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• Originally motivated to improve performance of “syndromic

surveillance” to detect outbreaks of disease, e.g. bioterrorist

attack.

• Paradigm: Establish what is “normal”, then be vigilant for

deviations from normal behavior. Some model is used for
baseline; one-step-ahead prediction tells us what is expected;

departure from this prediction (one-step-ahead residual) forms

basis for test statistic.

• Typical approach is to model respiratory illness as sinusoid (i.e.

Serfling’s method) and look for additional outbreak signal on top
of baseline.

• Problem with this approach: sinusoid fits data poorly during

influenza epidemic periods. Implication for prospective

surveillance is decreased performance (i.e. lower power for

detection of outbreaks) during epidemic periods.



Old motivation

Motivation

• Old and new

• National P+I mortality

Approach

Results

Al Ozonoff 1/27/06 DIMACS Influenza – 3 / 30

• Originally motivated to improve performance of “syndromic

surveillance” to detect outbreaks of disease, e.g. bioterrorist

attack.

• Paradigm: Establish what is “normal”, then be vigilant for

deviations from normal behavior. Some model is used for
baseline; one-step-ahead prediction tells us what is expected;

departure from this prediction (one-step-ahead residual) forms

basis for test statistic.

• Typical approach is to model respiratory illness as sinusoid (i.e.

Serfling’s method) and look for additional outbreak signal on top
of baseline.

• Problem with this approach: sinusoid fits data poorly during

influenza epidemic periods. Implication for prospective

surveillance is decreased performance (i.e. lower power for

detection of outbreaks) during epidemic periods.



Old motivation

Motivation

• Old and new

• National P+I mortality

Approach

Results

Al Ozonoff 1/27/06 DIMACS Influenza – 3 / 30

• Originally motivated to improve performance of “syndromic

surveillance” to detect outbreaks of disease, e.g. bioterrorist

attack.

• Paradigm: Establish what is “normal”, then be vigilant for

deviations from normal behavior. Some model is used for
baseline; one-step-ahead prediction tells us what is expected;

departure from this prediction (one-step-ahead residual) forms

basis for test statistic.

• Typical approach is to model respiratory illness as sinusoid (i.e.

Serfling’s method) and look for additional outbreak signal on top
of baseline.

• Problem with this approach: sinusoid fits data poorly during

influenza epidemic periods. Implication for prospective

surveillance is decreased performance (i.e. lower power for

detection of outbreaks) during epidemic periods.



Old motivation

Motivation

• Old and new

• National P+I mortality

Approach

Results

Al Ozonoff 1/27/06 DIMACS Influenza – 3 / 30

• Originally motivated to improve performance of “syndromic

surveillance” to detect outbreaks of disease, e.g. bioterrorist

attack.

• Paradigm: Establish what is “normal”, then be vigilant for

deviations from normal behavior. Some model is used for
baseline; one-step-ahead prediction tells us what is expected;

departure from this prediction (one-step-ahead residual) forms

basis for test statistic.

• Typical approach is to model respiratory illness as sinusoid (i.e.

Serfling’s method) and look for additional outbreak signal on top
of baseline.

• Problem with this approach: sinusoid fits data poorly during

influenza epidemic periods. Implication for prospective

surveillance is decreased performance (i.e. lower power for

detection of outbreaks) during epidemic periods.



New motivation

Motivation

• Old and new

• National P+I mortality

Approach

Results

Al Ozonoff 1/27/06 DIMACS Influenza – 4 / 30

• Recent interest in influenza spurred by prospects of novel strain

emerging to cause pandemic illness. Renewed effort to

understand historical record of influenza epidemics; to model

spread of disease in space and time; to prepare for possibility

(eventuality?) of pandemic.
• Seasonality of influenza not completely understood. Difficult to

model spatio-temporal patterns of disease. Data sources beyond

traditional influenza surveillance data are increasingly becoming

available.

• Improved modeling of several time series (dispersed across a
geographic area) may start with model for a single time series.

Better temporal models ⇒ better spatio-temporal models.
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Residuals from sinusoidal model
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• Serfling’s model based upon observation that underlying

seasonal baseline is roughly sinusoidal (also true for mortality of

some diseases besides influenza). May be driven by temp;

annual patterns (e.g. school year); dynamics of disease.

Yt = α0 + α1t + β1 sin (
2πt

52
) + β2 cos (

2πt

52
) + ǫt

• Because Serfling’s model reflects seasonal baseline, large

deviations above this baseline indicate epidemic state.

Integrating residuals allows calculation of “excess mortality” i.e.

mortality attributed to influenza above what would be expected,
accounting for seasonal variation.

• Model performs well for what it is asked to do. However, not well

suited to making one-step-ahead predictions, since model fit is

poor during epidemic state.
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• Periodic regression with auto-regressive component (PARMA)

has been used in syndromic surveillance settings. Model fit

improved during epidemic periods thanks to auto-regression.

Problematic for surveillance, since AR component may in fact

model the outbreaks instead of detecting them.
• “Method of analogues” is a non-parametric forecasting technique

with roots in meteorology. Shown by Viboud et al. (AJE 2003) to

significantly outperform other methods in one-step-ahead (and

many-step-ahead) prediction. Because it is a non-parametric

procedure, it ignores and obscures any knowledge about
mechanism of disease.

