Involutions by Descents/Ascents and Symmetric Integral Matrices

Richard A. Brualdi
University of Wisconsin-Madison

Joint work with Shi-Mei Ma: European J. Combins. (to appear)
Alan Hoffman Fest - my hero
Rutgers University
19-20 September 2014

(1) Some Background

(2) Involutions

RSK-correspondence

\mathfrak{S}_{n} : the set of all permutations of $\{1,2, \ldots, n\}$.
\mathfrak{Y}_{n} : the set of standard Young tableaux on n cells: a Ferrers diagram containing each of $\{1,2, \ldots, n\}$ increasing along rows from left to right and along columns from top to bottom. For example. with $n=8$,

1	4	5	7
2	6	8	

RSK-correspondence

\mathfrak{S}_{n} : the set of all permutations of $\{1,2, \ldots, n\}$.
\mathfrak{Y}_{n} : the set of standard Young tableaux on n cells: a Ferrers diagram containing each of $\{1,2, \ldots, n\}$ increasing along rows from left to right and along columns from top to bottom. For example. with $n=8$,

1	4	5	7
2	6	8	

The RSK-correspondence (an algorithm) provides a bijection between \mathfrak{S}_{n} and pairs of standard Young tableaux of the same shape.
$\sigma \xrightarrow{\text { RSK }}(P, Q) \quad(P$ is the insertion tableau and Q is the recording tableau).

RSK-correspondence

\mathfrak{S}_{n} : the set of all permutations of $\{1,2, \ldots, n\}$.
\mathfrak{Y}_{n} : the set of standard Young tableaux on n cells: a Ferrers diagram containing each of $\{1,2, \ldots, n\}$ increasing along rows from left to right and along columns from top to bottom. For example. with $n=8$,

1	4	5	7
2	6	8	

The RSK-correspondence (an algorithm) provides a bijection between \mathfrak{S}_{n} and pairs of standard Young tableaux of the same shape.
$\sigma \xrightarrow{\text { RSK }}(P, Q) \quad(P$ is the insertion tableau and Q is the recording tableau).
Fact: $\sigma \xrightarrow{\mathrm{RSK}}(P, Q) \Longrightarrow \sigma^{-1} \xrightarrow{\mathrm{RSK}}(Q, P)$
Alan Hoffman Fest, 19-20 September 2014

Involutions

Fact: $\sigma \xrightarrow{\mathrm{RSK}}(P, Q) \Longrightarrow \sigma^{-1} \xrightarrow{\mathrm{RSK}}(Q, P)$

Thus in the RSK-correspondence, $Q=P$, and hence is a bijection between the set \mathfrak{I}_{n} of involutions of order n and the set $\mathfrak{Y}{ }_{n}$

Involutions

Fact: $\sigma \xrightarrow{\mathrm{RSK}}(P, Q) \Longrightarrow \sigma^{-1} \xrightarrow{\mathrm{RSK}}(Q, P)$
\Im_{n} : the set of involutions in \mathfrak{S}_{n}, that is, permutations $\sigma \in \mathfrak{S}_{n}$ such that $\sigma^{-1}=\sigma$.
Thus in the RSK-correspondence, $Q=P$, and hence of standard Young tableaux on n cells.

Involutions

Fact: $\sigma \xrightarrow{\mathrm{RSK}}(P, Q) \Longrightarrow \sigma^{-1} \xrightarrow{\mathrm{RSK}}(Q, P)$
\Im_{n} : the set of involutions in \mathfrak{S}_{n}, that is, permutations $\sigma \in \mathfrak{S}_{n}$ such that $\sigma^{-1}=\sigma$.
Thus in the RSK-correspondence, $Q=P$, and hence

$$
\sigma \xrightarrow{\mathrm{RSK}}(P, P) \longrightarrow P
$$

is a bijection between the set \mathfrak{I}_{n} of involutions of order n and the set \mathfrak{Y}_{n} of standard Young tableaux on n cells.

Involutions

Fact: $\sigma \xrightarrow{\text { RSK }}(P, Q) \Longrightarrow \sigma^{-1} \xrightarrow{\text { RSK }}(Q, P)$
\Im_{n} : the set of involutions in \mathfrak{S}_{n}, that is, permutations $\sigma \in \mathfrak{S}_{n}$ such that $\sigma^{-1}=\sigma$.
Thus in the RSK-correspondence, $Q=P$, and hence

$$
\sigma \xrightarrow{\mathrm{RSK}}(P, P) \longrightarrow P
$$

is a bijection between the set \mathfrak{I}_{n} of involutions of order n and the set \mathfrak{Y}_{n} of standard Young tableaux on n cells.
Result of Schutzenberger (1977) : The number of fixed points of an involution σ of order n equals the number of columns of the corresponding standard Young tableau P with odd length.

