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CONSTRAINT SATISFACTION PROBLEMS

constraint satisfaction problem (CSP)

universe U
constraint types C; C U*t, Cy C U2, ...

instance
set X of variables
constraints: k;-tuples of variables for the i-th type of constraint

goal
assignment ¢ : X — U such that each constraint is satisfied

CSP includes satisfiability, graph 3-coloring, etc.
in particular, the problem is NP-complete in general

graph 3-coloring formulated as CSP:
U={e e ¢} X =V(G) and constraints correspond to edges




THE PROBLEM AND OUR RESULTS

in practice, it is easy to identify small sets of inconsistent constraints
3-coloring — check all subgraphs on at most 6 vertices

CSP instance is k-consistent if any £ constraints can be satisfied

What can be said about k-consistent instances?

bad news:  definitely, not all constrained can be satisfied

good news: sometimes a substantial fraction of them can be satisfied

we focus on the case when the constraints are Boolean predicates
design an assymptotically optimal approximation algorithm
analuze assymptotical beheviour as k tends to infinity

analyze completely predicates of small arity




NOTATION

IT is a (finite) set of Boolean predicates
mm,PH = AAHHVU AHH V .\va“ A.\HH V I V va“ . . W
IIo—sar = {(z1), (1 V 22)}

Y. is a finite set of predicates from II
5 ={(z),(nzVy), (myVz),(m2)} for Il = s_sar

p(X) denotes the fraction of predicates which can be satisfied
)

p(¥) =3/4

?ﬁd”:ﬁ.imvéwﬁ,mmwm@w-oosmwmﬁmsﬁm%mﬁmBOmwwmawo@ﬁ@mmHOBE
p1(Ilsat) = p1(lz2_saT) = 1/2

weighted variants p}’ (II) and p¥ (ITI)




SAT PROBLEMS

p¥ (Ilgar) = p¥ (Ila_gaT) = ,\ML ~ 0.6180 [Lieberherr, Specker 1981]

p¥ (sar) = p¥ (Ila_saT) = 2/3 [Lieberherr, Specker 1982]
a simple proof found by Yannakakis in 1992

o2 (Tlgar) = 0.6992 but p¥ (TTy_gar) > 0.6992 [K. 2003]
p2 (IIsat) < 3/4 [Huang, Lieberherr 1985]
b%o Amm>ﬁv = b%o Amwlw>ﬂv = w\% Euﬁ@zlm@b H@@d

Trevisan also addressed the case when II; is a set of all k-ary Boolean predicates
and showed: p¥ (IIy) = poo(II}) = 21F




I-EXTENDABLE PREDICATES

a Boolean predicate P is 1-extendable if the following holds:

if one of its arguments is fixed, the remaining ones can be choosen
in such a way that the predicate is satisfied.

example: Py(z,y,2) = (xVyVz)vs. Po(x,y,2) =2 A (y < 2)

o(P) is the fraction of satisfiing assignments of P

example: o(Py) = 7/8

PL ({P}) = poo({P}) = o(P) if the arity of P is at least two

oo}

upper bound: take a random assignment

lower bound:

take a random hypergraph of high girth and associate predicates with its edges
random = you cannot do better than in random assigment

high girth = you do not have small sets of inconsistent predicates




PREDICATES OF ARITY AT MOST THREE

o ({P)) P k=1 k=2 k=3 k=4 k=5 k> 6 k— o0
1 T Ay 1/4 1 1 1 1 1 1
2 xSy /2 1/2  1/2 1/2  1/2 1/2 1/2
3 zVy 3/4  3/4 3/4 3/4  3/4 3/4 3/4
1 TANYNz 1/8 1 1 1 1 1 1
2 ey S 2 1/4  1/4 1/4 1/4  1/4 1/4 1/4

zA(y < 2) 1/4  8/21 1/2  1/2  1/2 1/2 1/2

3 exactly one 3/8 3/8 3/8 3/8 3/8 3/8 3/8
zA(yVz) 3/8 2L 12 Bl 9/3 g o(Tly sar)  3/4
(zrey)A(z=2) | 3/8 3/8 3/8 3/8 3/8 3/8 3/8

