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1 Overview

Our thesis:
Interaction between physical chemistry and
data mining in biophysical data bases is useful.

We give examples to show data mining can lead to new

results in physical chemistrysignificant in biology.

We show that using physical chemistry to look at data
provides insights regarding function.
In particular, we review some recent results regarding protein-protein interaction

that are based on novel insights about hydrophobic effects.We discuss how these

can be used to understand signalling using proteins.
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2 A quote

from Nature’s Robots ....

The exact and definite determination of life phenomena whichare
common to plants and animals is only one side of the physiological
problem of today. The other side is the construction of a mental
picture of the constitution of living matter from these general
qualities. In the portion of our workwe need the aid of physical
chemistry.

Jacques Loeb, The biological problems of today: physiology. Science 7, 154-156

(1897).

so our theme is not so new ....
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2.1 Data mining definition

WHATIS.COM: Data mining is sorting through data to identifypatterns and

establish relationships.

Data mining parameters include:

• Association -looking for patterns where one event is connected to another

event

• Sequence or path analysis -looking for patterns where one event leads to

another later event

• Classification -looking fornew patterns (May result in a change in the way

the data is organized but that’s ok)

• Clustering - finding andvisually documentinggroups of facts not previously

known

Conclusion: Data mining involveslooking at data.
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2.2 Data mining lens

If data mining islooking at datathen
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What type of lens do we use?

Alphabetic sequencesdescribe much of biology: DNA, RNA,
proteins.

All of these havechemical representations, e.g.,

C400H620N100O120P1S1

All of these havethree-dimensional structure.

But structure alone does not explain how they function.

Physical chemistry both simplifies the picture and
allows function to be more easily interpreted.
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2.3 Sequences can tell a story

Protein sequences

aardvarkateatavisticallyacademicianaccelerative

acetylglycineachievementacidimetricallyacridity

actressadamantadhesivenessadministrativelyadmit

afflictiveafterdinneragrypniaaimlessnessairlift

and DNA sequences

actcatatactagagtacttagacttatactagagcattacttagat

can be studied using automatically determined lexicons.

Joint work with John Goldsmith, Terry Clark, Jing Liu.
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3 Data mining applied to PChem

Or, what’s in all of this for the physical chemist ....

We look at three applications of data mining to physical chemistry:

• microarray hybridization energies are position dependent

helping to analyze weak genetic signals more accurately

• hydrogen bonds are orientation dependent

suggesting that molecular dynamics force fields need revising

• peptide bonds are not always planar

re-writes the rules for protein folding

Data mining provides quantitative predictions for new models.
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3.1 cDNA binding

New result:

Energy of binding depends on position as well as neighbor context.

Nature Biotechnology 21, 818–821 (2003)

A model of molecular interactions on short oligonucleotidemicroarrays

Li Zhang, Michael F Miles & Kenneth D Aldape

PNAS 100, pp. 11237–11242 (2003)

Probe selection for high-density oligonucleotide arrays

Rui Mei, Earl Hubbell, Stefan Bekiranov, Mike Mittmann, Fred C. Christians,

Mei-Mei Shen, Gang Lu, Joy Fang, Wei-Min Liu, Tom Ryder, PaulKaplan, David

Kulp, and Teresa A. Webster (Affymetrix, Inc.)
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3.1.1 Microarray tutorial (from Affymetrix)

DNA sequences are attached to a slide, and sample RNA
is introduced. RNA has flourescent tags added.
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3.1.2 Microarray tutorial (from Affymetrix, continued)

Hmmmm. C does not stick to C; seems reasonable, but
maybe we should check. What about G binding to G? A
to A? T to T?
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3.1.3 Models for RNA/DNA binding strength

For a sequenceσ = (σ1, . . . , σn) (ignore end effects)

Sequence composition model:
∑

n

i=1
w(σi)

Basic nearest-neighbor model:
∑

n

i=2
W (σi−1, σi)

whereW is the energy for each pair of letters.

Distance-dependent nearest-neighbor model

n∑

i=2

diW (σi−1, σi)

wheredi depends on the position in the sequence.

Anotherdistance-dependent model:
∑

n

i=1
diw(σi)

depending only on the sequence composition,not the context.
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3.1.4 Using Affymetrix to measure binding

From Nature Biotechnology 21, 818–821 (2003)

(b) Distance coefficients. (c) Nearest-neighbor stacking energy.

These stacking energies weakly correlated (r = 0.6) with that found in aqueous

solution, and are smaller in magnitude.
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Mismatch signals (C↔G, A↔T) are stronger with certain triplets
for non-specific binding (NSB).

