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Introduction

The connection between regret and equilibria is well
understood in matrix games.

Most research is focused on external and internal/swap
regret.

Corresponding learning algorithms learn coarse
correlated and correlated equilibria, respectively.

No-Regret Learning in Convex Games – p. 2



Introduction

We explore this connection in convex games.

We find a much richer set of varieties of regret.

In matrix games, elements of this richer set are all
equivalent (insofar as we can apply them to matrix
games).

In convex games, we show they are distinct.
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Introduction

We present a general schema for algorithms that
minimize regret for this richer set.

We show how to implement it efficiently in two
interesting cases.

One of these cases leads to an efficient algorithm for
learning correlated equilibria in repeated convex games.
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Overview

Games, Regret, and Equilibria

Minimizing Finite-Element Regret
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Games, Regret, and Equilibiria
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One-Shot Game

A one-shot game Γ =
(

N, {Ai}
N
i=1 , {Ri}

N
i=1 , {ri}

N
i=1

)

, where

N ≥ 1 is the (finite) number of players,

Ai is the set of actions available to player i,

Ri is the set of rewards available to player i, and

ri : (⊗jAj) → Ri is the reward function for player i,

so that if each player j “plays” action aj, player i gets
reward ri(a1, a2, . . . , aN ).
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Kinds of Games

Matrix game: each Ai is a finite set

Experts game: each Ai a simplex (set of distributions
over a finite set)

Convex game: each Ai is a convex set and each ri is
linear in its ith argument

Corner game: play only corners
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Transformations

A transformation is a (measurable) mapping from A to itself
(φ : A → A)

ΦSWAP: the set of all transformations

ΦFE: will be defined later in the talk

ΦLIN: the set of linear transformations

ΦEXT: the set of constant (“external”) transformations

In general convex games,

ΦEXT ⊂ ΦLIN ⊂ ΦF-E ⊂ ΦSWAP

In experts games,

ΦEXT ⊂ ΦLIN = ΦF-E ⊂ ΦSWAP
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Φ-Equilibria

Definition 1 Given a game and a collection of sets of
transformations, 〈Φi〉i∈N , a probability distribution q over A
is a {Φi}-equilibrium if

E [ri(φ(ai), a¬i) − ri(a)] ≤ 0 ∀i ∈ N, ∀φ ∈ Φi
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Φ-Equilibria

If each Φi uses the same set of transformations,

ΦSWAP-equilibria = correlated equilibria

ΦEXT-equilibria = coarse correlated equilibria

In convex games,

ΦEXT(CCE) ⊂ ΦLIN ⊂ ΦF-E ⊂ ΦSWAP(CE)

In experts games,

ΦEXT(CCE) ⊂ ΦLIN = ΦF-E ⊂ ΦSWAP(CE)
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Repeated Games

Given a one-shot game Γ, we define a repeated game Γ∞.

In each sequential round t,

1. each player i chooses action a
(t)
i

2. each player observes the actions of all other players a
(t)
j

3. each player receives payoff ri

(

a
(t)
1 , a

(t)
2 , . . . , a

(t)
N

)
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Regret

Given a player i and a transformation φ for that player, at
each round t the instantaneous regret is calculated with
respect to the joint action played at that round:

ρ
(t)
i,φ = r

(

φ
(

a
(t)
i

)

, a
(t)
−i

)

− r
(

a(t)
)

(1)

If a player’s algorithm guarantees that

sup
φ∈Φ

1

T

T
∑

t=1

ρ
(t)
i,φ → (−∞, 0]

with probability 1, then we say that it is no-Φ-regret
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No Regret Properties

In convex games,

(CCE) ΦEXT ⇐ ΦLIN ⇐ ΦF-E ⇐ ΦSWAP (CE)

In experts games,

(CCE) ΦEXT ⇐ ΦLIN ⇔ ΦF-E ⇐ ΦSWAP (CE)
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Convergence

Theorem 2 (Foster and Vohra) In a repeated matrix
game, if all players play no-swap-regret algorithms, then the
empirical distribution of play converges to the set of
correlated equilibria with probability 1.

