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1 Overview

Our thesis:

Interaction between physical chemistry and
data mining in biophysical data bases is usefyl.

We give examples to show data mining can lead to ne
results in physical chemistisignificant in biology.

We show that using physical chemistry to look at data
provides insights regarding function.

In particular, we review some recent results regardinggmmeprotein interaction
that are based on novel insights about hydrophobic eff@désdiscuss how these
can be used to understand signalling using proteins.



2 A quote

from Nature’s Robots ....

The exact and definite determination of life phenomena wareh
common to plants and animals is only one side of the physicdbg
problem of today. The other side Is the construction of a alent
picture of the constitution of living matter from these geale
gualities. In the portion of our workie need the aid of physical
chemistry.

Jacques Loeb, The biological problems of today: physial&ypyence 7, 154-156
(1897).

SO our theme is not so new ....




2.1 Data mining definition

WHATIS.COM: Data mining is sorting through data to identfgitterns and
establish relationships.

Data mining parameters include:

e Association 4ooking for patterns where one event is connected to another
event

e Sequence or path analysigeking for patterns where one event leads to
another later event

e Classification {ooking fornew patterns (May result in a change in the way
the data is organized but that’s ok)

e Clustering - finding andisually documentingroups of facts not previously
known

Conclusion: Data mining involvdsoking at data.




2.2 Data mining lens

If data mining islooking at datahen

[[What type of lens do we use]j’

Alphabetic sequenceatescribe much of biology: DNA, RNA,
proteins.

All of these havechemical representations, e.g.,

O4OOH620N100 0120P1 Sl

All of these havdahree-dimensional structure.
But structure alone does not explain how they function.

Physical chemistry both simplifies the picture and
allows function to be more easily interpreted.




2.3 Sequences can tell a story

Protein sequences

aar dvar kat eat avi sti cal | yacadem ci anaccel erati ve
acetyl gl yci neachi evenentacidinetricallyacridity
actressadanmant adhesi venessadm ni strati vel yadm t
afflictiveafterdi nneragrypni aai nl essnessairlift

and DNA sequences

actcat at act agagt acttagacttat act agagcattactt agat

can be studied using automatically determined lexicons.

Joint work with John Goldsmith, Terry Clark, Jing Liu.
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3 Data mining applied to PChem

Or, what's in all of this for the physical chemist ....
We look at three applications of data mining to physical cisényt

e microarray hybridization energies are position dependent

helping to analyze weak genetic signals more accurately

e hydrogen bonds are orientation dependent

suggesting that molecular dynamics force fields need rayisi
e peptide bonds are not always planar
re-writes the rules for protein folding

Data mining provides quantitative predictions for new nisde




3.1 cDNA binding

New result:

Energy of binding depends on position as well as neighboteson

Nature Biotechnology 21, 818-821 (2003)
A model of molecular interactions on short oligonucleotnieroarrays

Li Zhang, Michael F Miles & Kenneth D Aldape

PNAS 100, pp. 1123711242 (2003)

Probe selection for high-density oligonucleotide arrays

Rui Mei, Earl Hubbell, Stefan Bekiranov, Mike Mittmann, Er€. Christians,
Mei-Mei Shen, Gang Lu, Joy Fang, Wei-Min Liu, Tom Ryder, Paplan, David
Kulp, and Teresa A. Webster (Affymetrix, Inc.)




3.1.1 Microarray tutorial (from Affymetrix)

Sample RNA fragments (purple) Goose RNA (purple UAGUAC) in our sample has
hybridized to DNA probe array (green) bound to the goose DNA probe built on the array.

DNA seguences are attached to a slide, and sample R
IS Introduced. RNA has flourescent tags added.




3.1.2 Microarray tutorial (from Affymetrix, continued)

Shining a laser light on the FoodExpert |0 Array causas
the tagged RNA fragments that hybridized to glow

C does not stick to another C,
80 no match is made

Hmmmm. C does not stick to C; seems reasonable, b@t
maybe we should check. What about G binding to G? §
toA?TtoT?

11



3.1.3 Models for RNA/DNA binding strength

For a sequence = (o4, ..., 0,) (ignore end effects)
Sequence composition model;’” . w(o;)
Basic nearest-neighbor modél;., W(o;_1, 0;)
wherellV is the energy for each pair of letters.

Distance-dependent nearest-neighbor model

zn: diW(O'Z'_l, Uz’)
1=2

whered; depends on the position in the sequence.
distance-dependent modél;."_, d;w(o;)
depending only on the sequence compositiai,



3.1.4 Using Affymetrix to measure binding

From Nature Biotechnology 21, 818-821 (2003)
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(b) Distance coefficients. (c) Nearest-neighbor stackmeygy.

These stacking energies weakly correlated (r = 0.6) withfthand in agqueous
solution, and are smaller in magnitude.




Mismatch signals (&G, A—T) are stronger with certain triplets
for non-specific binding (NSB).
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DNA pairs differ insizeand binding strength: removing
bulky A or G increases signal.




