Colouring graphs with no odd holes

Paul Seymour (Princeton)
joint with Alex Scott (Oxford)

Chromatic number $\chi(G)$: minimum number of colours needed to colour G.

Chromatic number $\chi(G)$: minimum number of colours needed to colour G.

Clique number $\omega(G)$: size of largest clique in G.

Theorem (Tutte, 1948)
There are graphs G with $\omega(G)=2$ and $\chi(G)$ arbitrarily large.

Theorem (Tutte, 1948)
There are graphs G with $\omega(G)=2$ and $\chi(G)$ arbitrarily large.
Hole: induced subgraph of G which is a cycle of length >3.

Theorem (Tutte, 1948)

There are graphs G with $\omega(G)=2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of G which is a cycle of length >3.
Antihole: induced subgraph of G which is the complement of a cycle of length >3.

Theorem (Tutte, 1948)

There are graphs G with $\omega(G)=2$ and $\chi(G)$ arbitrarily large.
Hole: induced subgraph of G which is a cycle of length >3. Antihole: induced subgraph of G which is the complement of a cycle of length >3.

Theorem (Chudnovsky, Robertson, S., Thomas, 2006) If G has no odd holes and no odd antiholes then $\chi(G)=\omega(G)$.

Theorem (Tutte, 1948)

There are graphs G with $\omega(G)=2$ and $\chi(G)$ arbitrarily large.
Hole: induced subgraph of G which is a cycle of length >3. Antihole: induced subgraph of G which is the complement of a cycle of length >3.

Theorem (Chudnovsky, Robertson, S., Thomas, 2006) If G has no odd holes and no odd antiholes then $\chi(G)=\omega(G)$.

What happens in between?

Theorem (Tutte, 1948)

There are graphs G with $\omega(G)=2$ and $\chi(G)$ arbitrarily large.
Hole: induced subgraph of G which is a cycle of length >3.
Antihole: induced subgraph of G which is the complement of a cycle of length >3.

Theorem (Chudnovsky, Robertson, S., Thomas, 2006) If G has no odd holes and no odd antiholes then $\chi(G)=\omega(G)$.

What happens in between?
Conjecture (Gyárfás, 1985) If G has no odd holes then $\chi(G)$ is bounded by a function of $\omega(G)$.

Theorem (trivial) If G has no odd holes and $\omega(G) \leq 2$ then $\chi(G)=\omega(G)$.

Theorem (trivial) If G has no odd holes and $\omega(G) \leq 2$ then $\chi(G)=\omega(G)$.

Theorem (Chudnovsky, Robertson, S., Thomas, 2010) If G has no odd holes and $\omega(G)=3$ then $\chi(G) \leq 4$.

Theorem (trivial) If G has no odd holes and $\omega(G) \leq 2$ then $\chi(G)=\omega(G)$.

Theorem (Chudnovsky, Robertson, S., Thomas, 2010) If G has no odd holes and $\omega(G)=3$ then $\chi(G) \leq 4$.

Theorem (Scott, S., August 2014) If G has no odd holes then $\chi(G) \leq 2^{2^{\omega(G)}}$.

Cograph: graph not containing a 4-vertex path as an induced subgraph.

Cograph: graph not containing a 4-vertex path as an induced subgraph.

Lemma

If J is a cograph with $|V(J)|>1$, then either J or its complement is disconnected.

Cograph: graph not containing a 4-vertex path as an induced subgraph.

Lemma

If J is a cograph with $|V(J)|>1$, then either J or its complement is disconnected.

Theorem

Let G be a graph, and let $A, B \subseteq V(G)$ be disjoint, where A is stable and $B \neq \emptyset$. Suppose that

- every vertex in B has a neighbour in A;
- there is a cograph J with vertex set A, with the property that for every induced path P with ends in A and interior in B, its ends are adjacent in J if and only if P has odd length.
Then there is a partition X, Y of B such that every $\omega(G)$-clique in B intersects both X and Y.

The proof

Let G be a graph with no odd hole. We need to show $\chi(G) \leq 2^{3^{\omega(G)}}$.

The proof

Let G be a graph with no odd hole. We need to show $\chi(G) \leq 2^{3^{\omega(G)}}$.
Enough to show:
Assume

- Every graph H with no odd hole and $\omega(H)<\omega(G)$ has $\chi(H) \leq n$
- G has no odd hole.

Then $\chi(G) \leq 48 n^{3}$.

Levelling in G : Sequence $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ of disjoint subsets of $V(G)$ where

- $\left|L_{0}\right|=1$
- each vertex in L_{i+1} has a neighbour in L_{i}
- for $j>i+1$ there are no edges between L_{i} and L_{j}.

Levelling in G : Sequence $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ of disjoint subsets of $V(G)$ where

- $\left|L_{0}\right|=1$
- each vertex in L_{i+1} has a neighbour in L_{i}
- for $j>i+1$ there are no edges between L_{i} and L_{j}.

Enough to show:
Assume

- Every graph H with no odd hole and $\omega(H)<\omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ is a levelling in G.

Then $\chi\left(L_{k}\right) \leq 24 n^{3}$.

Parent of $v \in L_{i+1}$ is a vertex in L_{i} adjacent to v.
L_{i} has the unique parent property if $i<k$ and every vertex in L_{i} is the unique parent of some vertex.

Parent of $v \in L_{i+1}$ is a vertex in L_{i} adjacent to v.
L_{i} has the unique parent property if $i<k$ and every vertex in L_{i} is the unique parent of some vertex.
L_{i} has the parity property if for all $u, v \in L_{i}$, all induced paths between them with interior in lower levels have the same parity.

