OVERVIEW OF STATISTICAL DISCLOSURE LIMITATION

Lawrence H. Cox, Associate Director National Center for Health Statistics LCOX@CDC.GOV

DIMACS Working Group on Privacy/Confidentiality of Health Data
DIMACS
Rutgers University, Piscataway NJ
December 10-12, 2003

WHAT IS STATISTICAL DISCLOSURE?

WHY IS IT A PROBLEM?

* Qualitatively* Quantitatively

WHAT CAN BE DONE TO LIMIT STATISTICAL DISCLOSURE?

QUALITATIVE/POLICY ISSUES

What is confidentiality preservation?

* holding close information of a personal or proprietary nature pertaining to a respondent, and not revealing it (directly or indirectly) to an unauthorized third party

What is statistical confidentiality protection?

* preserving confidentiality in statistical data products

What is statistical disclosure?

- * statistical disclosure occurs when the release of a data product enables a third party to learn more about a respondent than originally known (T. Dalenius)
- Note: "*Respondent*" refers to direct providers of data (person, organization, business) and to "units of analysis" they represent (families, corporations, groups)

Is confidentiality important? Why should the data provider preserve confidentiality?

- * required by law, regulation or policy
- * ethical obligation: the social contract
- * practical considerations
 - data accuracy
 - data completeness
 - developing trust

How is confidentiality threatened by release of statistical data?

* overt or derived identification and disclosure of individual respondent data

* identification thru matching attributes to another data file,

leading to disclosure of individual attributes

* associate large percentage of an identifiable group with a characteristic (*group disclosure*)

Must confidentiality preservation be absolute? What is its relative importance?

- * the balance issue: right to privacy vs. need to know
- * absolute confidentiality preservation is impossible: releasing any data divulges something about each respondent
- * technology limits what can be done
 - technology to limit disclosure
 - technology to cause disclosure
- * in principle:
 - minimum disclosure protection and data quality and completeness standards are not incompatible
 - a joint optimum can be reached
- * in practice:
 - the balancing process is iterative
 - incompatibilities are resolved in favor of preserving confidentiality

What factors affect statistical disclosure?

* factors affecting likelihood of disclosure

- number of variables
- level(s) of data aggregation or presentation
- accuracy/quality of data
- sampling rate(s)
- knowledge about survey participation
- distribution of characteristics
- time
- insider knowledge
- * factors affecting the *risk* of disclosure
 - likelihood of disclosure
 - number of confidential variables
 - sensitivity of confidential data
 - time
 - target of disclosure
 - # targeted respondent
 - # arbitrary respondent: fishing expedition
 - # group disclosure
 - existence/quality of matching files
 - motivation/abilities of intruder
 - cost to achieve disclosure
 - ease to access/manipulate data

QUANTITATIVE/STATISTICAL ISSUES

Statistical Disclosure in Tabular Data: An Illustration

RACE CATEGORY A G E С A Т E G R Y

Incidence of Death Related to a Specific Disease in a State

Releaser determines: *disclosure* occurs whenever a cell count is (or can be reliably inferred to be) between 1 - 4
This results in 6 primary disclosure cells (in **bold**)
Traditional *disclosure limitation methods*: Rounding (base B = 5), perturbation, cell suppression

ROUNDING

Conventional Rounding

(round to nearest multiple of B = 5)

0	5	5	5	5	5	30 (25)
5	5	5	5	5	0	30 (25)
5	5	5	5	5	5	35 (30)
5	5	5	5	5	5	40 (30)
0	5	5	0	5	5	30 (20)
20	30	30	25	30	25	165
(15)	(25)	(25)	(20)	(25)	(20)	(130)

() = sum of rounded entries

Rounded table is **NOT** additive!!!

165 - 130 = **35** individuals are not accounted for!!!