Generating polynomial of Involutions by descents

descent of a permutation $\pi \in \mathfrak{S}_{n}$: a position i such that $\pi(i)>\pi(i+1) . \operatorname{des}(\pi)$ is the number of descents of π. Generating polynomial of the set of involutions \mathfrak{I}_{n} by descents: where $I(n, k)$ is the number of involutions of order n with k descents. The first few $I_{n}(t)$ are (see the on-line encycl. of integer sequences)

Generating polynomial of Involutions by descents

descent of a permutation $\pi \in \mathfrak{S}_{n}$: a position i such that $\pi(i)>\pi(i+1) . \operatorname{des}(\pi)$ is the number of descents of π. Generating polynomial of the set of involutions \Im_{n} by descents:

$$
I_{n}(t)=\sum_{\pi \in \mathfrak{I}_{n}} t^{\operatorname{des}(\pi)}=\sum_{k=0}^{n-1} I(n, k) t^{k}
$$

where $I(n, k)$ is the number of involutions of order n with k descents. The first few $I_{n}(t)$ are (see the on-line encycl. of integer sequences):

$$
\begin{aligned}
& I_{1}(t)=1 \\
& I_{2}(t)=1+t \\
& I_{3}(t)=1+2 t+t^{2} \\
& I_{4}(t)=1+4 t+4 t^{2}+t^{3} \\
& I_{5}(t)=1+6 t+12 t^{2}+6 t^{3}+t^{4}
\end{aligned}
$$

Known Properties of $I_{n}(t)$, that is, of the sequence

$$
I(n, 0), I(n, 1), \ldots, I(n, n-1)
$$

- symmetric (Strehl, 1981)
- unimodal (Dukes (2006) and Guo \& Zeng (2006)
- not log-concave (which would have implied unimodal) (Barnabei, Bonetti \& Silimbani (2009)

Descents in Permutation Matrices

Example: Let $n=5$ and let $\pi=(2,4,1,5,3)$ with two descents: 4,1 and 5,3 . The corresponding permutation matrix is

A descent in terms of the corresponding permutation matrix means that the 1 in some row $i+1$ is in an earlier column than the 1 in row i.

An involution of order n corresponds to an $n \times n$ symmetric permutation matrix. Thus $I(n, k)$ counts the number of $n \times n$ symmetric permutation matrices with k descents.

Theorem on the Involution Polynomial $I_{n}(t)$

Recall:

$$
I_{n}(t)=\sum_{k=0}^{n-1} I(n, k) t^{k}
$$

where $I(n, k)$ is the number of involutions of order n with k descents.

Theorem on the Involution Polynomial $I_{n}(t)$

Recall:

$$
I_{n}(t)=\sum_{k=0}^{n-1} I(n, k) t^{k}
$$

where $I(n, k)$ is the number of involutions of order n with k descents.
Let $\mathfrak{T}(n, i)$ be the of $i \times i$ symmetric matrices with nonnegative integral entries with no zero rows or columns and sum of entries equal to n, and let

$$
T(n, i)=|\mathfrak{T}(n, i)|
$$

Theorem on the Involution Polynomial $I_{n}(t)$

Recall:

$$
I_{n}(t)=\sum_{k=0}^{n-1} I(n, k) t^{k}
$$

where $I(n, k)$ is the number of involutions of order n with k descents.
Let $\mathfrak{T}(n, i)$ be the of $i \times i$ symmetric matrices with nonnegative integral entries with no zero rows or columns and sum of entries equal to n, and let

$$
T(n, i)=|\mathfrak{T}(n, i)|
$$

Theorem: $I_{n}(t)=\sum_{i=1}^{n} T(n, i) t^{i-1}(1-t)^{n-i}$.

Theorem on the Involution Polynomial $I_{n}(t)$

$$
I_{n}(t)=\sum_{k=0}^{n-1} I(n, k) t^{k}=\sum_{i=1}^{n} T(n, i) t^{i-1}(1-t)^{n-i}
$$

Theorem on the Involution Polynomial $I_{n}(t)$

$$
I_{n}(t)=\sum_{k=0}^{n-1} I(n, k) t^{k}=\sum_{i=1}^{n} T(n, i) t^{i-1}(1-t)^{n-i}
$$

Making the substitution, $t=\frac{x}{1+x}$, this is equivalent to

$$
\sum_{k=0}^{n-1} I(n, k) x^{k+1}(1+x)^{n-1-k}=\sum_{i=1}^{n} T(n, i) x^{i}
$$

and solving for $T(n, i), \ldots$

Equivalent Formulation, solving for $T(n, i)$

$$
T(n, i)=\sum_{k=0}^{i-1} I(n, k)\binom{n-1-k}{i-1-k} \quad(i=1,2, \ldots, n)
$$

