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☛ A major goal of bioinformatics: find protein structure (shape)

from the sequence data.

The partial task that we focus on:

☛ given sequence of residues (aminoacids) find secondary and

tertiary structures.

Protein structure ≈ shape.

Proteins contain repeating substructures, predicting these

substructures is a major part of predicting the shape.
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We are interested in secondary structures that can be defined in terms

of

• dihedral angles defined by chemical bonds in the protein

backbone, and

• hydrogen bonds between atoms that are directly attached to the

backbone.

Such structures can be easily computed given crystallographic data

about a protein. The most important secondary structures are

α-helices and β-strands, the latter are paired into parallel and

anti-parallel β-sheets.
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An example of α-helix:
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An example of anti-parallel β-sheets:

β-sheet anti-parallel
ranges: 252 ~ 269, 275 ~ 291 
exceptions: (266 277) (268 274) (269 272) (269 271) 
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An example of a parallel β-sheet:

β-sheet parallel

range: 363 ~ 365, 461 ~ 463 

exceptions: none 
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Besides the examples we have seen: α-helices and strands of β-sheets

there are other structures like π-helices, β-turns, turns, β-hairpins.

They are a bit less interesting because they cannot form periodic

patterns and they provide much smaller proportion of the entire

protein. Predicting them is important, in particular, they give strong

clues about the α-helices and β-strands.
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Tertiary structures are arrangements of secondary structures. The

most ubiquitous is a 2-stranded β-sheet. Larger tertiary structures are

called motifs. Many motifs can be defined in terms of α-helices and

β-sheets. Hence discovering β-sheets is a major portion of identifying

tertiary structures of various sizes.

26 25 24 23 22

444546

30-40 in α -helix

β − α − β motif
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Existing methods:

To predict if a residue is in an α-helix, β-strand etc. we look at the

sequence of 15 residues, with 7 neighbors to the left and right. The

information is fed into a neural network and out comes a prediction.

This method was pioneered by Rost in 1995.

The success rate of prediction was improved by using profiles, multiple

alignments of protein sequences. The input to the network that

describes a residue may have a form ”always Phenylalanin”,

”Phenylalanin or Proline” etc. Some benefits of profiles are analogous

to the benefits of multiple alignments for gene identifications –

structures are conserved better than loops.

Neural network can be replaced with support vector machines, which is

basically the same thing, but with a different method of training.
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Among further improvements, Meiler and Baker coupled neural

network predictions with Rosetta program, which basically allows to

check if predictions fit together in three dimensions. In turn, Rosetta

may find possible structures that were not predicted initially and we

get an improved set of predictions for the next run of Rosetta.

Meiler and Baker reported very impressive gains. It would be nice to

reproduce their level of success with “white box” method. It is hard to

get extra insight from thousands of coefficients produced by training of

neural networks.
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Possible global optimization method: maximum
weight matching.

Around 1995, Hubbard tried to predict β-sheets based on a matrix:

given two aminoacids, what is their propensity to be opposite each

other in a β-sheet. The results were showing some predictive power,

but not as good as the subsequent results of Rost.

We propose to refine Hubbard’s approach in two ways.

June 11, 2005 DIMACS Workshop Page 11



'

&

$

%

First, we want to base our “propensity” assesment based on triples

that may face each other rather than single residues. Importantly, such

two triples may contain 3-4 hydrogen bonds and they force a number

of side-chains to be in contact with each other, so there should be

more dependencies.

Second, given such two triples, we can introduce an edge connecting

their central residues and with the weight equal to the propensity

value. Given such a set of edges, we will search for a maximum weight

matching. (See the next picture.)

The hope is that wrong prediction would be sufficiently inconsistent to

fail to be present in the maximum weight matching.
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Fragment of the matching that corresponds to secondary structures.
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Challenges:

getting propensity values of pairs of triples, given that there are 64M

possibilities; we can use protein-alignment distance to tuples observed

in the structures recorded in the training set

refining propensity values, can we decrease the values that more often

in wrong solutions than others etc.,
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Given edges with a high score, they are meaningful only if used in

groups corresponding to plausible structures. We can eliminate

isolated edges in the matching problem. We can also use consistent

groups as predicted structures. This way each predicted structure

obtains a weight.

Now we have a combinatorial problem: given a set of plausible

predictions, find a consistent subset of maximum weight.

By formalizing the notion consistent in several ways we obtain several

possible problems.
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Possible global optimization method: set packing.

For each predicted structure we can define a characteristic set of

residue numbers. For an α-helix, this is the set of residues that it

includes. For a β-sheet, this is the set of residues that contain

hydrogen bonds that define the sheet.
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Example of characteristic sets of β-sheets:
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The definition of characteristics sets of β-sheets: “numbers of residues

of the hydrogen bonds of the sheet” has two good consequences:

1. sets of different 2-stranded sheets are disjoint, so we have a

set-packing problem;

2. after separating odd numbers from even numbers, characteristic

sets have the form of a pair of contiguous intervals of integers,

moreover, these intervals differ in size by at most one.
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We can define consistency of the predicted structures as the

disjointness of their characteristic sets. In that case, we have to solve

a weighted set packing problem:

given a family of sets, each with a weight, maximize the

joint weight of a subfamily in which sets are pairwise disjoint.
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Bad news: set packing is as hard to approximate as independent set

problem, which means, very, very hard.

Good news: property (2) of our sets allows to find 4-approximation in

time O(n2), where n is the number of sets.

Packing of k-tuples of intervals has a 2k-aproximation based on

Lagrangean relaxation (Haldorsson and others). Because intervals have

almost equal lengths, one can use a much faster local ratio algorithm

of Berman and DasGupta.

More bad news: this is an insufficient notion of consistency.
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Full consistency: the predicted structures fit together in

three-dimensional space.

Checking: running Rosetta, like Meiler and Baker?

Alternative: intermediate notions of consistency.

Metric consistency: we can assume that the distance between

consecutive residues on a sequence is exactly 1, plus we can make

assumptions about the exact distances within α-helices and β-sheets.

Such assumptions roughly corresponds to geometric facts about these

structures.

We may require that for a selected set of structures these assumptions

— and the triangle inequality — do not yield a contradiction.

Why use distances that only roughly correspond to the geometric

facts? We want to choose distances that impose as stringent

conditions as possible, provided that this conditions are satisfied by all

known protein structures.
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Distances inside an α-helix (from the black residue):
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Pairwise metric consistency: find set of plausible structures with

maximum total weight such that their characteristic sets are disjoint

and no two of them imply a metric contradiction.

Examples of metric contradictions:

above 20 in α -helix

Left example: in the vertical β-sheet, the distance between top and

bottom residues is exactly 4 and at most 3.5.

Right example: in the α-helix, the distance between first and last

residue is 10 (or more), and at most 8.5.
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Good news: pairwise metric consistency defines a problem that can be

approximately solved using local ratio method.

Metric consistency can be applied in other ways as well. If the number

of plausible structures is not too large (50? 90?), one can apply an

exact algorithm, of branch and bound type, for Maximum Weight

Independent Set, and maintain the table of metric implications of

currently selected structures. Increasing the number of detected

conflicts improves the running time of branch and bound methods.
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