Safeguarding Wireless Service Access

Panos Papadimitratos

Electrical and Computer Engineering
Virginia Tech

Wireless Service Access

Wireless Service Access (cont'd)

- □ Ad Hoc Networking
 - □ No fixed infrastructure
 - □ Collaborative support of the network operation
 - □ Peer-to-peer interaction
 - □ Transient associations
 - □ No administrative boundaries

Wireless Service Access (cont'd)

- □ Stringent service level requirements
- Shared and limited network resources
- □ 'Quality' of the communication paths becomes important
 - □ Data rate
 - □ Delay
 - □ Path reliability
- □ Route discovery protocols that convey path attributes are necessary

 Virginia

Problem and Challenges

- □ Seemingly legitimate users, with access privileges, can get high-quality service access while systematically depriving other users from their sought service level
 - □ Adversaries can mislead other nodes that the discovered routes are better or worse than they actually are
- □ Authentication cannot solve the problem

Problem and Challenges (cont'd)

- ☐ The ad hoc networking environment introduces vulnerabilities
 - □ Each and every node can disrupt the network operation
 - □ No central authority and monitoring facility
 - □ Difficult or impossible to distinguish between benign and malicious faults
 - □ Frequent network changes

Solution

- ☐ Secure Discovery of Route Attributes
- □ Secure Routing Protocol for QoS-aware routing (*SRP-QoS*) between a pair of communicating end nodes
 - □ Accurate quantitative description of the discovered path attributes
 - □ Wide range of route selection and traffic handling schemes is enabled to configure communication Virginia

Network Model

- □ Network node
 - \Box Unique identity, V
 - \square Public/private keys E_V , D_V
 - □ Networking protocols module
 - □ Wireless communication module
- \square Primitives: $Send_L(V,m)$, $Bcast_L(m)$, $Receive_L(m)$
- \square Links: *Up*, *Down*

Network Model (cont'd)

- □ Each end node knows the identity and the public key of its peer end node
- ☐ All nodes know the identities and the public keys of their neighbors
- □ Benign nodes comply with the protocol rules
- □ Adversaries deviate or actively disrupt the network operation

Network Model (cont'd)

- □ Definition 1: Independent adversaries are network nodes that can modify, forge, or replay routing or data packets, but ignore received traffic that does not comply with the operation of the networking protocols
- □ *Definition 2*: Arbitrary adversaries deviate from the protocol execution in an arbitrary (Byzantine) manner

Secure Route Discovery Specification

- \square N: set of nodes
- \Box E: set of unordered pairs of distinct nodes, i.e., links or edges
- □ Route: sequence of nodes $V_i \in N$ and edges $e_{i,i+1} = (V_i, V_{i+1}) \in E$
- \Box $f: E \rightarrow M \subseteq \Re$ is function that assigns labels to edges, denoted as link metrics $m_{i,i+1}$
- \square Route metric: $g(m_{0,1},...,m_{n-1,n})$
- \square Actual metric: $g(l_{0,1},...,l_{n-1,n})$

Secure Route Discovery Specification (cont'd)

- \Box Let t_1 and $t_2 > t_1$ two points in time
 - \Box t_2 is the point in time at which the routing protocol discovers a route

Virginia

Secure Route Discovery Specification (cont'd)

- \square *Loop-freedom*: an (S,T)-route is loop-free when it has no repetitions of nodes
- □ Freshness: an (S,T)-route is fresh with respect to the (t_1,t_2) interval if each of the route's constituent links is up at some point during the (t_1,t_2)
- □ *Accuracy*: an (S,T) route is accurate with respect to a route metric g and a constant $\Delta_{good} > 0$ if:

$$|g(m_{0,1},...,m_{n-1,n})-g(l_{0,1},...,l_{n-1,n})|<\Delta_{good}$$

SRP-QoS Operation

- □ Nodes estimate metrics for their incident links
 - □ For link (V_i, V_{i+1}) , V_i calculates $m_{i,i+1}^i$ and V_{i+1} calculates $m_{i,i+1}^{i+1}$
 - \square For some $\varepsilon > 0$, $\left| m_{i,i+1}^i m_{i,i+1}^{i+1} \right| < \varepsilon$
 - \Box ε is a protocol-selectable and metric-specific threshold that allows for metric calculation inaccuracies
 - \square $\delta^* > 0$ is the maximum metric calculation error by a correct node $\mathbf{V}^{\text{irginia}}$

