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High-dimensional data-sets 
and the problems they cause



What we do for a living

• Given data D,
• Parameter(s) θ,
• Model M.

• Wish to make inference re. f(θ|D).
• f(θ|D)= f(D| θ) π(θ) / P(D)

Prior Normalizing constant
2



The problem

• Data D,
• Parameter(s) θ,
• Model M
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National Geographic: September 5, 2006—Unfortunately for a 13-foot (4-meter) Burmese python 
in Florida's Everglades National Park, eating the enemy seems to have caused the voracious 
reptile to bust a gut—literally.
Wildlife researchers with the South Florida Natural Resources Center found the dead, headless 
python in October 2005 after it apparently tried to digest a 6-foot-long (2-meter-long) American 
alligator. The mostly intact dead gator was found sticking out of a hole in the midsection of the 
python, and wads of gator skin were found in the snake's gastrointestinal tract. 9



Summary

• Data sets are growing much larger.
• Larger implies more complex.
• Traditional analysis methods may fail or 

become computationally intractable. 
[f(D|θ)]

• Possible response:
• Construct better theory
• Use simpler (less realistic) models;
• ‘Approximate’ methods.
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• Part I - Approximating the model

11



• Part II - Approximating the model
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All models are wrong; some are useful (Box)



• Recurring example: the coalescent
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Ancestral methods with no 
recombination (haploid data)

A stochastic (Markov) process.
Time between events is exponentially distributed
As we look back in time two events may occur:

   i. Two lines of ancestry will coalesce to form a single line of 
ancestry, with prob. (k-1)/(k-1+θ)  where there are currently k lines 
and θ/2 represents the mutation rate. (Pick a random pair of lines)

    ii. A mutation will occur to a line of ancestry, changing the type of 
a gene, with prob. θ/(k-1+θ). (Pick a random line)

The process continues until there is a single line of ancestry: the most 
recent common ancestor (MRCA) of the sample.
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Figure 5: Representation of an ancestry for markers subject to recombination

MRCA

We trace the ancestry of a sample of 6 marker sequences, until 
we reach the MRCA. Mutational events are marked in green.
(Markers not ancestral to the sample are marked ‘-’ )
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Coalescent with recombination 
(diploid data)

As we look back in time three events may occur:

   i. Two lines of ancestry will coalesce to form a single line of ancestry, 
with prob. (k-1)/(k-1+θ+ρ)  where there are currently k lines and θ/2 
represents the mutation rate. (Pick a random pair of lines)

    ii. A mutation will occur to a line of ancestry, changing the type of a 
gene, with prob. θ/(k-1+θ+ρ). (Pick a random line)

    iii. A recombination will occur to a line, splitting it into two, with prob. 
ρ /(k-1+q+ρ). (Pick a random line)

The process continues until there is a single line of ancestry: the most recent 
common ancestor (MRCA) of the sample.
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Points of interest

Not all mutations on the recombination graph 
impact the sample.

Not all recombinations impact the sample.

The space of possible graph topologies is 
(very!) infinite (c.f. the finite space of possible 
coalescent tree topologies).



Ancestral Processes with 
Recombination

Key observation: Each locus still follows a 
coalescent  

Explicitly allows for the non-independence of 
multiple loci and use all data simultaneously.

Recombination makes life much more difficult. 
Can wait a long time for the MRCA.



Can the coalescent produce human 
data?

“Calibrating a coalescent simulation of 
human genome sequence variation” 
Schaffner, et al. Genome Research, 
15:1576-1583, 2005.



Approximating the model:

Fast “Coalescent” 
Simulation



Goal

• A faster way of producing coalescent data 
for chromosomal-length regions (cf. existing 
methods such as Hudson’s ms)



Why? – natural progression
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Why? - Growth of genome-wide 
data

• e.g. SNP-chips

• New analysis methodologies being developed. Need to 
test them somehow.
– Usual strategy: simulate test data
– Problem: traditional (coalescent) models too slow.

• Simulation-based analysis methods (Rejection algorithms, 
Importance Sampling, ‘no likelihoods’ MCMC - see part II)



Generating test data

• Real data + perturbation
– e.g. bootstrap resampling

• Model + simulation
– e.g. coalescent



Real data + perturbation

• Advantage – ‘model’ is correct. 
– Don’t know how the data got there, but it used 

the correct model.

• Disadvantage – subsequent perturbation 
adds noise. What do we end up with?



Model + simulation

• Advantage – Know what you are getting

• Disadvantage – May take a long while to get 
it + how accurate is the model?



