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Abstract

“DC power flow” is an analogy between approximations to tred ppwer
components of the power flow equations and a direct currsrgtiee circuit. It
can also be interpreted as linearization of the real powempoments expressed
in terms of phasor voltage magnitude and phase, linearizedta “flat start.”
The accuracy of DC power flow for estimating real power flomigpsisingly
good in many cases, although it has large errors in some.cases

We explore linearization of both the real and reactive posggrations expressed
in terms of real and imaginary parts of the voltage phasorfatias on
linearization about a flat start, which in rectangular cawates has the voltage
phasors each with real part one per unit and imaginary pest ze

The resulting approximation has relatively good perforogafor real power.
Because of the analog with linearization in terms of poldtage representation,
we call this approximation “DC power flow in rectangular cdioates.” We also
exhibit an exact solution to the power flow equations for tadipular case of a
lossless network.

Keywords DC power flow, linearization.



1 Introduction

e Exact or approximate solution of the power flow equationsgeatial to
the planning, operation, and control of power systems.

e DC power flow [L, §4.1.4][2] is an analogy between an approximation to
the real power components of the AC power flow equations aethted
direct current circuit:

— can be interpreted as linearization of the real power corpin terms
of phasor voltage magnitude and phase, that is, “polar coaes,”

— linearization is about a “flat start,” where the voltage mtagach have
magnitude one per unit and angle zegp |

e Most day-ahead locational electricity markets use DC pdiwer[4] or
linearization.



1.1 Accuracy of DC power flow using polar coordinates
e DC power flow is accurate for real power flow, except when:

— angle differences across lines are large, or
— voltage magnitudes deviate significantly from one per u8)ib] 6].

e Precisely the most important conditions for evaluatingtenparticularly
post-contingency limits!

e Linearization for reactive power in terms of polar coordesais poor.



1.2 Rectangular coordinates

e Recent significant progress in power flow and optimal powev {lOPF)
has used phasor voltage real and imaginary parts:

— “rectangular coordinates’7[ 8, 9].

e Semi-definite programming formulations of the OPF problesimg
rectangular coordinates have provided provably optimiaitems [10]:

— may become the dominant approach to OPF.

e Linearization still standard currently in online applicais.
e Consider linearization in rectangular coordinates.



2 Formulation

e v € c"is the vector of complex phasor voltages atdiiuses in the
transmission system,

e i € c"is the vector of complex current injections into the trarssian
system,

e sc ¢"is the vector of complex power injections into the transiniss
system.

e Represent in rectangular coordinates by writing:

v=1+e+jf,

where:

1is the vector of all ones,
e f,er", and
j Is the square root of minus 1.
e Define a “flat start” to ber = 1, corresponding te= f = 0.



Formulation, continued
e Y = G+ |Bis the bus admittance matrix for the system:

— Off-diagonal entries are equal to minus the admittance®f th
correspondingeries elements joining corresponding buses,

— Diagonal entries are the sum of the admittances joined to the
corresponding buses, due to both seriessiidt elements.

G — Gseries+ Gshunt
B — Bseries+ Bshunt

where:
GShuntandBshUtare diagonal,
G3®"®SandB3¢"®Sare symmetric (putting aside cases such as where
transformers have off-nominal turns ratios), and
G3¢"®q = BS®"®3 = 0, where0 is the vector (or depending on
interpretation, matrix) of all zeros.

— AssumeGshunt_ o,



Formulation, continued
e Kirchhoff's current law:
I = Yy,
(G+jB)(1+e+jf),
(Gserfes_l_ GShunt.—I— j(Bserles_l_ BShum))(l—l— e+ J f)7
_ (Gserles+ j(Bse”eS—l— BSh”m))(l—i— el J 1:)7 SinceGshunt: O,
_ Gseriesl 4+ Gserie%_ (Bseries_l_ Bshunt) f
+ j(Gseriesf + Bseriesl_i_ Bseriegg_‘_ Bshuntj__‘_ Bshunb)7
_ Gserie%_ (Bseries+ Bshuntﬁ 4+ j(Gseriesf + Bserie%_i_ Bshuntl_|_ Bshunb)7
o sinceGseney — pseries) —
e Define superscript T to mean transpose, superscript f to hieamitian
transpose (that is, transpose of complex conjugate), agledito be a

vector consisting of the diagonal elements of its argument.
e For any vectox and diagonal matri®, diag(1x") = x and

diag(x(Dl)T) = Dx.