From PNAS 100, pp. 11237-11242 (2003): model based on badds@ations
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Base Position in Probe Sequence
The effectiveA AG values for the 25 probe base positions. The fitted weightsare the
effective values for the bases:= C (red curve), G (green curve), and T (yellow curve) in
each sequence positioni = 1, ..., 25 from the 3’ end of the probe), relative to the
reference base, A, in the same position.




Mismatch energies were measured in solution in

Biochemistry. 1999 Mar 23;38(12):3468-77.

Nearest-neighbor thermodynamics and NMR of DNA sequendsinternal
A.A, C.C, G.G, and T.T mismatches.

Peyret N, Seneviratne PA, Allawi HT, SantaLucia J Jr.

Excerpt of abstract: Thermodynamic measurements aretegpfmr 51 DNA
duplexes with A.A, C.C, G.G, and T.T single mismatches irpa#sible
Watson-Crick contexts. These measurements were used theexoplicability of
the nearest-neighbor model and to calculate the 16 unicaesieneighbor
parameters for the 4 single like with like base mismatches toea Watson-Crick
pair. The observed trend in stabilities of mismatches at&jfeks C is G.G T.T
~ A.A > C.C..... The mismatch contribution to duplex stability ranges from
-2.22 kcal/mol for GGC.GG((stabilizing]to +2.66 kcal/mol for ACT.ACT.
[destabilizing] ....




3.2 Multiple probes per gene

Affymetrix uses multiple DNA seguence probes

act cat at act agagt act t agact
t cat at act agagt actt agactt a
at at act agagt actt agacttat a
at act agagt act t agactt at act
act agagt actt agactt at act ag
t agagt act t agact t at act agag

gagt act t agact t at act agagca

per gene:

ct cat at act agagt act t agact t
cat at act agagt act t agact t at
t at act agagt act t agactt at ac
t act agagt act t agactt at act a

ct agagt act t agactt at act aga

agagt act t agact t at act agagc

agt act t agact t at act agagcat

act cat at act agagt actt agactt at act agagcatt actt agat

These provide substantial data to assess various bindidglso




3.3 Hydrogen bonds are orientation-dependent

Standard force fields in molecular dynamics need improvémen
J Mol Biol 326(4): 1239-59 (2003)

An orientation-dependent hydrogen bonding potential owes prediction of
specificity and structure for proteins and protein-prot@mplexes

Kortemme, T., A. V. Morozov and D. Baker
and
PNAS 101(18): 6946—6951 (2004)

Close agreement between the orientation dependence ajdgsmlibonds observed
In protein structures and quantum mechanical calculations

Alexandre V. Morozov, Tanja Kortemme, Kiril Tsemekhmandgdravid Baker




Hydrogen bond
distances do not match Lennard-Jones distributio

Angles are not uniformly distributed.
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3.4 Peptide bonds are flexible

Journal of Chemical Physics 121, 11501-11502 (2004)
Buffering the entropic cost of hydrophobic collapse in folgiproteins

Ariel Fermandez

[ Uses the concept of hydrogen bond wrapping, or dehydra}ion.

e Observes that the electronic environment of peptides aates whether they
are rigid or flexible.

e Peptide bond is a resonance between two states: doubledstade depends
on polarization.

Peptides can be polarized either by water
or by backbone hydrogen bonds.




3.4.1 Side chains have different properties

Carbonaceous groups on certain side chains are hydrophobic

| _ _ _ Phenyl-
Valine Leucine Isoleucine Proline alanine

| \ | | \ |
CH, CH, H—C—CH; CH, CH, CH,

7N\ | | NS

CHy, CH; CH CH, CH,

7N\ |
CH3 CH3 CHB

Amino acids (side chains only shown) with carbonaceouspgou




3.4.2 Tutorial on hydrophobicity

Carbonaceous groups (CH, ¢HCH;) are hydrophobic because

e they are non-polar and thus do not attract water strongly

e they are polarizable and thus damp nearby water fluctations

3.4.3 Tutorial on dielectrics

Water removal reduces the dielectric effect and makesrelact
bonds stronger.

Number of carbonaceous groups in a region determine extent o
water removal and strength of electronic bonds.




1 3 5 7 8 1713 15 17 18 21 23
dehydration (p)

1 3 58 7 8 11131517 18. 21 23
dehydration (p)

From Journal of Chemical Physics

121, 11501-11502 (2004): Fraction of the
double-bond (planar) state in the resonang
for residues in two different classes

(a) Neither amide nor
carbonyl group is engaged in a backbone
hydrogen bond. As water is removed,

S0 is polarization of peptide bond.

(b) At least one

of the amide or carbonyl groups is engage
In backbone hydrogen bond. As water

IS removed, hydrogen bond strengthens
and increases polarization of peptide bono




3.4.4 Implications for protein folding

After the “hydrophobic collapse” a protein iIs compact ernotm
exclude most water.
e At this stage, few hydrogen bonds have fully formed.

e But most amide and carbonyl groups are protected from water.