Model-based approach

• Traditionally, many groups have used 
coalescent models

• Such models are slow for chromosomal-
length regions



Full coalescent models are slow for 
chromosomal-length regions

Run-times (secs) for ms (3 GB RAM)
Sample size Length (Mb) ms

1000 2 7.2
5 62.6

10 473.6
20 6459.6
50 -

100 -
200 -

Human chromosomes range from 50-200 Mbs



Run-times (secs) for ms (3 GB 
RAM)

Sample size Length (Mb) ms
4000 2 10.6

5 -
10 -
20 -
50 -

100 -
200 -



Find a faster way….How?

• Use an approximation to the coalescent

• Advantage  - it will be faster

• Disadvantage – it’s an approximation (to an 
approximation)



Chromosome

Wiuf and Hein “along the 
chromosome” algorithm
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Chromosome

Wiuf and Hein “Along the 
Chromosome” algorithm



Comments

• Builds subset of ARG
• Slower than ms  (larger subset)

– Includes many recombinations in non-ancestral 
material

• Suggests a simplification



Types of recombination
1. Ancestral material
2. Non-ancestral material 
3. Non-ancestral material
4. Non-ancestral material
5. Non-ancestral material

ms                                      Wiuf Hein

 ancestral material

 non-ancestral material



Sequential Markov Coalescent 
(McVean and Cardin 2005) 
(Marjoram and Wall 2006)
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Outline of formal statement

• L(x): length of tree at x є [0,1]
• Simulate y~Exp(L(x)ρ/2)
• If x+y<1

– Start next tree at x+y by adding a recombination at a 
point chosen uniformly over the current tree

– Add new line using usual coalescent prior
– Delete old line

• Else
– Stop



Run-times (secs) for ms (3 GB 
RAM)

Sample size Length (Mb) ms SMC

1000 2 7.2 0.9

5 62.6 2.1

10 473.6 4.3

20 6459.6 8.3

50 - 20.9

100 - 41.6

200 - 83.9



Run-times (secs) for ms (3 GB 
RAM)

Sample size Length (Mb) ms SMC

4000 2 10.6 4.0

5 - 10.4

10 - 22.2

20 - 40.7

50 - 105.8

100 - 201.5

200 - 406.1



Types of recombination
ms                                      Wiuf Hein        SMC

 ancestral material

 non-ancestral material



Generalizations

• Now includes:
– Variation in population size
– Population structure
– Gene conversion
– Everything that ms does

• MACS (Chen et al. 2009)



• Agreement between MACS and ms is very 
good. 

• When you can use ms, you should do so.

• For long regions,  MACS provides a very 
close approximation to an exact answer that 
is otherwise unobtainable 



• Part II - Approximating the analysis
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‘Vanilla’ Rejection method
1.Generate θ from prior π.
2.Accept θ with probability P(D|θ). [Acceptance rate]
3.Return to 1.

• Set of accepted θ’s forms empirical estimate of     
f(θ|D)

• If upper bound, c, for P(D|θ) is known replace 2. 
with

2’. Accept θ with probability P(D|θ)/c.

• In general, P(D|θ) cannot be computed, so…63



Alternate rejection method

1.Generate θ from π.
2.Simulate D’ using θ.
3.Accept θ if D’=D.
4.Return to 1.

• (Likelihood estimation - Diggle and 
Gratton, J.R.S.S. B, 46:193-227, 1984.)

Prob. may be v. small
Method then very inefficient

64



Rejection method -  (approximate 
Bayesian computation)

• Suppose we have a good summary statistic S.
1.Generate θ from π.
2.Simulate D’ using θ, and calculate S’.
3.Accept θ if S’=S.
4.Return to 1. 

• Result: f(θ|S)  [rather than f(θ|D)].

• Best case scenario: S is sufficient 
65



• We know what are getting: f(θ| S) 

• If no sufficient statistic(s) S:

–How to choose S?
–How close is f(θ| S)  to f(θ|D)?
–Lack of theoretical groundwork/guidance

66



Efficiency (c.f. Importance 
sampling)

67



MCMC - Metropolis-Hastings

1. If at θ, propose move to θ’ according to 
‘transition kernel’ q(θ → θ’)
2. Calculate

3. Move to θ’ with prob. h, else remain at θ
4. Return to 1.
Result: f(θ|D) ((Metropolis et al. 1953, Hastings 
1970)

68

h = min
{

1,
P (D | θ′)π(θ′)q(θ′ → θ)
P (D | θ)π(θ)q(θ → θ′)

}



MCMC ‘without likelihoods’
1. If at θ, propose move to θ’ according to ‘transition 
kernel’ q(θ → θ’)
2. Generate data D’ using θ’
3. If D’=D go to 4; else stay at θ  and go to 1
4. Calculate

5. Move to θ’ with prob. h, else remain at θ
6. Return to 1.
Result: f(θ|D)   69

h = min
{

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

}



MCMC ‘without likelihoods’
1. If at θ, propose move to θ’ according to ‘transition 
kernel’ q(θ → θ’)
2. Generate data D’ using θ’, calculate S’
3. If S’=S go to 4.; else stay at θ  and go to 1
4. Calculate

5. Move to θ’ with prob. h, else remain at θ
6. Return to 1.
Result: f(θ|S)   70

h = min
{

1,
π(θ′)q(θ′ → θ)
π(θ)q(θ → θ′)

}



How to choose statistics  (Paul Joyce)

• Can’t just include ‘any and all’ statistics 
(efficiency), so...

