Colouring graphs with no odd holes

Paul Seymour (Princeton) joint with Alex Scott (Oxford) Chromatic number $\chi(G)$: minimum number of colours needed to colour *G*.

Chromatic number $\chi(G)$: minimum number of colours needed to colour *G*.

Clique number $\omega(G)$: size of largest clique in G.

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

▲□▶▲□▶▲□▶▲□▶ ■ のQの

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of *G* which is a cycle of length > 3.

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of *G* which is a cycle of length > 3. Antihole: induced subgraph of *G* which is the complement of a cycle of length > 3.

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of *G* which is a cycle of length > 3. Antihole: induced subgraph of *G* which is the complement of a cycle of length > 3.

Theorem (Chudnovsky, Robertson, S., Thomas, 2006)

If G has no odd holes and no odd antiholes then $\chi(G) = \omega(G)$.

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of *G* which is a cycle of length > 3. Antihole: induced subgraph of *G* which is the complement of a cycle of length > 3.

Theorem (Chudnovsky, Robertson, S., Thomas, 2006)

If G has no odd holes and no odd antiholes then $\chi(G) = \omega(G)$.

What happens in between?

There are graphs G with $\omega(G) = 2$ and $\chi(G)$ arbitrarily large.

Hole: induced subgraph of *G* which is a cycle of length > 3. Antihole: induced subgraph of *G* which is the complement of a cycle of length > 3.

Theorem (Chudnovsky, Robertson, S., Thomas, 2006)

If G has no odd holes and no odd antiholes then $\chi(G) = \omega(G)$.

What happens in between?

Conjecture (Gyárfás, 1985)

If *G* has no odd holes then $\chi(G)$ is bounded by a function of $\omega(G)$.

(日)

Theorem (trivial)

If G has no odd holes and $\omega(G) \leq 2$ then $\chi(G) = \omega(G)$.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Theorem (trivial)

If G has no odd holes and $\omega(G) \leq 2$ then $\chi(G) = \omega(G)$.

Theorem (Chudnovsky, Robertson, S., Thomas, 2010) If *G* has no odd holes and $\omega(G) = 3$ then $\chi(G) \le 4$.

Theorem (trivial)

If G has no odd holes and $\omega(G) \leq 2$ then $\chi(G) = \omega(G)$.

Theorem (Chudnovsky, Robertson, S., Thomas, 2010) If *G* has no odd holes and $\omega(G) = 3$ then $\chi(G) \le 4$.

Theorem (Scott, S., August 2014)

If G has no odd holes then $\chi(G) \leq 2^{3^{\omega(G)}}$.

Cograph: graph not containing a 4-vertex path as an induced subgraph.

Cograph: graph not containing a 4-vertex path as an induced subgraph.

Lemma

If J is a cograph with |V(J)| > 1, then either J or its complement is disconnected.

Cograph: graph not containing a 4-vertex path as an induced subgraph.

Lemma

If J is a cograph with |V(J)| > 1, then either J or its complement is disconnected.

Theorem

Let G be a graph, and let A, $B \subseteq V(G)$ be disjoint, where A is stable and $B \neq \emptyset$. Suppose that

- every vertex in B has a neighbour in A;
- there is a cograph J with vertex set A, with the property that for every induced path P with ends in A and interior in B, its ends are adjacent in J if and only if P has odd length.

Then there is a partition X, Y of B such that every $\omega(G)$ -clique in B intersects both X and Y.

The proof

Let *G* be a graph with no odd hole. We need to show $\chi(G) \leq 2^{3^{\omega(G)}}$.

The proof

Let *G* be a graph with no odd hole. We need to show $\chi(G) \leq 2^{3^{\omega(G)}}$

Enough to show:

Assume

- Every graph *H* with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \le n$
- G has no odd hole.

Then $\chi(G) \leq 48n^3$.

Levelling in *G*: Sequence $L_0, L_1, L_2, ..., L_k$ of disjoint subsets of V(G) where

•
$$|L_0| = 1$$

- each vertex in L_{i+1} has a neighbour in L_i
- for j > i + 1 there are no edges between L_i and L_j .

Levelling in *G*: Sequence $L_0, L_1, L_2, ..., L_k$ of disjoint subsets of V(G) where

● |*L*₀| = 1

- each vertex in L_{i+1} has a neighbour in L_i
- for j > i + 1 there are no edges between L_i and L_j .

Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \le n$
- G has no odd hole

•
$$L_0, L_1, L_2, \ldots, L_k$$
 is a levelling in *G*.

Then $\chi(L_k) \leq 24n^3$.

Parent of $v \in L_{i+1}$ is a vertex in L_i adjacent to v.

 L_i has the unique parent property if i < k and every vertex in L_i is the unique parent of some vertex.

Parent of $v \in L_{i+1}$ is a vertex in L_i adjacent to v.

