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Some Background

RSK-correspondence

Sn: the set of all permutations of {1, 2, . . . , n}.
Yn: the set of standard Young tableaux on n cells: a Ferrers diagram
containing each of {1, 2, . . . , n} increasing along rows from left to right
and along columns from top to bottom. For example. with n = 8,

1 4 5 7
2 6 8
3

(of shape 4, 3, 1).

The RSK-correspondence (an algorithm) provides a bijection between Sn

and pairs of standard Young tableaux of the same shape.

σ
RSK−→ (P,Q) (P is the insertion tableau and Q is the recording tableau).

Fact: σ
RSK−→ (P,Q) =⇒ σ−1

RSK−→ (Q,P)

Alan Hoffman Fest, 19-20 September 2014



Some Background

RSK-correspondence

Sn: the set of all permutations of {1, 2, . . . , n}.
Yn: the set of standard Young tableaux on n cells: a Ferrers diagram
containing each of {1, 2, . . . , n} increasing along rows from left to right
and along columns from top to bottom. For example. with n = 8,

1 4 5 7
2 6 8
3

(of shape 4, 3, 1).

The RSK-correspondence (an algorithm) provides a bijection between Sn

and pairs of standard Young tableaux of the same shape.

σ
RSK−→ (P,Q) (P is the insertion tableau and Q is the recording tableau).

Fact: σ
RSK−→ (P,Q) =⇒ σ−1

RSK−→ (Q,P)

Alan Hoffman Fest, 19-20 September 2014



Some Background

RSK-correspondence

Sn: the set of all permutations of {1, 2, . . . , n}.
Yn: the set of standard Young tableaux on n cells: a Ferrers diagram
containing each of {1, 2, . . . , n} increasing along rows from left to right
and along columns from top to bottom. For example. with n = 8,

1 4 5 7
2 6 8
3

(of shape 4, 3, 1).

The RSK-correspondence (an algorithm) provides a bijection between Sn

and pairs of standard Young tableaux of the same shape.

σ
RSK−→ (P,Q) (P is the insertion tableau and Q is the recording tableau).

Fact: σ
RSK−→ (P,Q) =⇒ σ−1

RSK−→ (Q,P)

Alan Hoffman Fest, 19-20 September 2014



Some Background

Involutions

Fact: σ
RSK−→ (P,Q) =⇒ σ−1

RSK−→ (Q,P)

In: the set of involutions in Sn, that is, permutations σ ∈ Sn such that
σ−1 = σ.

Thus in the RSK-correspondence, Q = P, and hence

σ
RSK−→ (P,P) −→ P

is a bijection between the set In of involutions of order n and the set Yn

of standard Young tableaux on n cells.

Result of Schutzenberger (1977) : The number of fixed points of an
involution σ of order n equals the number of columns of the corresponding
standard Young tableau P with odd length.
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Involutions

Generating polynomial of Involutions by descents

descent of a permutation π ∈ Sn: a position i such that
π(i) > π(i + 1). des(π) is the number of descents of π.

Generating polynomial of the set of involutions In by descents:

In(t) =
∑
π∈In

tdes(π) =
n−1∑
k=0

I (n, k)tk ,

where I (n, k) is the number of involutions of order n with k descents.
The first few In(t) are (see the on-line encycl. of integer sequences):

I1(t) = 1,

I2(t) = 1 + t,

I3(t) = 1 + 2t + t2,

I4(t) = 1 + 4t + 4t2 + t3,

I5(t) = 1 + 6t + 12t2 + 6t3 + t4.
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Involutions

Known Properties of In(t), that is, of the sequence
I (n, 0), I (n, 1), . . . , I (n, n − 1)

symmetric (Strehl, 1981)

unimodal (Dukes (2006) and Guo & Zeng (2006)

not log-concave (which would have implied unimodal) (Barnabei,
Bonetti & Silimbani (2009)
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Involutions

Descents in Permutation Matrices

Example: Let n = 5 and let π = (2, 4, 1, 5, 3) with two descents: 4, 1 and
5, 3. The corresponding permutation matrix is

1

1
1

1
1


A descent in terms of the corresponding permutation matrix means that
the 1 in some row i + 1 is in an earlier column than the 1 in row i .

An involution of order n corresponds to an n × n symmetric permutation
matrix. Thus I (n, k) counts the number of n × n symmetric
permutation matrices with k descents.
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Involutions

Theorem on the Involution Polynomial In(t)

Recall:

In(t) =
n−1∑
k=0

I (n, k)tk ,

where I (n, k) is the number of involutions of order n with k descents.

Let T(n, i) be the of i × i symmetric matrices with nonnegative integral
entries with no zero rows or columns and sum of entries equal to n,
and let

T (n, i) = |T(n, i)|.

Theorem: In(t) =
∑n

i=1 T (n, i)t i−1(1− t)n−i .
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Involutions

Theorem on the Involution Polynomial In(t)

In(t) =
n−1∑
k=0

I (n, k)tk =
n∑

i=1

T (n, i)t i−1(1− t)n−i

Making the substitution, t = x
1+x , this is equivalent to

n−1∑
k=0

I (n, k)xk+1(1 + x)n−1−k =
n∑

i=1

T (n, i)x i ,

and solving for T (n, i), ...
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Involutions

Equivalent Formulation, solving for T (n, i)

T (n, i) =
i−1∑
k=0

I (n, k)

(
n − 1− k

i − 1− k

)
(i = 1, 2, . . . , n).