• Idea motivated by the concept of sufficient 
statistics.

• If S1 is sufficient for θ, then:
•  P(θ|S1)=P(θ|D);
•  P(θ|S1,S2)=P(θ|S1) for any S2   (but will be 

less efficient – lower acceptance rate)
71
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“Add statistics until score for next statistic drops below Δ”



Procedure

• Suppose a data-set D and a set of possible 
statistics S1,...,SM

• For i=1,...,N (N, very large):
– Sample θi from prior π()
– Simulate data Di

– Calculate S1,i,S2,i,...,SM,i

• Start with no statistics in the rejection 
method

73



Algorithm (applied to rejection method)

• Existing posterior, Fk-1, using S1, S2, ... , 
Sk-1

• Calculate posterior, Fk, after edition of 
randomly chosen currently unused stat Sk

• If ||Fk-Fk-1|| “sufficiently large” add Sk

• Else do not include SK

• If SK added, try to remove S1,...,Sk-1

• Repeat until no statistic can be added
• Stochastic noise is an issue

74



Example 1: Ewens Sampling 
formula

• Describes distribution of types in ‘infinite 
sites’ model

• Mutation parameter θ
• Number of types, S, is sufficient for θ
• Use sample size N=50

75



Statistics:
• S1: S (the number of types)
• S2: p (a random number ~ U[0,25])
• Use 5 million data sets and employ algorithm
• Analyze 100 datasets

76



More statistics:
• S1: S (the number of types)
• S2: p (a random number ~ U[0,25])
• S3: 50x Homozygosity
• S4: 25x frequency of commonest type
• S5: Number of singleton types

77



Example 3: coalescent, estimate ρ
• C1: #mutations
• C2: U[0,25]
• C3: mean # pairwise differences
• C4: 25x mean pairwise LD between ‘nearby’ loci
• C5: #haplotypes 
• C6: #copies of commonest haplotype
• C7: #singleton haplotypes

78



Approach 2 - Genetic algorithms

• A population of ‘algorithms’ 
• Each algorithm has a ‘fitness’
• Evolve through discrete generations
• Algorithms reproduce according to their fitness
• Subject to mutation and recombination

79



Trivial example

• Algorithm = vector of 8 binary numbers
• Fitness = # of 1s

– e.g. 00010010  --> fitness=2
– e.g. 11010110  --> fitness=6

• Mutation: point mutation (flip a bit)
• Recombination: choose a breakpoint 

and concatenate two parents
– 110100100  +  000010111
– >  110010111

80



Results - time to find fittest 
algorithm

• Using vectors of length 20, population 
size=100, p(mutate)=0.001/bit

• Mutation only: 609 generations

81



Results - time to find fittest 
algorithm

• Using vectors of length 20, population 
size=100, p(mutate)=0.001/bit

• Mutation only: 609 generations

• Mutation + recombination (prob=0.7): 75 
generations

82



Back to rejection methods

• Want to pick arbitrary linear combination of 
summary statistics (S1,....,Sn) that captures 
the information about θ

• Algorithm is now a vector of coefficients
– e.g.  

1.3 -5 0.01 16 -0.2
S1 S2 S3 S4 S5

83



• Create 100 test data sets D1,...,D100 sampling 
from prior θ

• Create pool of 5M (say) data sets, sampling θ 
from prior, to use as simulated data in 
rejection method

• For each algorithm, j, run rejection method for 
each Di, calculate mean of posterior for θi

• Fitness is 1/(mean square error) 
• Evolve for 50 generations
• Test final fittest GA on new set of 100 data 

sets. 84



Estimating Normal variance

85



Estimating mutation rate 
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Estimating recombination rate 
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General comments

88

• Approximate methods allow analysis in situations where exact 
analysis is intractable

• Choice of summary statistics is problematic

• Two methods, both choose statistics sensibly on test examples, 
the genetic algorithm also chooses weights

• There remains a worrying absence of theory to tell you how 
well you are doing [i.e. how close is P(θ|S) to P(θ|D)?]



