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Abstract
“DC power flow” is an analogy between approximations to the real power
components of the power flow equations and a direct current resistive circuit. It
can also be interpreted as linearization of the real power components expressed
in terms of phasor voltage magnitude and phase, linearized about a “flat start.”
The accuracy of DC power flow for estimating real power flow is surprisingly
good in many cases, although it has large errors in some cases.
We explore linearization of both the real and reactive powerequations expressed
in terms of real and imaginary parts of the voltage phasor. Wefocus on
linearization about a flat start, which in rectangular coordinates has the voltage
phasors each with real part one per unit and imaginary part zero.
The resulting approximation has relatively good performance for real power.
Because of the analog with linearization in terms of polar voltage representation,
we call this approximation “DC power flow in rectangular coordinates.” We also
exhibit an exact solution to the power flow equations for the particular case of a
lossless network.
Keywords DC power flow, linearization.
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1 Introduction
∙ Exact or approximate solution of the power flow equations is essential to

the planning, operation, and control of power systems.
∙ DC power flow [1, §4.1.4][2] is an analogy between an approximation to

the real power components of the AC power flow equations and a related
direct current circuit:
– can be interpreted as linearization of the real power components in terms

of phasor voltage magnitude and phase, that is, “polar coordinates,”
– linearization is about a “flat start,” where the voltage phasors each have

magnitude one per unit and angle zero [3].
∙ Most day-ahead locational electricity markets use DC powerflow [4] or

linearization.
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1.1 Accuracy of DC power flow using polar coordinates
∙ DC power flow is accurate for real power flow, except when:

– angle differences across lines are large, or
– voltage magnitudes deviate significantly from one per unit [3, 5, 6].

∙ Precisely the most important conditions for evaluating limits, particularly
post-contingency limits!

∙ Linearization for reactive power in terms of polar coordinates is poor.
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1.2 Rectangular coordinates
∙ Recent significant progress in power flow and optimal power flow (OPF)

has used phasor voltage real and imaginary parts:
– “rectangular coordinates” [7, 8, 9].

∙ Semi-definite programming formulations of the OPF problem using
rectangular coordinates have provided provably optimal solutions [10]:
– may become the dominant approach to OPF.

∙ Linearization still standard currently in online applications.
∙ Consider linearization in rectangular coordinates.
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2 Formulation
∙ v ∈ ℂ

n is the vector of complex phasor voltages at alln buses in the
transmission system,

∙ i ∈ ℂ
n is the vector of complex current injections into the transmission

system,
∙ s ∈ ℂ

n is the vector of complex power injections into the transmission
system.

∙ Representv in rectangular coordinates by writing:

v = 1+ e+ j f ,

where:
1 is the vector of all ones,
e, f ,∈ ℝ

n, and
j is the square root of minus 1.

∙ Define a “flat start” to bev = 1, corresponding toe = f = 0.
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Formulation, continued
∙ Y = G+ jB is the bus admittance matrix for the system:

– Off-diagonal entries are equal to minus the admittance of the
correspondingseries elements joining corresponding buses,

– Diagonal entries are the sum of the admittances joined to the
corresponding buses, due to both series andshunt elements.

G = Gseries+Gshunt,

B = Bseries+Bshunt,

where:
GshuntandBshuntare diagonal,
GseriesandBseriesare symmetric (putting aside cases such as where

transformers have off-nominal turns ratios), and
Gseries1= Bseries1= 0, where0 is the vector (or depending on

interpretation, matrix) of all zeros.
– AssumeGshunt= 0.
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Formulation, continued
∙ Kirchhoff’s current law:

i = Y v,
= (G+ jB)(1+ e+ j f ),

= (Gseries+Gshunt+ j(Bseries+Bshunt))(1+ e+ j f ),

= (Gseries+ j(Bseries+Bshunt))(1+ e+ j f ), sinceGshunt= 0,

= Gseries1+Gseriese− (Bseries+Bshunt) f

+ j(Gseriesf +Bseries1+Bseriese+Bshunt1+Bshunte),

= Gseriese− (Bseries+Bshunt) f + j(Gseriesf +Bseriese+Bshunt1+Bshunte),

∙ sinceGseries1= Bseries1= 0.
∙ Define superscript † to mean transpose, superscript ‡ to meanHermitian

transpose (that is, transpose of complex conjugate), and diag(∙) to be a
vector consisting of the diagonal elements of its argument.

∙ For any vectorx and diagonal matrixD, diag
(

1x†
)

= x and

diag
(

x(D1)†
)

= Dx.
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Formulation, continued
∙ Then:

s = diag
(

vi‡
)

,

= diag

(

(1+ e+ j f )

(

Gseriese− (Bseries+Bshunt) f
− j
(

Gseriesf +Bseriese+Bshunt1+Bshunte
)

)†
)

.