Stoltz and Lugosi prove the existence of an algorithm that
minimizes swap regret and ensures convergence to
correlated equilibria in repeated convex games. However,
they do not explicitly construct such an algorithm.
Constructing an algorithm according to their proof of
existence would be prohibitively expensive (run time would
grow unboundedly with t).
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Corner Games

Definition 3 A corner game is a convex game with each
player’s action set restricted to the corners of its feasible
region.

Proposition 4 A CE of the corner game is a CE of the
convex game.

Proposition 5 For all correlated equilibria in the convex
game, there exists a payoff-equivalent correlated
equilibrium in the corner game.
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CE of Convex Games

Theorem 6 (GGMZ) If, in a repeated convex game, each
agent

plays only corners and

and uses an algorithm that achieves no-swap-regret for
the corner game,

then the empirical distribution of play converges to the set of
correlated equilibria of the convex game with probability 1.
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No Regret Properties

In convex games (corners only),

(CCE) ΦEXT ⇐ ΦLIN ⇐ ΦF-E ⇔ ΦSWAP (CE)

In experts games (corners only),

(CCE) ΦEXT ⇐ ΦLIN ⇔ ΦF-E ⇔ ΦSWAP (CE)
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Online Convex Programming
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Online Convex Programming

convex compact action space A ∈ R
d

(for convenience, we add an extra dimension whose
value is always 1)

bounded loss vector space L ⊆ R
d

The net loss for an action is given by a dot product.

Special Case: Experts Problem

feasible region is probability simplex in d dimensions
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Regret

Given a set of transformations Φ, an algorithm’s Φ-regret is

ρΦ
t = sup

φ∈Φ

t
∑

τ=1

(lτ · aτ − lτ · φ(at))

and is “no-Φ-regret” if

t
∑

τ=1

lτ · aτ ≤

t
∑

τ=1

lτ · φ(aτ ) + g(t, A, L, Φ) ∀φ ∈ Φ, ∀t ≥ 1

where g(t, A, L, Φ) is o(t) for any fixed A, L, and Φ.
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Goal

Known: Algorithms that minimize external regret in
OCPs, e.g., Lagrangian Hedging (Gordon06),
GIGA (Zinkevich03)

Goal: Derive an algorithm that minimizes
finite-element-regret in OCPs.
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Key Idea #1
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Key Idea #1

Key Idea #1: represent Φ as the composition of a fixed
nonlinear continuous “feature” function with an adjustable
linear function

Φ = {φC | C ∈ C}

φC(a) = CB(a)

Here B is our feature function, which maps the feasible
region A ⊂ R

d to a p-dimensional feature space, while C is a
set of d × p matrices which map the feature space back
down to the d-dimensional feasible region. (Often, p ≫ d.)
We assume B is continuous.
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Linear Transformations

Choose B = identity, so φC = C.

Example: any matrix that maps A into itself
e.g., if A is a simplex, the set of linear transformations can
be represented by the set of stochastic matrices
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Barycentric Coordinates

Barycentric coordinate/feature mapping on polyhedral
feasible region A.

B is a fixed nonlinear function that encodes a
triangulation/tessellation.

B(a) is a point in higher-dimensional space called the
Barycentric coordinate space.
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Barycentric Coordinates

Formally,

choose a triangulation

choose a numbering from corners of the polyhedron to
dimensions in the Barycentric coordinate space B(A)

Intuitively, B(a) tells you what triangle a is in, and where in
that triangle:

i.e., which corners and what their weights are

i.e., d + 1 coordinates in R
n that are nonzero, and d + 1

weights summing to 1
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Finite-element Transformations

Given a B, each transformation corresponds to a linear
mapping from B(A) back down to A.

Consider mapping the corners of the square
1 7→ 2 7→ 3 7→ 4 7→ 1 as follows:

C =

(

1 1 0 0

1 0 0 1

)

So, each column of a matrix lists the coordinates to which
the corresponding corner of the feasible region is mapped.