•Refs (Part I): 
•Recombination as a point process along sequences, Wiuf and 
Hein, Theor. Pop. Biol. 55:28-259, 1999.
•Approximating the coalescent with recombination, McVean and 
Cardin, Phil. Trans. R. Soc. B 360:1387–1393, (2005).
•Fast “Coalescent” Simulation. Marjoram and Wall. BMC Genetics, 
7:16, 2006.
•Fast and flexible simulation of DNA sequence data, Chen, 
Marjoram Wall, Genome Research, 19:136-142, 2009
•MACS algorithm available at http://hsc.usc.edu/~garykche

•Refs (Part II):
•  Approximately sufficient statistics and Bayesian computation. 
Joyce & Marjoram. Stat Appl Genet Mol Biol. 2008; 7:Article26. 
2008

http://hsc.usc.edu/~garykche
http://hsc.usc.edu/~garykche


Collaborators

• Jeff Wall, Gary Chen
• Simon Tavaré, Paul Joyce, Hsuan Jung
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END
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Other notes 

• Generalizes to multiple variables
• Evolving the test data

– keep the ‘hardest’ - sorting algorithms
– keep the ‘easiest’ - noisy data?

• There is little theory
• Applications are seat-of-the-pants/

heuristic/intuitive
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Pair-wise algorithms: history, 
n=16

• Let m = number of pairwise comparisons 
made

• 1962 - Bose and Nelson:  m=65. Conjectured 
to be optimal.

• 1964 - Batcher, and Floyd & Knuth: m=63. 
Believed to be optimal.

• 1969 - Shapiro: m=62.  Too smart to 
conjecture optimality......

• 1969 - Green: m=60. Remains the best 
solution.
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http://www.cs.brandeis.edu/~hugues/graphics/green.gif

http://www.cs.brandeis.edu/~hugues/graphics/green.gif

Green’s 60 step sorter

94

http://www.cs.brandeis.edu/~hugues/graphics/green.gif
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Genetic Algorithm
• Individuals encoded as ordered list of 

pairwise comparisons:

5, 3, 6, 1, 2, 4.

(1,4) (2,3) (3,6) (2,5) (3,5) (4,5)
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Fitness

• Need a definition of fitness:
• For a given algorithm on a given sequence, 

count the number of pairs of adjacent 
numbers that are incorrectly ordered, Np.

• f =1/(Np+ε)?
• Calculate a mean of f over a large number of 

test sequences of unordered numbers.

96



Result

• Population size  =  512-1000000 individuals
• 5000 generations
• Best algorithm:   length = 65
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Pair-wise algorithms: history, 
n=16

• Let m = number of pairwise comparisons 
made

• 1962 - Bose and Nelson:  m=65. Conjectured 
to be optimal.

• 1964 - Batcher, and Floyd & Knuth: m=63, 
(see previous slide). Believed to be optimal.

• 1969 - Shapiro: m=62. Too smart to 
conjecture optimality......

• 1969 - Green: m=60.
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Back to the drawing board....

• Ideas from host-parasite evolution
• View sorting algorithms as ‘hosts’
• View the test data sets of unordered 

numbers as ‘parasites’
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Example 2: coalescent, estimate θ
• C1: #mutations
• C2: U[0,25]
• C3: mean # pairwise differences
• C4: 25x mean pairwise LD between ‘nearby’ loci
• C5: #haplotypes 
• C6: #copies of commonest haplotype
• C7: #singleton haplotypes
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Coalescent - mutation rate
• S0 = Number of types (nearly sufficient)
• S1 = A random number ( U[0,20] )
• 50000 data sets

• After 10 generations of 20 algorithms:
– fittest alg. is 79.0S0 + 0.03S1

101



Coalescent mutation rate - more 
stats [SNP data]

• S0 = Number of segregating sites (nearly sufficient)
• S1 = A random number ( U[0,20] )
• S2 = Number of ‘pairwise differences’
• S3 = Mean pairwise linkage disequilibrium 
• S4 = Number of haplotypes

• fittest algorithm:
– 0.8S0 + 0.06S1 + 6.0S2 + 0.5S3 + 28.0S4

• 5th fittest (very similar fitness)
– 9.2S0 + 0.07S1 + 0.2S2 + 0.3S3 + 0.3S4
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Same problem but with more 
data (250K vs. 50K)

• S0 = Number of segregating sites (nearly sufficient)
• S1 = A random number ( U[0,20] )
• S2 = Number of ‘pairwise differences’
• S3 = Mean pairwise linkage disequilibrium 
• S4 = Number of haplotypes

• fittest algorithm:
– 34.1S0 + 0.2S1 + 0.6S2 + 0.0S3 + 95.8S4
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• Define parasites that contain 10-20 test lists 
of numbers

• Have sorters and parasites evolve on a 2d 
grid

• Test an algorithm’s fitness using the 
nearest parasite

• Parasite fitness = % of lists that were not 
sorted correctly

• Evolve the parasites!
• Best solution: 61 comparisons.
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Estimating Normal variance
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