∙ Linearization ofs about a flat start ofv = 1 preserves the affine terms and
discards the purely quadratic terms:

s ≈ diag

(

1
(

Gseriese− (Bseries+Bshunt) f
− j
(

Gseriesf +Bseriese+Bshunt1+Bshunte
)

)†
)

+diag
(

(e+ j f )
(

− jBshunt1
)†
)

,

= Gseriese− (Bseries+Bshunt) f − j(Gseriesf +Bseriese+Bshunt1+Bshunte)

− jBshunt(e+ j f ), sinceBshuntis diagonal,

= Gseriese−Bseriesf + j(−(Bseries+2Bshunt)e−Gseriesf − jBshunt1).
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Formulation, continued
∙ Separatings into real and reactive power injections:

[

p
q

]

≈

[

Gseries −Bseries

−(Bseries+2Bshunt) −Gseries

][

e
f

]

−

[

0
Bshunt1

]

. (1)

∙ Similar form to case in polar coordinates.
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3 Special case
∙ Purely quadratic terms ins are:

diag
(

(e+ j f )
(

Gseriese− (Bseries+Bshunt) f − j
(

Gseriesf +Bseriese+Bshunte
))†
)

,

∙ which has real part:

diag
(

e
(

Gseriese− (Bseries+Bshunt) f
)†

+ f
(

Gseriesf +Bseriese+Bshunte
)†
)

,

∙ Following Zhang and Tse [9, Appendix], ife = 0 andGseries= 0 then the
real part of the quadratic term equals zero.

∙ For givenp, if we solvep =−Bseriesf for f thenv = 1+ j f is an exact
solution to the power flow equations.

∙ Corresponding reactive power injections are:

q = diag
(

−1
(

Gseriesf +Bshunt1
)†

− f
(

(Bseries+Bshunt) f
)†
)

,

= −Gseriesf −Bshunt1−diag
(

f
(

(Bseries+Bshunt) f
)†
)
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Special case, continued
∙ Analogous to the DC approximation in polar coordinates where the

relationship between power and angle is derived under the assumption
that the voltage magnitudes are fixed, with the values of reactive injection
implicitly determined:
– however, DC approximation in polar coordinates is not exacteven if

Gseries= 0.
∙ In contrast,

−Bseriesf = p, (2)

q = −Gseriesf −Bshunt1−diag
(

f
(

(Bseries+Bshunt) f
)†
)

, (3)

∙ are anexact solution to the power flow equations in the lossless case.
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4 Numerical example
∙ Consider a two bus system with:

– a single line joining the two buses having series admittance1− j10 and
no shunt admittance,

– one of the buses having phasor voltage held at 1+ j0∈ ℂ, and
– the other bus having phasor voltage 1+ e+ j f ∈ ℂ.

∙ We consider the exact and linearized approximations for thereal and
reactive power injected at the other bus as a function of the bus phasor
voltage.

∙ Consider DC approximations in terms of both polar and rectangular
coordinates.
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4.1 Real power
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Fig. 1. Real power injectionp versus 1+ e+ j f .
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Real power, continued
∙ Exact real power injection and the approximation in terms ofrectangular

coordinates are qualitatively close together throughout the graphed range:
– approximate sensitivities also close to the actual sensitivities.

∙ DC approximation of real power in terms of polar coordinatesdeviates
significantly from the exact value for some values of 1+ e+ j f .

∙ In the half-annular region where voltage magnitudes are within 10% of 1
per unit:
– for small values of voltage phasor angle, smaller thanπ/4 say, and

voltage magnitudes close to one per unit, DC approximation of real
power in polar coordinates is highly accurate.

– for large angles or for voltage magnitudes deviating significantly from
one per unit, the approximation can be quite poor.

∙ Sensitivities of real power injection to changes in the magnitude and
angle are relatively far from the actual sensitivities.

∙ Approximation of real power in rectangular coordinates is qualitatively
better match to actual injection than approximation in polar coordinates.
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4.2 Reactive power
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Fig. 2. Reactive power injectionq versus 1+ e+ j f .
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Reactive power, continued
∙ Approximate reactive power injections in terms of rectangular

coordinates is poorer than the conventional DC approximation in terms of
polar coordinates.

∙ Functional dependence one and f is highly non-linear.

Title Page ◀◀ ▶▶ ◀ ▶ 17 of 21 Go Back Full Screen Close Quit



5 Improved approximation for reactive power
∙ Following Coffrin and Van Hentenryck [11], propose piecewise

linearizing reactive power while maintaining the linear approximation of
real power:

p =
[

Gseries −Bseries
]

[

e
f

]

,

⎡

⎣

q
...
q

⎤

⎦ ≥

⎡

⎣

−(Bseries+2Bshunt) −Gseries

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⎤

⎦

[

e
f

]

−

⎡

⎣

Bshunt1
⋅ ⋅ ⋅

⋅ ⋅ ⋅

⎤

⎦ .

∙ where the terms⋅ ⋅ ⋅ would be calculated from linearization about other
operating points besidesv = 1:
– could be calculated off-line.
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6 Extensions and conclusions
∙ Developed linearization of power flow in rectangular coordinates.
∙ Accurate for real power, but not for reactive power.
∙ In the lossless case without explicit representation of reactive power,

non-linear power flow can be solved exactly through the solution of a
linear equation and substitution to evaluate reactive power injections.

∙ Piecewise linearization may be an effective approach wherereactive
power is to be explicitly represented.

∙ Analogous approximations can be developed for current and complex
power flow as a function of the rectangular representation [3].
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