Equivalent Formulation, solving for $T(n, i)$

$$
T(n, i)=\sum_{k=0}^{i-1} I(n, k)\binom{n-1-k}{i-1-k} \quad(i=1,2, \ldots, n)
$$

A permutation with k descents has $(n-1-k)$ ascents, and a little manipulation shows that this equation is equivalent to

$$
T(n, i)=\sum_{j=n-i}^{n-1} I^{\prime}(n, j)\binom{j}{n-i} \quad(i=1,2, \ldots, n)
$$

where $I^{\prime}(n, j)=\left|\mathcal{I}^{\prime}(n, j)\right|$, that is, the cardinality of the set $\mathcal{I}^{\prime}(n, j)$ of involutions of $\{1,2, \ldots, n\}$ with j ascents.

The Identity

$$
T(n, i)=\sum_{j=n-i}^{n-1} I^{\prime}(n, j)\binom{j}{n-i} \quad(i=1,2, \ldots, n)
$$

where $I^{\prime}(n, j)$ is the number of $n \times n$ symmetric permutation matrices with j ascents, and $T(n, i)$ is the number of $i \times i$ symmetric matrices with nonnegative integral entries with no zero rows or columns and sum of entries equal to n.

This suggests that there may be a nice mapping F_{n-i} from the set ascents) to subsets of $\mathcal{T}(n, i)$, such that

The Identity

$$
T(n, i)=\sum_{j=n-i}^{n-1} I^{\prime}(n, j)\binom{j}{n-i} \quad(i=1,2, \ldots, n)
$$

where $I^{\prime}(n, j)$ is the number of $n \times n$ symmetric permutation matrices with j ascents, and $T(n, i)$ is the number of $i \times i$ symmetric matrices with nonnegative integral entries with no zero rows or columns and sum of entries equal to n.

This suggests that there may be a nice mapping F_{n-i} from the set $\cup_{j \geq n-i} \mathcal{I}^{\prime}(n, j)$ (all the $n \times n$ symmetric permutation matrices P with $j \geq n-i$ ascents) to subsets of $\mathcal{T}(n, i)$, such that

$$
\left|F_{n-i}(P)\right|=\binom{j}{n-i}, \text { and }
$$

$$
\left\{F_{n-i}(P): P \in \cup_{j \geq n-i} \mathcal{I}^{\prime}(n, j)\right\} \text { is a partition of } \mathcal{T}(n, i) .
$$

The Mapping $F_{n-i}: \cup_{j \geq n-i} \mathcal{I}^{\prime}(n, j) \rightarrow \mathcal{P}(\mathcal{T}(n, i))$

(i) Let P be an $n \times n$ symmetric perm. matrix with $j \geq n-i$ ascents.
(ii) Let the ascents occur in the pairs of row indices of P given by $\left\{p_{1}, p_{1}+1\right\},\left\{p_{2}, p_{2}+1\right\}, \ldots,\left\{p_{j}, p_{j}+1\right\} \quad\left(1 \leq p_{1}<p_{2}<\cdots<p_{j}<n\right)$.
(iii) Choose a set X of $(n-i)$ of these pairs.
(iv) The chosen pairs determine an ordered partition $U_{1}, U_{2}, \ldots, U_{i}$ of $[n]$ into maximal sets of consecutive integers: if $U_{k}=\{m, m+1, m+2, \ldots, q-1, q\}$ (m and q depend on k), then with $U_{k}^{*}=\{\{m, m+1\},\{m+1, m+2\}, \ldots,\{q-1, q\}\} \subseteq X$ we have $U_{1}^{*} \cup U_{2}^{*} \cup \cdots \cup U_{i}^{*}=X$ and $U_{k}^{*} \cap U_{l}^{*}=\emptyset$ for $k \neq I$.
(v) The partition in (iv) determines a partition of the rows and columns of P into an $i \times i$ block matrix $\left[P_{r s}\right]$. Let $A=\left[a_{r s}\right]$ be the $i \times i$ matrix where $a_{r s}$ equals the sum of the entries of $P_{r s}$.
(vi) Then A is an $i \times i$ symmetric, nonnegative integral matrices without any zero rows and columns, the sum of whose entries equals n.
Since P has $j \geq n-i$ ascents, P gives $\binom{j}{n-i}$ such matrices A.
Alan Hoffman Fest, 19-20 September 2014

Example of $F_{n-i}: \cup_{j \geq n-i} \mathcal{I}^{\prime}(n, j) \rightarrow \mathcal{P}(\mathcal{T}(n, i))$