 L_i has the unique parent property if i < k and every vertex in L_i is the unique parent of some vertex.

 L_i has the parity property if for all $u, v \in L_i$, all induced paths between them with interior in lower levels have the same parity.

Parent of $v \in L_{i+1}$ is a vertex in L_i adjacent to v.

 L_i has the unique parent property if i < k and every vertex in L_i is the unique parent of some vertex.

 L_i has the parity property if for all $u, v \in L_i$, all induced paths between them with interior in lower levels have the same parity.

Enough to show:

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \le n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in *G*
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-1} have the unique parent property.

Then $\chi(L_k) \leq 24n^3$.

Spine: Path $S = s_0 \cdot s_1 \cdot \cdots \cdot s_k$ where

- $s_i \in L_i$ for all i
- s_i is the unique parent of s_{i+1} for all i < k
- every vertex in N(S) has the same type, and not type 5 or type 6.

Spine: Path $S = s_0 \cdot s_1 \cdot \cdots \cdot s_k$ where

- $s_i \in L_i$ for all i
- s_i is the unique parent of s_{i+1} for all i < k
- every vertex in N(S) has the same type, and not type 5 or type 6.

N(S) is the set of vertices not in S with a neighbour in S.

Spine: Path $S = s_0 \cdot s_1 \cdot \cdots \cdot s_k$ where

- $s_i \in L_i$ for all i
- s_i is the unique parent of s_{i+1} for all i < k
- every vertex in N(S) has the same type, and not type 5 or type 6.

N(S) is the set of vertices not in S with a neighbour in S.

Type of $v \in N(S) \cap L_i$:

Type 1: *i* even, *v* adjacent to s_{i-1} and to no other vertex in *S* Type 2: *i* odd, *v* adjacent to s_{i-1} and to no other vertex in *S* Type 3: *i* even, *v* adjacent to s_{i-1} , s_i and to no other vertex in *S* Type 4: *i* odd, *v* adjacent to s_{i-1} , s_i and to no other vertex in *S* Type 5: *i* even, *v* adjacent to s_i and to no other vertex in *S* Type 6: *i* odd, *v* adjacent to s_i and to no other vertex in *S*.

・ロン ・四 と ・ ヨ と ・ ヨ

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \le n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in *G*
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-1} have the unique parent property
- there is a spine.

Then $\chi(L_k) \leq 4n^3$.

 L_i satisfies the parent rule if all adjacent $u, v \in L_i$ have the same parents.

 L_i satisfies the parent rule if all adjacent $u, v \in L_i$ have the same parents.

Theorem

Suppose

- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in G
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-1} have the unique parent property
- there is a spine.

Then L_0, \ldots, L_{k-2} satisfy the parent rule.

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \le n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in *G*
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-2} satisfy the parent rule.

Then $\chi(L_k) \leq 4n^3$.

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \le n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in *G*
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-2} satisfy the parent rule
- L_{k-2} is stable.

Then $\chi(L_k) \leq 4n^2$.

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \le n$
- G has no odd hole
- $L_0, L_1, L_2, \ldots, L_k$ is a levelling in *G*
- L_0, \ldots, L_{k-1} have the parity property
- L_0, \ldots, L_{k-2} satisfy the parent rule.
- L_{k-1} is stable.

Then $\chi(L_k) \leq 2n$.

Let L_0, \ldots, L_t be a levelling in *G*, where L_t is stable and has the parity property.

The graph of jumps on L_t is the graph on L_t , in which u, v are adjacent if all induced paths between u, v with interior in lower levels are odd.

Let L_0, \ldots, L_t be a levelling in *G*, where L_t is stable and has the parity property.

The graph of jumps on L_t is the graph on L_t , in which u, v are adjacent if all induced paths between u, v with interior in lower levels are odd.

Theorem

Suppose that

- G has no odd hole
- L_0, \ldots, L_t is a levelling in G
- Lt has the parity property
- L_0, \ldots, L_{t-1} satisfy the parent rule
- L_t is stable.

Then the graph of jumps on L_t is a cograph.

Assume

- Every graph H with no odd hole and $\omega(H) < \omega(G)$ has $\chi(H) \le n$
- L_0, \ldots, L_k is a levelling in *G*
- L_{k-1} has the parity property
- L_{k-1} is stable
- the graph of jumps on L_{k-1} is a cograph.

Then $\chi(L_k) \leq 2n$.

Recall:

Theorem

Let G be a graph, and let A, $B \subseteq V(G)$ be disjoint, where A is stable and $B \neq \emptyset$. Suppose that

- every vertex in B has a neighbour in A;
- there is a cograph J with vertex set A, with the property that for every induced path P with ends in A and interior in B, its ends are adjacent in J if and only if P has odd length.

Then there is a partition X, Y of B such that every $\omega(G)$ -clique in B intersects both X and Y.

< 回 > < 三 > < 三 >