Formulation, continued
e Then:

s = diag(vi*),

_ _ Gserie%_ Bseries+ Bshun f T
= d|a9<(1‘|’ e+jf) ( ] (GserieSf + B§erie§a+ Bshuntlz_ Bshunb) ) ) '

e Linearization ofs about a flat start of = 1 preserves the affine terms and
discards the purely quadratic terms:

< ~ diag 1 Gs.erie%_ (B.series_l_ Bshunt) f T
_ J (GserleSf | Bsereg - Bshunt]_+ Bshunb)
+ diag( (e+ 1) (~jB*n)"),
_ Gserie%_ (Bseries_l_ Bshunt)f o j(Gseriesf + Bserie%+ Bshuntl+ Bshunb)

— iBS""e+ jf), sinceBSUMis diagonal,
_ Gserie%_ Bseriesf 4+ j(_(Bserles+ ZBShum)e— Gseriesg _ sthuntj_).



Formulation, continued
e Separating into real and reactive power injections:

p Gseries L Bseries e 0
[ q] ~ [ _(Bseries_|_ ZBshunt) _Gseries] [ f ] - [ Bshunt]_] . (1)

e Similar form to case in polar coordinates.



3 Special case
e Purely quadratic terms imare:

diag((e+ J f) (Gserie%_ (Bseries_l_ Bshunt) f— J (GserieSf + Bserie%+ Bshunb) ) T) ’
e which has real part:
diag(e(Gserie%_ (Bseries+ Bshunt> f)T 4+ f (GserieSf + Bserie%_i_ Bshunb) T)

e Following Zhang and Tse&[ Appendix], ife = 0 andG3€"es= 0 then the
real part of the quadratic term equals zero.

e For givenp, if we solvep = —B®¢"¢% for f thenv= 1+ jf is an exact
solution to the power flow equations.

e Corresponding reactive power injections are:

q = diag(_l(GserieSf + Bshuntl) T _f ((Bseries+ Bshunt> f)T) :
_ _Gseriesf . Bshuntl o diag(f ((Bseries+ Bshunt) f)T)



Special case, continued
e Analogous to the DC approximation in polar coordinates wlibe
relationship between power and angle is derived under thagstion
that the voltage magnitudes are fixed, with the values oftiresainjection
implicitly determined:
— however, DC approximation in polar coordinates is not egaen if
Gseries_ (.
e In contrast,
o Bseriesf = p, (2)

q = _Gseriesf _ Bshuntl _ diag(f ((Bseries_l_ Bshum) f)T> .(3)

e are anexact solution to the power flow equations in the lossless case.



4 Numerical example
e Consider a two bus system with:

— a single line joining the two buses having series admittdneg10 and
no shunt admittance,

— one of the buses having phasor voltage held-atj@ € ¢, and

— the other bus having phasor voltage &+ | f € c.

e \We consider the exact and linearized approximations foreéakand
reactive power injected at the other bus as a function of tisgphasor
voltage.

e Consider DC approximations in terms of both polar and regibar
coordinates.



4.1 Real power

Approximation in

‘%\%:' Approximation in polar coordinates
%‘agé Approximation in rectangular coordinat
S Exactinjection

“1+e

Fig. 1. Real power injectiop versus e+ jf.



Real power, continued

e Exact real power injection and the approximation in termseofangular
coordinates are qualitatively close together throughloeigraphed range:

— approximate sensitivities also close to the actual serigs.

e DC approximation of real power in terms of polar coordinategiates
significantly from the exact value for some values ef &+ | f.

¢ In the half-annular region where voltage magnitudes arBiwit0% of 1
per unit:

— for small values of voltage phasor angle, smaller tiias say, and
voltage magnitudes close to one per unit, DC approximatioeal
power in polar coordinates is highly accurate.

— for large angles or for voltage magnitudes deviating sigaititly from
one per unit, the approximation can be quite poor.

e Sensitivities of real power injection to changes in the niagie and
angle are relatively far from the actual sensitivities.

e Approximation of real power in rectangular coordinatesualgatively
better match to actual injection than approximation in potaordinates.



4.2 Reactive power

Exact injection

Approximation in polar coordine

Fig. 2. Reactive power injectiomversus e+ jf.



Reactive power, continued

e Approximate reactive power injections in terms of rectdagu
coordinates is poorer than the conventional DC approxonati terms of
polar coordinates.

e Functional dependence eandf is highly non-linear.



5 Improved approximation for reactive power

e Following Coffrin and Van HentenrycKL[l], propose piecewise
linearizing reactive power while maintaining the lineapegximation of
real power:

f
q _(Bseries i ZBShum) _Gseries Bshuntl

e
= f

p = [Gseries _Bseries] [ e] :

q
e Where the terms. - would be calculated from linearization about other
operating points besides= 1.

— could be calculated off-line.



6 Extensions and conclusions

e Developed linearization of power flow in rectangular conates.

e Accurate for real power, but not for reactive power.

¢ In the lossless case without explicit representation aftiea power,
non-linear power flow can be solved exactly through the swiutf a
linear equation and substitution to evaluate reactive panyections.

e Piecewise linearization may be an effective approach wiezetive
power is to be explicitly represented.

e Analogous approximations can be developed for current antgptex
power flow as a function of the rectangular representatipn [
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