TGC A
DNA pairs differ insizeand binding strength: removing
bulky A or G increases signal.
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From PNAS 100, pp. 11237–11242 (2003): model based on bases and locations

The effective∆∆G values for the 25 probe base positions. The fitted weightsωxi are the

effective values for the bases:x = C (red curve), G (green curve), and T (yellow curve) in

each sequence position,i (i = 1, . . . , 25 from the 3’ end of the probe), relative to the

reference base, A, in the same position.
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Mismatch energies were measured in solution in

Biochemistry. 1999 Mar 23;38(12):3468-77.

Nearest-neighbor thermodynamics and NMR of DNA sequences with internal

A.A, C.C, G.G, and T.T mismatches.

Peyret N, Seneviratne PA, Allawi HT, SantaLucia J Jr.

Excerpt of abstract: Thermodynamic measurements are reported for 51 DNA

duplexes with A.A, C.C, G.G, and T.T single mismatches in allpossible

Watson-Crick contexts. These measurements were used to test the applicability of

the nearest-neighbor model and to calculate the 16 unique nearest-neighbor

parameters for the 4 single like with like base mismatches next to a Watson-Crick

pair. The observed trend in stabilities of mismatches at 37 degrees C is G.G> T.T

≈ A.A > C.C. . . . . The mismatch contribution to duplex stability ranges from

-2.22 kcal/mol for GGC.GGC[stabilizing] to +2.66 kcal/mol for ACT.ACT.

[destabilizing] ....
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3.2 Multiple probes per gene

Affymetrix uses multiple DNA sequence probes

actcatatactagagtacttagact ctcatatactagagtacttagactt

tcatatactagagtacttagactta catatactagagtacttagacttat

atatactagagtacttagacttata tatactagagtacttagacttatac

atactagagtacttagacttatact tactagagtacttagacttatacta

actagagtacttagacttatactag ctagagtacttagacttatactaga

tagagtacttagacttatactagag agagtacttagacttatactagagc

gagtacttagacttatactagagca agtacttagacttatactagagcat

per gene:

actcatatactagagtacttagacttatactagagcattacttagat

These provide substantial data to assess various binding models.
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3.3 Hydrogen bonds are orientation-dependent

Standard force fields in molecular dynamics need improvement.

J Mol Biol 326(4): 1239-59 (2003)

An orientation-dependent hydrogen bonding potential improves prediction of

specificity and structure for proteins and protein-proteincomplexes

Kortemme, T., A. V. Morozov and D. Baker

and

PNAS 101(18): 6946–6951 (2004)

Close agreement between the orientation dependence of hydrogen bonds observed

in protein structures and quantum mechanical calculations

Alexandre V. Morozov, Tanja Kortemme, Kiril Tsemekhman, and David Baker
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Hydrogen bond

distances do not match Lennard-Jones distribution.

Angles are not uniformly distributed.
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3.4 Peptide bonds are flexible

Journal of Chemical Physics 121, 11501-11502 (2004)

Buffering the entropic cost of hydrophobic collapse in folding proteins

Ariel Ferńandez

�
�

�
�Uses the concept of hydrogen bond wrapping, or dehydration.

• Observes that the electronic environment of peptides determines whether they

are rigid or flexible.

• Peptide bond is a resonance between two states: double bonded state depends

on polarization.

Peptides can be polarized either by water

or by backbone hydrogen bonds.
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3.4.1 Side chains have different properties

Carbonaceous groups on certain side chains are hydrophobic:
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Amino acids (side chains only shown) with carbonaceous groups.
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3.4.2 Tutorial on hydrophobicity

Carbonaceous groups (CH, CH2, CH3) are hydrophobic because

• they are non-polar and thus do not attract water strongly

• they are polarizable and thus damp nearby water fluctations

3.4.3 Tutorial on dielectrics

Water removal reduces the dielectric effect and makes electronic
bonds stronger.

Number of carbonaceous groups in a region determine extent of
water removal and strength of electronic bonds.
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From Journal of Chemical Physics

121, 11501-11502 (2004): Fraction of the

double-bond (planar) state in the resonance

for residues in two different classes

(a) Neither amide nor

carbonyl group is engaged in a backbone

hydrogen bond. As water is removed,

so is polarization of peptide bond.

(b) At least one

of the amide or carbonyl groups is engaged

in backbone hydrogen bond. As water

is removed, hydrogen bond strengthens

and increases polarization of peptide bond.
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3.4.4 Implications for protein folding

After the “hydrophobic collapse” a protein is compact enough to
exclude most water.

• At this stage, few hydrogen bonds have fully formed.

• But most amide and carbonyl groups are protected from water.

The previous figure (a) therefore implies that

Many peptide bonds are flexible in final stage of protein folding.

This effect is not included in current models of protein folding.

Need to allow flexible bonds whose strengths

depend on the local electronic environment.
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4 PChem applied to data mining

Or, what’s in all of this for the bioinformatician ....