The previous figure (a) therefore implies that

Many peptide bonds are flexible in final stage of protein fuddi

This effect is not included in current models of protein folyl

Need to allow flexible bonds whose strengths
depend on the local electronic environment.




4 PChem applied to data mining

Or, what's in all of this for the bioinformatician ....

We look at three applications of physical chemistry to daiaimg:
e desolvation helps understand folding rates
new motif: dehydron=insufficiently desolvated hydrogen bond
dehydrons are involved in protein interaction
number of dehydrons correlates with protein interactivity

number of dehydrons correlates with species complexity




4.1 Determinants of folding rates

Contact ordedetermines folding rates for proteins.
Journal of Molecular Biology 277, 985-994 (1998)

Contact order, transition state placement and the refgldites of single domain
proteins

Kevin W. Plaxcoa, Kim T. Simonsa and David Baker

Non-local wrapping of hydrogen bongss/es a similar correlation.
Physics Letters A 321, 263-266 (2004)

Protein folding: a good structure protector is also a gooatcsire seeker

Kristina Rogale and Ariel Fernndez.




From Physics Letters A 321, 263-266 (2004)
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4.2 Understanding wrapping

Hydrogen bonds that are not protected from water may nott

Wrapping made guantitative by counting carbonaceous groughe
neighborhood of a hydrogen bond.

a \‘b.aFHI:-ﬂHE e CH, (n=1,23)
" | | hydrophobic

s carbonyl
amide

desolvation spheres




4.2.1 Under-wrapped hydrogen bonds

Hydrogen bonds with insufficient wrapping in one context can
become well wrapped by a partner.

The hydrogen bond is much stronger when wrapped.

The change in energy makes these hydrogen bonds sticky.

We call such under-wrapped hydrogen bonds

'dehydrons

because they can benefit from becoming dehydrated.

The force associated with dehyrdons is not huge, but theacas
a guide In protein-protein association.

In our pictures, we color our to distinguish from
ordinary hydrogen bonds.




From PNAS

100: 6446-6451 (2003) Ariel Fernandez,
Jozsef Kardos, L. Ridgway Scott, Yuji Goto,
and R. Stephen Berry. Structural defects ang
the diagnosis of amyloidogenic propensity.

Well-wrapped

hydrogen bonds are

grey, and dehydrons are green

The standard ribbon model
of “structure” lacks indicators
of electronic propensities.




The HIV
protease
has a
dehydron at
an antibody
binding site.

When

the antibody
binds at the

dehydron, it
wraps it with
hydrophobic
groups.




4.2.2 A model for protein-protein interaction

pentamer

hexamer

VP2-VP3
edge-to- edge

Foot-and-mouth disease virus assembly from small prateins




dimer organizing
VP2-VP3 edge-to-edge center

Dehydrons guide binding of component protewisl, VP2 and VP3
of foot-and-mouth disease virus.




4.2.3 Extreme interaction: amyloid formation

If some is good, more may be better, but too many may be bad.
d

Too many dehydrons signals troubtee human prion.




4.3 Dehydrons as indicators of protein interactivity

If dehydrons provide mechanism for proteins to intera@ntmore
Interactive proteins should have more dehydrons, and \ac&av

We only expect a correlatiosince there are (presumably) other
ways for proteins to interact.

The DIP database collects information about protein icteyas, based on
Individual protein domains: can measure interactivity iffledent regions of a
given protein.

Result:Interactivity of proteins correlates strongly with
number of dehydrons.

PNAS 101(9):2823-7 (2004)

The nonconserved wrapping of conserved protein folds fesetiend toward
Increasing connectivity in proteomic networks.

Ariel Fermandez, L. R. Scott and R. Steve Berry
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4.3.1 Dehydron variation over different species

Species (common name) peptides| H bonds| dehydrons

Aplysia limacina (mollusc) 146 106
Chironomus thummi thummi (insect) 136 101
Thunnus albacares (tuna) 146 110
Caretta caretta (sea turtle) 153 110
Physeter catodon (whale) 153 113

Sus scrofa (pig) 153 113

Equus caballus (horse) 152 112
Elephas maximus (Asian elephant) 153 115
Phoca vitulina (seal) 153 109

H. sapiens (human) 146 102

Number of dehydrons in Myoglobin of different species




Anecdotal evidence:

the basic
structure Is similar, just the
number of dehydrons increases

SH3 domains are from

nematode C. elegans (a)

H. sapiens (b);

ubiquitin is from
E. coli (c) and H. sapiens (d);

hemoglobin
Is from Paramecium
(e). and H. sapiens-subunit (f).




4.3.2 Dehydrons as indicator of interactivity

Is this interactivity an

Indicator of complexity?

Is this complexity an indicator of evolution?

or is it just Intelligent

Design?

The number of dehyc
species.

rons Is greater in more ‘complex

If this Is evolution, then we imagine that protein
Interactivity became a dominant way to explore
biological space, once genome complexity stabilized.




5 Conclusions

The interplay of bio-data mining and physical chemistry bara
productive two-way interaction.
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