monitoring facility - □ Difficult or impossible to distinguish between benign and malicious faults - □ Frequent network changes #### Solution - ☐ Secure Discovery of Route Attributes - □ Secure Routing Protocol for QoS-aware routing (*SRP-QoS*) between a pair of communicating end nodes - □ Accurate quantitative description of the discovered path attributes - □ Wide range of route selection and traffic handling schemes is enabled to configure communication Virginia #### Network Model - □ Network node - \Box Unique identity, V - \square Public/private keys E_V , D_V - □ Networking protocols module - □ Wireless communication module - \square Primitives: $Send_L(V,m)$, $Bcast_L(m)$, $Receive_L(m)$ - \square Links: *Up*, *Down* #### Network Model (cont'd) - □ Each end node knows the identity and the public key of its peer end node - ☐ All nodes know the identities and the public keys of their neighbors - □ Benign nodes comply with the protocol rules - □ Adversaries deviate or actively disrupt the network operation #### Network Model (cont'd) - □ Definition 1: Independent adversaries are network nodes that can modify, forge, or replay routing or data packets, but ignore received traffic that does not comply with the operation of the networking protocols - □ *Definition 2*: Arbitrary adversaries deviate from the protocol execution in an arbitrary (Byzantine) manner # Secure Route Discovery Specification - \square N: set of nodes - \Box E: set of unordered pairs of distinct nodes, i.e., links or edges - □ Route: sequence of nodes $V_i \in N$ and edges $e_{i,i+1} = (V_i, V_{i+1}) \in E$ - \Box $f: E \rightarrow M \subseteq \Re$ is function that assigns labels to edges, denoted as link metrics $m_{i,i+1}$ - \square Route metric: $g(m_{0,1},...,m_{n-1,n})$ - \square Actual metric: $g(l_{0,1},...,l_{n-1,n})$ ### Secure Route Discovery Specification (cont'd) - \Box Let t_1 and $t_2 > t_1$ two points in time - \Box t_2 is the point in time at which the routing protocol discovers a route Virginia ### Secure Route Discovery Specification (cont'd) - \square *Loop-freedom*: an (S,T)-route is loop-free when it has no repetitions of nodes - □ Freshness: an (S,T)-route is fresh with respect to the (t_1,t_2) interval if each of the route's constituent links is up at some point during the (t_1,t_2) - □ *Accuracy*: an (S,T) route is accurate with respect to a route metric g and a constant $\Delta_{good} > 0$ if: $$|g(m_{0,1},...,m_{n-1,n})-g(l_{0,1},...,l_{n-1,n})|<\Delta_{good}$$ # **SRP-QoS Operation** - □ Nodes estimate metrics for their incident links - □ For link (V_i, V_{i+1}) , V_i calculates $m_{i,i+1}^i$ and V_{i+1} calculates $m_{i,i+1}^{i+1}$ - \square For some $\varepsilon > 0$, $\left| m_{i,i+1}^i m_{i,i+1}^{i+1} \right| < \varepsilon$ - \Box ε is a protocol-selectable and metric-specific threshold that allows for metric calculation inaccuracies - \square $\delta^* > 0$ is the maximum metric calculation error by a correct node $\mathbf{V}^{\text{irginia}}$ Route Request (RREQ): S, T, Q_{SEQ} , Q_{ID} , MAC($K_{S,T}$, S, T, Q_{SEQ} , Q_{ID}) - 1. S broadcasts RREQ; - 2. V_I broadcasts RREQ, $\{V_I\}$, $\{m_{S,1}^1\}$; - 3. V_2 broadcasts RREQ, $\{V_1, V_2\}$, $\{m_{S,1}^1, m_{1,2}^2\}$; - 4. V_3 broadcasts RREQ, $\{V_1, V_2, V_3\}$, $\{m_{S,1}^1, m_{1,2}^2, m_{2,3}^3\}$; - \square *RREQ* processing - \square *PreviouslySeen(RREQ)* routine - \square For each relayed *RREQ*, V_i initializes a *ForwardList* - □ V_i adds a neighbor V_{i+1} to ForwardList iff V_{i+1} is overheard relaying RREQ with $NodeList = \{NodeList, V_{i+1}\}$ and $MetricList = \{MetricList, m_{i,i+1}^{i+1}\}$ and $\left|m_{i,i+1}^i m_{i,i+1}^{i+1}\right| < \varepsilon$ Virginia - \square Temporarily stores $m_{S,i}$ #### *Route Reply (RREP)*: $$Q_{ID}$$, $\{T, V_3, V_2, V_1, S\}$, $\{m_{3,T}^T, m_{2,3}^3, m_{1,2}^2, m_{S,1}^1\}$, $MAC(K_{S,T}, Q_{SEQ}, Q_{ID}, T, V_3, ..., V_1, S, m_{3,T}^T, ..., m_{0,1}^1)$ - 5. $T \rightarrow V_3$: RREP; - 6. $V_3 \rightarrow V_2$: RREP; - 7. $V_2 \rightarrow V_1$: RREP; - 8. $V_1 \rightarrow S : RREP$; - □ *RREP* processing - \square If V_i is T's predecessor, check $\left| m_{i,T}^T m_{i,T}^i \right| < \varepsilon$ - \square V_i checks if $m_{S,i} = m'_{S,i}$, where $m'_{S,i}$ is the aggregate of the links metric values reported in the *RREP* for links (V_k, V_{k+1}) , k < i # **SRP-QoS Properties** □ Metric types $$\Box \Delta_{good}^{add}, g_{add}(m_{0,1}^{1}, \dots, m_{k-1,k}^{k}) = \sum_{i=0}^{k-1} m_{i,i+1}^{i+1}$$ $$\Box \text{ If } m_{i,i+1}^{i+1} > 0, g(m_{0,1}^{1}, \dots, m_{k-1,k}^{k}) = \prod_{i=0}^{k-1} m_{i,i+1}^{i+1}$$ $$\text{can be written as } g_{add}(\overline{m}_{0,1}^{1}, \dots, \overline{m}_{k-1,k}^{k})$$ $$\text{where } \overline{m}_{i,i+1}^{i+1} = \log(m_{i,i+1}^{i+1}), \text{ for } 0 \le i \le k-1$$ ### SRP-QoS Properties (cont'd) □ Metric types ## SRP-QoS Properties (cont'd) **Lemma**: Routes discovered by SRP-QoS in the presence of independent adversaries are accurate, with respect to (i) gadd and $\Delta_{good}^{add} = \varepsilon k^2 + k\delta^*$, (ii) g_{max} and $\Delta_{good}^{max} = k\varepsilon + \delta^*$, and (iii) g_{\min} and $\Delta_{good}^{\min} = k\varepsilon + \delta^*$, with k the number of route links, $\varepsilon > 0$ the maximum allowable difference between $m_{i,i+1}^{i}$ and $m_{i,i+1}^{i+1}$, and $\delta^* > 0$ the maximum error for a metric calculation by a correct node. #### **Conclusions** - □ Wireless ad hoc networking domains are a double-edged sword - □ SRP-QoS enables a general QoS-based route selection even in the presence of adversaries - □ More information: *papadp@vt.edu*