Intuitively, each transformation corresponds to choosing a
point inside the (polyhedral) feasible region for each corner
to map to; everything else follows, according to B.
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Key Idea #2
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Algorithm

Given: a subroutine that minimizes external regret

Key Idea #2: Instead of minimizing Φ-regret on A ⊆ R
d

directly, we minimize external regret on C ⊆ R
d×p.
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Algorithm

High-Level Recipe: for each time t,

1. play a real action at ∈ A and receives a real loss vector
lt ∈ A

2. construct a fictitious loss vector in R
d×p

3. send the loss vector to an external-regret minimizing
subroutine

4. subroutine constructs a fictitious action in C

5. use that fictitious action to construct a real action
at+1 ∈ A
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Algorithm

Questions

Q1: How do we construct the fictitious loss vector?

Q2: How do we construct the real action?

Q3: How do we efficiently minimize external regret in a
high dimensional space?
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Q1

Q1: how do we construct the fictitious loss vector?
A1: based on the real action at and real loss vector lt:

mt = ltB(at)
T

What’s going on here?

Dotting mt with a transformation/action in the
higher-dimensional space gives you the loss associated
with that transformation.

You can interpret it as the loss you would get by
performing that transformation on the real action: i.e.,

mt · C = tr(B(at)lt
TC) = tr(lt

TCB(at)) = lt
TCB(at)
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Q1, Example

Example: loss vector is 〈2 4〉

play a corner: e.g., play 〈0 1 0 0〉

(

0 2 0 0

0 4 0 0

)

play a non-corner: e.g.,
〈

0 1
2

1
2 0
〉

(

0 1 1 0

0 2 2 0

)
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Q2

Q2: how do we construct the real action at+1 ∈ A?

A2: based on the fictitious action, Ct

let at+1 be an arbitrary fixed point of φCt
, where

φCt
(a) = CtB(a)
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Theorem

Theorem 7 For any convex compact feasible region A and
bounded loss vector space L, and for any set of
transformations Φ : A 7→ A, each one represented as the
composition of a fixed nonlinear continuous feature function
and an adjustable linear function, A achieves no Φ-regret
whenever its subroutine A′ achieves no external regret.
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Proof

Note that:
T

X

t=1

mt · Ct ≤

T
X

t=1

mt · C + f(T, C, LBT) ∀C ∈ C

where LBT = {lbT | l ∈ L, b ∈ B}, and f is sublinear in T .
So

T
X

t=1

lt
TCtB(at) ≤

T
X

t=1

lt
TCB(at) + f(T, C, LBT) ∀C ∈ C

But, since CtB(at) = φCt
(at) = at, and since each φ ∈ Φ can be represented as

φ(a) = CB(a) with C ∈ C, this implies

T
X

t=1

lt
Tat ≤

T
X

t=1

lt
Tφ(at) + f(T, C, LBT) ∀φ ∈ Φ

which is exactly the required no-Φ-regret guarantee.
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Q3

Q3: how do we efficiently minimize external regret in a high
dimensional space?

A3: for finite-element we can factor C (each corner’s
destination is independent) so we can separately run n

copies of any NER algorithm for A. Each one is typically,
O(d3), so the whole thing is O(nd3).

(Our approach is related to Blum and Mansour, 2005.)
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Why do I care?

We just showed how to efficiently minimize
finite-element regret.

Now we will remind you why this is worthwhile.
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Back to Convex Games

Remark 8 In the corner game, each player faces an ODP:
an OCP in which only corners can be played.

Lemma 9 Minimizing finite element regret in an OCP, while
playing only corners, minimizes swap regret in the
corresponding ODP.
PROOF: Every swap transformation in the ODP can be
expressed as a finite element transformation in the OCP. �

Theorem 7 (GGMZ, again) If, in a repeated convex game,
each agent plays only corners and uses a finite-element
regret-minimizing algorithm, then the empirical distribution
of play converges to the set of correlated equilibria of the
convex game with probability 1.
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Take-away Message

We have developed what is to our knowledge the first
efficient algorithm for learning correlated equilibria in
convex games.

(Gordon, Greenwald, Marks, and Zinkevich. No-regret
learning in convex games. Technical Report CS-07-10,
Brown University, Department of Computer Science,
October 2007.)
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Final Notes

Extensive-form games can be expressed efficiently as
convex games.

Open question: What set of transformations
corresponds to extensive-form correlated equilibria?
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