Route Request (RREQ): S, T, Q_{SEQ} , Q_{ID} , MAC($K_{S,T}$, S, T, Q_{SEQ} , Q_{ID})

- 1. S broadcasts RREQ;
- 2. V_I broadcasts RREQ, $\{V_I\}$, $\{m_{S,1}^1\}$;
- 3. V_2 broadcasts RREQ, $\{V_1, V_2\}$, $\{m_{S,1}^1, m_{1,2}^2\}$;
- 4. V_3 broadcasts RREQ, $\{V_1, V_2, V_3\}$, $\{m_{S,1}^1, m_{1,2}^2, m_{2,3}^3\}$;

- \square *RREQ* processing
 - \square *PreviouslySeen(RREQ)* routine
 - \square For each relayed *RREQ*, V_i initializes a *ForwardList*
 - □ V_i adds a neighbor V_{i+1} to ForwardList iff V_{i+1} is overheard relaying RREQ with $NodeList = \{NodeList, V_{i+1}\}$ and $MetricList = \{MetricList, m_{i,i+1}^{i+1}\}$ and $\left|m_{i,i+1}^i m_{i,i+1}^{i+1}\right| < \varepsilon$ Virginia
 - \square Temporarily stores $m_{S,i}$

Route Reply (RREP):

$$Q_{ID}$$
, $\{T, V_3, V_2, V_1, S\}$, $\{m_{3,T}^T, m_{2,3}^3, m_{1,2}^2, m_{S,1}^1\}$, $MAC(K_{S,T}, Q_{SEQ}, Q_{ID}, T, V_3, ..., V_1, S, m_{3,T}^T, ..., m_{0,1}^1)$

- 5. $T \rightarrow V_3$: RREP;
- 6. $V_3 \rightarrow V_2$: RREP;
- 7. $V_2 \rightarrow V_1$: RREP;
- 8. $V_1 \rightarrow S : RREP$;

- □ *RREP* processing
 - \square If V_i is T's predecessor, check $\left| m_{i,T}^T m_{i,T}^i \right| < \varepsilon$
 - \square V_i checks if $m_{S,i} = m'_{S,i}$, where $m'_{S,i}$ is the aggregate of the links metric values reported in the *RREP* for links (V_k, V_{k+1}) , k < i

SRP-QoS Properties

□ Metric types

$$\Box \Delta_{good}^{add}, g_{add}(m_{0,1}^{1}, \dots, m_{k-1,k}^{k}) = \sum_{i=0}^{k-1} m_{i,i+1}^{i+1}$$

$$\Box \text{ If } m_{i,i+1}^{i+1} > 0, g(m_{0,1}^{1}, \dots, m_{k-1,k}^{k}) = \prod_{i=0}^{k-1} m_{i,i+1}^{i+1}$$

$$\text{can be written as } g_{add}(\overline{m}_{0,1}^{1}, \dots, \overline{m}_{k-1,k}^{k})$$

$$\text{where } \overline{m}_{i,i+1}^{i+1} = \log(m_{i,i+1}^{i+1}), \text{ for } 0 \le i \le k-1$$

SRP-QoS Properties (cont'd)

□ Metric types

SRP-QoS Properties (cont'd)

Lemma: Routes discovered by SRP-QoS in the presence of independent adversaries are accurate, with respect to (i) gadd and $\Delta_{good}^{add} = \varepsilon k^2 + k\delta^*$, (ii) g_{max} and $\Delta_{good}^{max} = k\varepsilon + \delta^*$, and (iii) g_{\min} and $\Delta_{good}^{\min} = k\varepsilon + \delta^*$, with k the number of route links, $\varepsilon > 0$ the maximum allowable difference between $m_{i,i+1}^{i}$ and $m_{i,i+1}^{i+1}$, and $\delta^* > 0$ the maximum error for a metric calculation by a correct node.

Conclusions

- □ Wireless ad hoc networking domains are a double-edged sword
- □ SRP-QoS enables a general QoS-based route selection even in the presence of adversaries
- □ More information: *papadp@vt.edu*