Example: Let $n=8$ and consider the involution $5,7,8,6,1,4,2,3$ with corresponding symmetric permutation matrix P. The ascents occur in the pairs of positions (row indices) $\{1,2\},\{2,3\},\{5,6\}$, and $\{7,8\}$. Choosing the pairs $\{1,2\},\{2,3\}$, and $\{7,8\}$, we obtain the partition $U_{1}=\{1,2,3\}, U_{2}=\{4\}, U_{3}=\{5\}, U_{4}=\{6\}, U_{5}=\{7,8\}$ of $\{1,2, \ldots, 8\}$ and corresponding partition of P given by

$\rightarrow\left[\begin{array}{c|c|c|c|c}0 & 0 & 1 & 0 & 2 \\ \hline 0 & 0 & 0 & 1 & 0 \\ \hline 1 & 0 & 0 & 0 & 0 \\ \hline 0 & 1 & 0 & 0 & 0 \\ \hline 2 & 0 & 0 & 0 & 0\end{array}\right]$

Inverting F_{n-i}

A: an $i \times i$ symmetric, nonnegative integral matrix with no zero rows and columns where the sum of the entries equals n.
r_{k} : the sum of the entries in row (and column) k of A.
If A is to result from an $n \times n$ symmetric permutation matrix P as described, then, since P has exactly one 1 in each row and column, it must use the partition of the row and column indices of P into the sets:

$$
U_{1}=\left\{1, \ldots, r_{1}\right\}, U_{2}=\left\{r_{1}+1, \ldots, r_{1}+r_{2}\right\}, \ldots, U_{i}=\left\{r_{1}+r_{2}+\cdots+r_{i-1}+1, n\right\} .
$$

There must be a string of $\left(r_{k}-1\right)$ consecutive ascents corresponding to the positions in each U_{k}, where there are ascents or descents in the position pairs:
$\left(r_{1}, r_{1}+1\right),\left(r_{1}+r_{2}, r_{1}+r_{2}+1\right), \ldots,\left(r_{1}+r_{2}+\cdots+r_{i-1}, r_{1}+r_{2}+\cdots+r_{i-1}+1\right)$.
Then it can be shown that there is exactly one involution (symmetric permutation matrix) with these restrictions.

Inverting F_{n-i}, an Example

Example: $A=\left[\begin{array}{lll}0 & 2 & 0 \\ 2 & 1 & 3 \\ 0 & 3 & 0\end{array}\right]$ Then $n=11$, and $r_{1}=2, r_{2}=6, r_{3}=3$. We seek an 11×11 symmetric permutation matrix of the form
$\left[\begin{array}{l|l||l|l|l|l|l||l|l|l}0 & 0 & & & & & & & 0 & 0 \\ \hline 0 & 0 & & & & & & & 0 & 0 \\ \hline \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline & & & & & & & & & \\ \hline \hline 0 & 0 & & & & & & & & \\ \hline 0 & 0 & & & & & & & & 0 \\ \hline 0 & 0 & & & & & & & 0 & 0 \\ \hline\end{array}\right.$
with one ascent in rows 1 and 2, five ascents in rows 3 to 8 , and two ascents in rows $9,10,11$. It is easy to see that the only possibility is:

Inverting F_{n-i}, an Example $\left(n=11, r_{1}=2, r_{2}=6, r_{3}=3\right)$
$\left[\begin{array}{l|l||l|l|l|l|l|l||l|l|l}0 & 0 & 1 & & & & & & 0 & 0 & 0 \\ \hline 0 & 0 & & 1 & & & & & 0 & 0 & 0 \\ \hline \hline 1 & & & & & & & & & & \\ \hline & 1 & & & & & & & & \\ \hline & & & & 1 & & & & & & \\ \hline & & & & & & & & 1 & & \\ \hline & & & & & & & & & 1 & \\ \hline & & & & & & & & & & 1 \\ \hline \hline 0 & 0 & & & & 1 & & & 0 & 0 & 0 \\ \hline 0 & 0 & & & & & 1 & & 0 & 0 & 0 \\ \hline 0 & 0 & & & & & & 1 & 0 & 0 & 0\end{array}\right]$,
equivalently, the involution

$$
3,4 ; 1,2,5,9,10,11 ; 6,7,8
$$

Notice that the pairs of positions which could be either ascents or descents, namely $\{2,3\}$ and $\{8,9\}$, are both descents in this case.

Reference

Enumeration of Involutions by Descents and Symmetric Matrices. RAB and Shi-Mei Ma, European Journal of Combinatorics, to appear.

Belated Happy 90th Birthday, May 30