We look at three applications of physical chemistry to data mining:

• desolvation helps understand folding rates

• new motif: dehydron=insufficiently desolvated hydrogen bond

• dehydrons are involved in protein interaction

• number of dehydrons correlates with protein interactivity

• number of dehydrons correlates with species complexity
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4.1 Determinants of folding rates

Contact orderdetermines folding rates for proteins.

Journal of Molecular Biology 277, 985-994 (1998)

Contact order, transition state placement and the refolding rates of single domain

proteins

Kevin W. Plaxcoa, Kim T. Simonsa and David Baker

Non-local wrapping of hydrogen bondsgives a similar correlation.

Physics Letters A 321, 263-266 (2004)

Protein folding: a good structure protector is also a good structure seeker

Kristina Rogale and Ariel Fernndez.
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From Physics Letters A 321, 263-266 (2004)

Correlation between the logarithm of the unimolecularfolding rate
and the average fraction ofnonlocalcontribution to thewrappingof
native hydrogen bonds.
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4.2 Understanding wrapping

Hydrogen bonds that are not protected from water may not persist.

Wrapping made quantitative by counting carbonaceous groups in the
neighborhood of a hydrogen bond.

28



4.2.1 Under-wrapped hydrogen bonds

Hydrogen bonds with insufficient wrapping in one context can
become well wrapped by a partner.

The hydrogen bond is much stronger when wrapped.

The change in energy makes these hydrogen bonds sticky.

We call such under-wrapped hydrogen bonds
�

�

�
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dehydrons

because they can benefit from becoming dehydrated.

The force associated with dehyrdons is not huge, but they canact as
a guide in protein-protein association.

In our pictures, we color ourdehyrdons greento distinguish from
ordinary hydrogen bonds.
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From PNAS

100: 6446-6451 (2003) Ariel Fernandez,

Jozsef Kardos, L. Ridgway Scott, Yuji Goto,

and R. Stephen Berry. Structural defects and

the diagnosis of amyloidogenic propensity.

Well-wrapped

hydrogen bonds are

grey, and dehydrons are green.
The standard ribbon model
of “structure” lacks indicators
of electronic propensities.
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The HIV
protease
has a
dehydron at
an antibody
binding site.

When
the antibody
binds at the
dehydron, it
wraps it with
hydrophobic
groups.

31



4.2.2 A model for protein-protein interaction

Foot-and-mouth disease virus assembly from small proteins.
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Dehydrons guide binding of component proteinsVP1, VP2 and VP3
of foot-and-mouth disease virus.
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4.2.3 Extreme interaction: amyloid formation

If some is good, more may be better, but too many may be bad.

Too many dehydrons signals trouble:the human prion.
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4.3 Dehydrons as indicators of protein interactivity

If dehydrons provide mechanism for proteins to interact, then more
interactive proteins should have more dehydrons, and vice versa.

We only expect a correlationsince there are (presumably) other
ways for proteins to interact.

The DIP database collects information about protein interactions, based on

individual protein domains: can measure interactivity of different regions of a

given protein.

Result:Interactivity of proteins correlates strongly with
number of dehydrons.
PNAS 101(9):2823-7 (2004)

The nonconserved wrapping of conserved protein folds reveals a trend toward

increasing connectivity in proteomic networks.

Ariel Ferńandez, L. R. Scott and R. Steve Berry
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4.3.1 Dehydron variation over different species

Species (common name) peptides H bonds dehydrons

Aplysia limacina (mollusc) 146 106 0

Chironomus thummi thummi (insect) 136 101 3

Thunnus albacares (tuna) 146 110 8

Caretta caretta (sea turtle) 153 110 11

Physeter catodon (whale) 153 113 11

Sus scrofa (pig) 153 113 12

Equus caballus (horse) 152 112 14

Elephas maximus (Asian elephant) 153 115 15

Phoca vitulina (seal) 153 109 16

H. sapiens (human) 146 102 16

Number of dehydrons in Myoglobin of different species
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Anecdotal evidence:

the basic
structure is similar, just the
number of dehydrons increases.

SH3 domains are from

nematode C. elegans (a)

H. sapiens (b);

ubiquitin is from
E. coli (c) and H. sapiens (d);

hemoglobin
is from Paramecium
(e). and H. sapiens-subunit (f).
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4.3.2 Dehydrons as indicator of interactivity

Is this interactivity an indicator of complexity?

Is this complexity an indicator of evolution?

or is it just Intelligent Design?

The number of dehydrons is greater in more ‘complex’

species.

If this is evolution, then we imagine that protein

interactivity became a dominant way to explore

biological space, once genome complexity stabilized.
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5 Conclusions

The interplay of bio-data mining and physical chemistry canbe a
productive two-way interaction.
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