• Nuño and Pagano developing mixed models approach using

annual Gaussian to achieve better fit, as well as phase shift

treated as random effect to allow for flexibility in timing of

epidemic state. Bimodal Gaussian also considered to

accomodate occasional dual-wave behavior.
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• Idea behind HMMs: there is a ‘hidden” (latent, unobserved)

discrete random variable, representing some part of the disease

process. Observed variables are modeled, conditional upon the

hidden state. Thus, if we know the state we also know the

distribution of observed random variable.
• Markov property: conditional probability of state change

(transition probability) depends only on the value of latent state at

previous time point. Thus specify the Markov model for k states

with a k× k matrix of transition probabilities, and the distributions

of the observed data conditional on the hidden state.
• Parameter estimation accomplished with Bayesian inference

Using Gibbs Sampling (BUGS). Freeware available, e.g.

WinBUGS, OpenBUGS, etc.
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• Computationally demanding part of model fitting is algorithmic

search for the most likely sequence of hidden states, given the

observed data. Other parameters (e.g. distributional models for

observed variables) estimated simultaneously via Gibbs

sampling.
• HMMs used previously for sentinel ILI data from France by Le

Strat and Carrat (Stat Med 1999) as well as Rath, Carreras,

Sebastiani (Proc IDA 2003). Cooper and Lipsitch (Biostat 2004)

applied HMMs to nosocomial infections in hospitals. Various

other applications to disease data.
• Latent variable provides information about mechanism of

disease. Epidemic and non-epidemic behavior are modeled

separately.
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Yt are observed data i.e. weekly P&I counts.
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• Our approach: systematically investigate various HMMs and

evaluate to improve univariate time series models for influenza.

Test bed data are P&I mortality figures from CDC 122 Cities

surveillance system.

• Straightforward evaluation scheme to compare models: use fixed
period of mortality data (e.g. 1990-1994) to fit all models. Use

subsequent year (1995) to simulate prospective surveillance and

calculate one-step-ahead residuals.

• Change time periods and average to ensure evaluation is not

dependent on particular years chosen for model fitting and
predictions.

• Compare several HMMs; Serfling’s method; PARMA; perhaps

other methods? Consider many-step-ahead predictive power.
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• Research supported by pilot funds from the Blood Center of

Wisconsin. Second month of a 10 month funding period; results

are preliminary.

• Presenting goodness-of-fit evaluation only; prospective

evaluation in progress.
• First step in research program: evaluate HMMs on national

mortality data. Future work will incorporate results of univariate

modeling into spatio-temporal models at the regional/city levels,

e.g. using dynamic Bayesian networks as in Sebastiani, Mandl et

al. (Stat Med, in press).
• Eventually, follow similar approach with influenza-like illness (ILI)

data. Allows for predictive spatio-temporal models of influenza

morbidity.
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• CDC has been operating 122 Cities program continuously since

(circa) 1960. Weekly counts of deaths attributed to pneumonia

and influenza (P&I) reported to CDC by each of the participating

cities within 2-3 weeks, as well as total deaths for week.

• Covers approx. 25% of the U.S. pop’n. Basis for CDC
determination of epidemic influenza (Serfling).

• Age-specific counts available. 122 cities divided into 9

administrative regions, roughly 14 cities per region.

• Limitations of data: difficult to accurately attribute deaths to

influenza; mortality known to lag morbidity (e.g. ILI activity) by
2-4 weeks or more; behavior of mortality curve may differ from

that of influenza morbidity.
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influenza; mortality known to lag morbidity (e.g. ILI activity) by
2-4 weeks or more; behavior of mortality curve may differ from

that of influenza morbidity.
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• Age-specific counts available. 122 cities divided into 9

administrative regions, roughly 14 cities per region.

• Limitations of data: difficult to accurately attribute deaths to

influenza; mortality known to lag morbidity (e.g. ILI activity) by
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1. Traditional cyclic model (Serfling). OLS regression with terms for

intercept, linear trend, two periodic terms for sinusoid with phase

shift.

2. Periodic auto-regression (PARMA) fits cyclic model plus

additional ARMA terms. Fixed order of ARMA model at (1,0).
3. Naive 2-state HMM. Non-epidemic state, data follow Serfling’s

model. Epidemic state involves a simple mean shift.

4. 2-state AR-HMM. Non-epidemic state, data follow PARMA.

Epidemic state auto-regresses deviation from cyclic baseline.
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Serfling’s model

Year (starting Sep 1)

C
ou

nt

60
0

80
0

10
00

12
00

1990 1991 1992 1993 1994 1995 1996



PARMA

Motivation

Approach

Results

• Preliminary results

• Data

• Models

• Model fits

• Residuals

• Conclusions

Al Ozonoff 1/27/06 DIMACS Influenza – 21 / 30

PARMA model
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Simple HMM
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AR−HMM
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Residuals − Serfling/HMM
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Both HMMs provide a roughly 25% reduction in RMSE from Serfling,

roughly 10% reduction for PARMA.

Model RMSE

Serfling 83.3

PARMA 72.0

Simple HMM 63.7

AR-HMM 60.4
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• Temporal modeling of influenza surveillance data can be

substantially improved by implementing straightforward time

series methods.

• HMMs are a natural choice for modeling influenza data. Maintain

some information about mechanism of disease and allow for
explicit modeling of epidemic and non-epidemic phases.

• Further evaluation should be followed by efforts to integrate

several time series across spatial regions. Continue to work

towards predictive spatio-temporal models of influenza.
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