Parent of $v \in L_{i+1}$ is a vertex in L_{i} adjacent to v.
L_{i} has the unique parent property if $i<k$ and every vertex in L_{i} is the unique parent of some vertex.
L_{i} has the parity property if for all $u, v \in L_{i}$, all induced paths between them with interior in lower levels have the same parity.

Enough to show:
Assume

- Every graph H with no odd hole and $\omega(H)<\omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ is a levelling in G
- L_{0}, \ldots, L_{k-1} have the parity property
- L_{0}, \ldots, L_{k-1} have the unique parent property.

Then $\chi\left(L_{k}\right) \leq 24 n^{3}$.

Spine: Path $S=s_{0}-s_{1} \cdots-s_{k}$ where

- $s_{i} \in L_{i}$ for all i
- s_{i} is the unique parent of s_{i+1} for all $i<k$
- every vertex in $N(S)$ has the same type, and not type 5 or type 6.

Spine: Path $S=s_{0}-s_{1} \cdots-s_{k}$ where

- $s_{i} \in L_{i}$ for all i
- s_{i} is the unique parent of s_{i+1} for all $i<k$
- every vertex in $N(S)$ has the same type, and not type 5 or type 6.
$N(S)$ is the set of vertices not in S with a neighbour in S.

Spine: Path $S=s_{0}-s_{1} \cdots-s_{k}$ where

- $s_{i} \in L_{i}$ for all i
- s_{i} is the unique parent of s_{i+1} for all $i<k$
- every vertex in $N(S)$ has the same type, and not type 5 or type 6.
$N(S)$ is the set of vertices not in S with a neighbour in S.
Type of $v \in N(S) \cap L_{i}$:
Type 1: i even, v adjacent to s_{i-1} and to no other vertex in S
Type 2: i odd, v adjacent to s_{i-1} and to no other vertex in S
Type 3: i even, v adjacent to s_{i-1}, s_{i} and to no other vertex in S
Type 4: i odd, v adjacent to s_{i-1}, s_{i} and to no other vertex in S
Type 5: i even, v adjacent to s_{i} and to no other vertex in S
Type 6: i odd, v adjacent to s_{i} and to no other vertex in S.

Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H)<\omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ is a levelling in G
- L_{0}, \ldots, L_{k-1} have the parity property
- L_{0}, \ldots, L_{k-1} have the unique parent property
- there is a spine.

Then $\chi\left(L_{k}\right) \leq 4 n^{3}$.
L_{i} satisfies the parent rule if all adjacent $u, v \in L_{i}$ have the same parents.
L_{i} satisfies the parent rule if all adjacent $u, v \in L_{i}$ have the same parents.

Theorem

Suppose

- G has no odd hole
- $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ is a levelling in G
- L_{0}, \ldots, L_{k-1} have the parity property
- L_{0}, \ldots, L_{k-1} have the unique parent property
- there is a spine.

Then L_{0}, \ldots, L_{k-2} satisfy the parent rule.

Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H)<\omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ is a levelling in G
- L_{0}, \ldots, L_{k-1} have the parity property
- L_{0}, \ldots, L_{k-2} satisfy the parent rule.

Then $\chi\left(L_{k}\right) \leq 4 n^{3}$.

Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H)<\omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ is a levelling in G
- L_{0}, \ldots, L_{k-1} have the parity property
- L_{0}, \ldots, L_{k-2} satisfy the parent rule
- L_{k-2} is stable.

Then $\chi\left(L_{k}\right) \leq 4 n^{2}$.

Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H)<\omega(G)$ has $\chi(H) \leq n$
- G has no odd hole
- $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ is a levelling in G
- L_{0}, \ldots, L_{k-1} have the parity property
- L_{0}, \ldots, L_{k-2} satisfy the parent rule.
- L_{k-1} is stable.

Then $\chi\left(L_{k}\right) \leq 2 n$.

Let L_{0}, \ldots, L_{t} be a levelling in G, where L_{t} is stable and has the parity property.
The graph of jumps on L_{t} is the graph on L_{t}, in which u, v are adjacent if all induced paths between u, v with interior in lower levels are odd.

Let L_{0}, \ldots, L_{t} be a levelling in G, where L_{t} is stable and has the parity property.
The graph of jumps on L_{t} is the graph on L_{t}, in which u, v are adjacent if all induced paths between u, v with interior in lower levels are odd.

Theorem

Suppose that

- G has no odd hole
- L_{0}, \ldots, L_{t} is a levelling in G
- L_{t} has the parity property
- L_{0}, \ldots, L_{t-1} satisfy the parent rule
- L_{t} is stable.

Then the graph of jumps on L_{t} is a cograph.

Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H)<\omega(G)$ has $\chi(H) \leq n$
- L_{0}, \ldots, L_{k} is a levelling in G
- L_{k-1} has the parity property
- L_{k-1} is stable
- the graph of jumps on L_{k-1} is a cograph.

Then $\chi\left(L_{k}\right) \leq 2 n$.

Recall:

Theorem

Let G be a graph, and let $A, B \subseteq V(G)$ be disjoint, where A is stable and $B \neq \emptyset$. Suppose that

- every vertex in B has a neighbour in A;
- there is a cograph J with vertex set A, with the property that for every induced path P with ends in A and interior in B, its ends are adjacent in J if and only if P has odd length.
Then there is a partition X, Y of B such that every $\omega(G)$-clique in B intersects both X and Y.