Controlled Rounding

- round to an *adjacent multiple* of B = 5
- preserve additivity within the table
- multiples of B = 5 remain fixed

0	5	5	5	5	10	30
5	10	5	5	10	0	35
5	5	5	10	5	5	35
5	10	5	5	5	5	35
0	5	10	0	5	5	25
15	35	30	25	30	25	160

Many different Controlled Roundings are possible This CR is *optimal* as it is close as possible to the original table CR methodology for 2-D tables based on network optimization

Random (Unbiased) Controlled Rounding also possible

(Controlled) (Random) Perturbation is analogous

COMPLEMENTARY CELL SUPPRESSION

D	6	D	7	6	7	31
6	7	6	5	7	D	32
D	6	5	7	6	7	34
6	7	6	6	7	6	38
D	6	7	D	6	5	28
18	32	28	27	32	26	163

Suppressing only the disclosure cells

Suppression pattern is *inadequate* due to ability of attacker to reconstruct/estimate one or more suppressions using the row and column equations

Need *complementary cell suppression*, viz., suppress additional nondisclosure cells to thwart reconstruction or narrow estimation of *primary disclosure cells*

Heuristic complementary cell suppression

D ₁₁	6	<i>D</i> ₁₃	7	6	7	31
6	7	6	D ₂₄	7	D ₂₆	32
D ₃₁	6	D ₃₃	7	6	7	34
6	7	6	6	7	6	38
D ₅₁	6	7	D ₅₄	6	D ₅₆	28
18	32	28	27	32	26	163

This does better and appears to adequately limit disclosure However, $D_{51} = 2$: Row 2 + Row 5 - Col 4 - Col 6 = 32 + 28 - 27 - 26 = 7: 7 = $(D_{24} + D_{26} + 26) + (D_{51} + D_{54} + 19)$ - $(D_{24} + D_{54} + 20) - (D_{26} + D_{56} + 20) = D_{51} + 5$

Detecting such *structural insufficiency* usually requires mathematical programming, viz., subject to the row and column constraints, compute min $\{D_{51}\}$ and max $\{D_{51}\}$

A better suppression pattern

D	6	D	7	6	7	31
6	7	D	5	7	D	32
D	6	5	D	6	7	34
6	7	6	6	7	6	38
D	6	7	D	6	D	28
18	32	28	27	32	26	163

Mathematically, this pattern is equivalent to

D ₁₁	<i>D</i> ₁₃	0	0	5
0	D ₂₃	0	D ₂₆	7
D ₃₁	0	D ₃₄	0	10
D ₅₁	0	D ₅₄	D ₅₆	9
6	10	9	6	31

This pattern has some desirable features:

- not structurally insufficient
- minimum possible number of cells suppressed
- minimum possible total value suppressed

This pattern does not appear inadequate:

- at least two suppressions in each row/column
- reduced row/col equations add to at least 5

However, appearances can be deceiving

Suppression Audit

[0,2]	6	[3,5]	7	6	7	31
6	7	[5,7]	5	7	[0,2]	32
[1,5]	6	5	[5,9]	6	7	34
6	7	6	6	7	6	38
[0,5]	6	7	[0,4]	6	[4,6]	28
18	32	28	27	32	26	163

Linear analysis reveals *exact bounds* for suppressed entries:

A suppression pattern is *adequate* (passes audit), if the interval for each disclosure cell contains the open interval (0,5)
This suppression pattern *fails the audit* for 3 cells

Detecting such *numerical insufficiency* requires mathematical programming or other algorithms and software, implemented knowledgeably

Could publish audit bounds in lieu of "**D**"

An adequate suppression pattern

[0,5]	6	[0,5]	7	6	7	31
6	7	6	[0,6]	7	[0,6]	32
[0,6]	6	[2,8]	7	6	7	34
6	7	6	6	7	6	38
[0,6]	6	[4,10]	[1,7]	6	[0,6]	28
18	32	28	27	32	26	163

Mathematically, this pattern is equivalent to

D ₁₁	<i>D</i> ₁₃	0	0	5
0	0	D ₂₄	D ₂₆	6
D ₃₁	D ₃₄	0	0	8
D ₅₁	D ₅₃	D ₅₄	D ₅₆	16
6	16	7	6	35

CONTROLLED TABULAR ADJUSTMENT

Complementary cell suppression:

- an *NP hard problem*: difficult theoretically and practically

- produces "tables with holes"

- thwarts statistical analysis

An alternative method (to be discussed Friday) called **controlled tabular adjustment**

- produces a full and fully analyzable table(s)

- is close to the original table(s)
 - * locally (cell by cell)
 - * globally (minimizes a measure of overall distortion)
- preserves important statistical properties of the table(s)

Controlled Tabular Adjustment: Example

Original table:

_		RA	CE C	ATEG	ORY		
A	1	6	4	7	6	7	31
G E	6	7	6	5	7	1	32
C A T	3	6	5	7	6	7	34
E G O	6	7	6	6	7	6	38
R Y	2	6	7	2	6	5	28
	18	32	28	27	32	26	163

Incidence of Death Related to a Specific Disease in a State

Adjusted table:

	RA	CE CA	ATEG	ORY		
0	6	5	6	6	8	31
7	7	6	5	7	0	32
5	6	5	5	6	7	34
6	7	6	6	7	6	38
0	6	6	5	6	5	28
18	32	28	27	32	26	163
						100

Incidence of Death Related to a Specific Disease in a State

This solution minimizes sum of absolute adjustments subject to preserving marginal totals

Various other optimization criteria are available, leading to other solutions

For example:

If in addition adjustments to the 24 nondisclosure cells are limited to a maximum of 1 unit, then an optimal adjusted table is:

A	0	6	5	6	6	8	31
G E	7	7	6	5	7	0	31
C A	5	6	5	6	5	7	34
T E G	6	7	6	5	8	6	38
O R V	0	6	6	5	6	5	28
-							
	18	32	28	27	32	26	163

RACE CATEGORY

Incidence of Death Related to a Specific Disease in a State

Statistical Disclosure in Microdata: An Illustration

Public Use Microdata (PUM) File from a Survey of Schools All students grades 8-12 from sampled schools are interviewed

		Alcohol Drug Sexually			
Age	Sex	Edu.	Use	Use	Active
14	F	8	Y	N	Y
14	F	9	Y	N	N
14	М	9	Y	Y	N
14	М	9	Y	N	N
15	F	10	N	N	Y
15	М	10	Y	N	Y
15	М	10	Y	Y	Y
16	F	10	N	N	Y
16	F	11	Y	N	N
16	F	11	N	Y	Y

- Q: What can an outsider (PUM user) infer about individuals? A: Nothing.
- Q: What can the school or a parent infer about individuals? A: 14F8 alc + sex; 14F9 alc; 15F10 sex; 16F10 sex
- Q: What more can a student infer about another student? A: 14M9, 15M10, 16F11 know all about counterpart

What techniques are available to limit statistical disclosure in microdata?

- * restrict data dissemination
- * sample the data
 - population file is drawn from a sample survey
 - subsample the population file
- * abbreviate the data
 - remove direct identifiers
 - reduce the number of variables
 - remove *salient* records and/or records from salient respondents
 - suppress item detail
 - *topcode* sensitive items
- * aggregate the data
 - *collapse* geographic identifiers
 - collapse data categories
- * switch data: 1990 U.S. Decennial Census
- * multiple methods: 2000 U.S. Decennial Census

What administrative procedures are available?

- * remove the problem: respondent *waivers*
- * anticipate: microdata checklists
- * limit data dissemination
 - restricted access
 - restricted use
 - *encrypted* microdata
 - statistical data base query systems
- * data abbreviation
 - eliminate variables from the released data file
 - eliminate respondents from the released data file
 # eliminate high risk records
 # release a sample
 - # release a sample
 - suppress selected item detail
 - truncate distributions: top (or bottom) code items l
 - release different file extracts to different data users

Disclosure limitation techniques (cont.)

* data aggregation or grouping

- coarsen data

collapse data categories/detail

- # replace continuous data by categories
- microaverage responses
- release data summaries
 - # tabulations
 - *#* regression equations
 - # variance/covariance matrices

* data modification

- *round* item data (random or controlled)
- *perturb* item data (random or controlled)
- replace item data by imputations
- * data fabrication
 - statistical matching
 - data swapping
 - data switching

New approaches to disclosure limitation in microdata

* *supersample* the data file

- sample the (population) data file with replacement
- reweight the new file
- release or subsample the new file

* data fabrication / synthetic data

* statistical data base query systems

- static
- dynamic
- * use of contextual data
- * alternative forms of data release
 - interval data
 - maps and graphics
- * combined use of respondent waivers and data user non-disclosure agreements
- * probability based measures of disclosure risk combined with information based measures of data utility

EMERGING AREAS

Statistical data base query systems

Spatial data/models

Statistical maps

Releasing models in lieu of data