4 r=y =2 /2 1/2  1/2  1/2  1/2 1/2 1/2
(zAy) < 2 /2 1/2  1/2  1/2  1/2 1/2 1/2

5 zV (y A z) 5/ 5/8 5/8 5/8  5/8 5/8 5/8
6 (2 sy e 2) 3/4 3/4 3/4 3/4  3/4 3/4 3/4
2V (y < 2) 3/4  3/4 3/4 3/4  3/4 3/4 3/4

7 VYV 2 7/8  7/8  7/8  T/8  7/8 7/8 7/8




(FENERAL CASE

a finite set I, want to determine p¥ (II) and poo (II)

a restriction P’ of a predicate P is obtained by fixing some of the arguments
restriction can be described by a vector 7 € {0, 1, %}"
P'(z,y) = P(x,y,0) = x Ay where P(z,y,2) =x A (yV z) and 7 = %0

mp-(p) : (0,1) — (0,1) is the probability that P is satisfied if z; is true

with the probability 1 — p, p and 1/2, if 7; is 0, 1 and *, respectively.

7p,(p) is a polynomial in p

7(II) is the set of all wp, for P € II where the restriction of P is 1-extendable

7(II) is the set convex hull of 7 (II)

poe(ll) = min max f(p)
fern(11) PE[0,1]

The same holds for p, (IT) if IT does not contain a predicate of arity one.




EXAMPLE 1

Il ={Py, P>} where P;(x1) = (z1) and Py(x1,22) = (21 V z2)

a single restriction of P; is 1-extendable
four restriction of P, are l-extendable: 11, 1x, x1 and *x

Tp, 1(p) =p, TP 11(P) = 2p — p?, TP, 14(p) = TRy 1 (P) = (P +1)/2,
TPy 5k (P) = 3/4.

m(II) = {p,2p — p*, (p +1)/2,3/4}

w

P oo AHC = ngma maxye(o,1] %AM@V
each function in 7(II) is at least 3/4 for p = 3/4
p (II) = 3/4 [Trevisan 1997]




EXAMPLE 2

o II ={P} where P(x1,x2,x3,T4,25) = (x1 A (2 Va3V x4V T5))

e several 1-extendable restrictions, but each is symmetric to one of the following:
1% % %%, 10 x*x, 11 % %k, 100 % %, 110 x %, 111 xx, 1100%, 1100%, 1110%, 1111,
11000, 11100, 11110 and 11111.

w

pL (II) = 55?@ maxX,co,1] f(p)

TP 100++(P) = p(1 — p*/4)

max ﬁwLooi@v — w\RP

each function in 7(II) is at least 3/4 for p = 3/4

peo (1) = poo(Il) = 3/4




SKETCH OF THE UPPER BOUND PROOF

fix IT and € > 0

classify the variables according to the number of constraints forcing their values

in the algorithm, one rather uses the depth of “forcing”
»vmf ce u»vmwww\m and Y

this also partitions constraints to 2R /e levels

choose 7 such that the fraction of constraints in the i-th level is small

it is at most £/2

fix variables from X, ..., X; to their forced values (0/1)
keep remaining variables free (%)

this leads to a polynomial f(p) from = (II)

take a random assignment for p that maximizes f(p)

10



ALGORITHMIC ASPECTS

depth of “forcing” can be easily computed in time O(1/¢)
inconsitence found = the input is not sufficiently locally consistent

the maximum of the polynomial f(p) can be found with precision €/2
in time O(1/e) (bounded derivatives)

derandomization by the method of conditional expectations

robust algorithm linear in the size of input and 1/e
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(GRAPH HOMOMORPHISMS

a single binary constraint I' C U? for a large universe U

the target oriented graph H
V(H)=U and wv € E(H) if (u,v) € T

instance can be viewed as graph G with V(G) = X and
arcs corresponding to input constraints
k-consistent: every G’ C G of size at most k can be mapped to H (G

find a largest subgraph G¢ C G that can be mapped to H

the corresponding ratio pi(H) = 55@@5 MAaXG,CG,Go— H

if H contains an oriented cycle, then pi(H) is the density of the densiest
subgraph of H
if H contains a loop, then pi(H)

12



OPEN PROBLEMS

e determine pi(H) for acyclic oriented graph H
e determine py(H) for oriented trees H

e determine pi(H) for consistently oriented paths H

(FENERAL SETTING

e higher arity leads to hypergraph homomorphisms

e more constraints leads to edge-colored (hyper)graphs
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