A permutation with k descents has (n − 1− k) ascents, and a little
manipulation shows that this equation is equivalent to

T (n, i) =
∑n−1

j=n−i I
′(n, j)

(
j

n−i
)

(i = 1, 2, . . . , n),

where I ′(n, j) = |I ′(n, j)|, that is, the cardinality of the set I ′(n, j) of
involutions of {1, 2, . . . , n} with j ascents.
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Involutions

The Identity

T (n, i) =
n−1∑

j=n−i
I ′(n, j)

(
j

n − i

)
(i = 1, 2, . . . , n),

where I ′(n, j) is the number of n × n symmetric permutation matrices
with j ascents, and T (n, i) is the number of i × i symmetric matrices
with nonnegative integral entries with no zero rows or columns and
sum of entries equal to n.

This suggests that there may be a nice mapping Fn−i from the set
∪j≥n−iI ′(n, j) (all the n × n symmetric permutation matrices P with
j ≥ n − i ascents) to subsets of T (n, i), such that

|Fn−i (P)| =

(
j

n − i

)
, and

{Fn−i (P) : P ∈ ∪j≥n−iI ′(n, j)} is a partition of T (n, i).
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Involutions

The Mapping Fn−i : ∪j≥n−iI ′(n, j)→ P(T (n, i))

(i) Let P be an n × n symmetric perm. matrix with j ≥ n − i ascents.
(ii) Let the ascents occur in the pairs of row indices of P given by

{p1, p1+1}, {p2, p2+1}, . . . , {pj , pj+1} (1 ≤ p1 < p2 < · · · < pj < n).

(iii) Choose a set X of (n − i) of these pairs.
(iv) The chosen pairs determine an ordered partition U1,U2, . . . ,Ui of [n]

into maximal sets of consecutive integers: if
Uk = {m,m + 1,m + 2, . . . , q − 1, q} (m and q depend on k) , then
with U∗k = {{m,m + 1}, {m + 1,m + 2}, . . . , {q − 1, q}} ⊆ X we
have U∗1 ∪ U∗2 ∪ · · · ∪ U∗i = X and U∗k ∩ U∗l = ∅ for k 6= l .

(v) The partition in (iv) determines a partition of the rows and columns
of P into an i × i block matrix [Prs ]. Let A = [ars ] be the i × i matrix
where ars equals the sum of the entries of Prs .

(vi) Then A is an i × i symmetric, nonnegative integral matrices without
any zero rows and columns, the sum of whose entries equals n.

Since P has j ≥ n − i ascents, P gives
( j
n−i
)

such matrices A.
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Involutions

Example of Fn−i : ∪j≥n−iI ′(n, j)→ P(T (n, i))

Example: Let n = 8 and consider the involution 5, 7, 8, 6, 1, 4, 2, 3 with
corresponding symmetric permutation matrix P. The ascents occur in the
pairs of positions (row indices) {1, 2}, {2, 3}, {5, 6}, and {7, 8}. Choosing
the pairs {1, 2}, {2, 3}, and {7, 8}, we obtain the partition
U1 = {1, 2, 3},U2 = {4},U3 = {5},U4 = {6},U5 = {7, 8} of {1, 2, . . . , 8}
and corresponding partition of P given by

1

1

1

1

1

1

1

1


→


0 0 1 0 2

0 0 0 1 0

1 0 0 0 0

0 1 0 0 0

2 0 0 0 0

 .
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Involutions

Inverting Fn−i

A: an i × i symmetric, nonnegative integral matrix with no zero rows and
columns where the sum of the entries equals n.
rk : the sum of the entries in row (and column) k of A.
If A is to result from an n × n symmetric permutation matrix P as
described, then, since P has exactly one 1 in each row and column, it
must use the partition of the row and column indices of P into the sets:

U1 = {1, . . . , r1},U2 = {r1+1, . . . , r1+r2}, . . . ,Ui = {r1+r2+· · ·+ri−1+1, n}.

There must be a string of (rk − 1) consecutive ascents corresponding to
the positions in each Uk , where there are ascents or descents in the
position pairs:

(r1, r1+1), (r1+r2, r1+r2+1), . . . , (r1+r2+· · ·+ri−1, r1+r2+· · ·+ri−1+1).

Then it can be shown that there is exactly one involution (symmetric
permutation matrix) with these restrictions.
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Involutions

Inverting Fn−i , an Example

Example: A =

 0 2 0
2 1 3
0 3 0

 Then n = 11, and r1 = 2, r2 = 6, r3 = 3. We

seek an 11× 11 symmetric permutation matrix of the form

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0


with one ascent in rows 1 and 2, five ascents in rows 3 to 8, and two ascents in rows

9,10,11. It is easy to see that the only possibility is:
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Involutions

Inverting Fn−i , an Example (n = 11, r1 = 2, r2 = 6, r3 = 3)



0 0 1 0 0 0

0 0 1 0 0 0

1

1

1

1

1

1

0 0 1 0 0 0

0 0 1 0 0 0

0 0 1 0 0 0



,

equivalently, the involution

3, 4; 1, 2, 5, 9, 10, 11; 6, 7, 8.

Notice that the pairs of positions which could be either ascents or descents, namely

{2, 3} and {8, 9}, are both descents in this case.
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Involutions

Reference

Enumeration of Involutions by Descents and Symmetric Matrices. RAB
and Shi-Mei Ma, European Journal of Combinatorics, to appear.

Belated Happy 90th Birthday, May 30
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