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CHAPTER 14

Distributed Algorithmic
Mechanism Design

Joan Feigenbaum, Michael Schapira, and Scott Shenker

Abstract

Most discussions of algorithmic mechanism design (AMD) presume the existence of a trusted center
that implements the required economic mechanisms. This chapter focuses on mechanism-design
problems that are inherently distributed, i.e., those in which such a trusted center cannot be used.
Such problems require that the AMD paradigm be generalized to distributed algorithmic mechanism
design (DAMD).

We begin this chapter by exploring the reasons that DAMD is needed and why it requires different
notions of economic equilibrium and computational complexity than centralized AMD. We then
consider two DAMD problems, namely distributed VCG computation and multicast cost sharing, that
illustrate the concepts of ex-post Nash equilibrium and network complexity, respectively.

The archetypal example of a DAMD challenge is interdomain routing, which we treat in detail. We
show that, under certain realistic and general assumptions, one can achieve incentive compatibility
in a collusion-proof ex-post Nash equilibrium without payments, simply by executing the Border
Gateway Protocol (BGP), which is the standard for interdomain routing in today’s Internet.

14.1 Introduction

To motivate the material in this chapter, we begin with a review of why game theory is
relevant to computer science. As noted in the Preface to this book, computer science
has traditionally assumed the existence of a central planner who dictates the algorithms
used by computational nodes. While most nodes are assumed to be obedient, some
nodes may malfunction or be subverted by attackers; such byzantine nodes may act
arbitrarily.

This book’s founding premise, in fact its raison d'étre, is that there are many
computational contexts in which there is no central (or cooperative) authority that
controls the computational nodes. In particular, the Internet has changed computation
from a largely local endeavor to one that frequently involves diverse collections of
individuals (or machines acting on their behalf). For example, Web services, peer-to-
peer systems, and even the interaction among packets on a wire are all cases in which
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364 DISTRIBUTED ALGORITHMIC MECHANISM DESIGN

individuals with no ties to each other, except perhaps a common interest in a document
“or simultaneous use of a link, find themselves interacting over the Internet.

In such cases, it is often best to treat the computational entities as independent and
selfish agents, interested only in optimizing their own outcome. As a category of be-
havior, selfishness lies between the extremes of automatic obedience and byzantine dis-
ruption; selfish agents are unwilling to follow a central planner’s instructions, but they
do not act arbitrarily. Instead, their actions are driven by incentives, i.e., the prospect
of good or bad outcomes. The field of mechanism design, described in Chapter 9,
has shown how, by carefully constructing economic mechanisms to provide the proper
incentives, one can use selfish behavior to guide the system toward a socially desir-
able outcome.! This book is devoted to exploring the interaction of incentives and
computing, a topic that has come to be known as Algorithmic Mechanism Design
(AMD). :

Substituting a decentralized set of incentives for a central planner is a radical de-
parture from traditional algorithm design. However, most work in this new field of
AMD assumes the presence of a central computational facility that performs the cal-
culations required by the economic mechanism. In auctions, for example, the agents
cach have independent goals and desires, but the computation to determine winners
and payments is done by the auctioneer, and the hardness of the computation is eval-
uated using traditional notions of complexity (see, e.g., Chapters 1, 9, 11, and 12).
As such, AMD considers novel incentive-related algorithm design but uses a standard
centralized model of algorithm execution.

This combination of decentralized incentives but centralized computation applies in
a wide variety of settings, many of which have been described elsewhere in this book.
This approach requires transmitting all the relevant information to a single, trusted
entity (hereafter called the trusted center), which is feasible if (i) such a trusted center
exists, and (ii) the communication required to transmit the information and the resulting
computational burden on the trusted center are both manageable. However, if either of
these two assumptions fails, then a more decentralized approach must be considered.

As we discuss in more detail in Section 14.3 of this chapter, the problem of inter-
domain routing is one in which a decentralized approach is valuable. The Internet is a
collection of smaller networks, called Autonomous Systems (ASes), that are stitched
together by the interdomain-routing system to form the fully connected Internet. The
interdomain-routing system therefore plays a crucial role in the functioning, even the
existence, of the Internet. However, any approach to interdomain routing must address
the challenges of trust, scalability, and reliability. The ASes are competing economic
entities who want to optimize the routing outcome achieved and minimize the private
information revealed; accordingly, they not only act selfishly but are also unwilling to
share private information with, or cede control to, any trusted center. Thus, the ASes
must distribute the route computation among themselves.

Even if trust were not an issue, scalability would drive the system toward distributed
route computation. Centralizing the route computation would involve transmitting the
entire AS graph to a central location and updating it whenever the graph changed.

1 This desired outcome is often defined as the optimum of some global objective function, but a wide variety of
social standards can also be used.
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Given the considerable size and volatility of the AS graph, such a centralized route
computation would be infeasible.

Similarly, the need for reliability, so crucial in the Internet, tends to favor decen-
tralized designs. In a centralized design, the trusted center becomes a single point of
failure; the fate of the entire network rests on this single system that could fail or
be subverted. As an example of how scalability and reliability can drive the need for
decentralization, we note that current intradomain-routing algorithms, which do not
span more than one AS and so are designed with the assumption of mutual trust among
routers, are almost all distributed.

Thus, there is a need to decentralize not only incentives but also computation; this
Jeads to Distributed Algorithmic Mechanism Design (DAMD), which is the central
focus of this chapter. DAMD has the same dual concerns, incentive compatibility, and
computational complexity, as AMD, but it differs in two important respects.

The first difference involves the nature of complexity. DAMD’s measure of com-
putational complexity is quite different from AMD’s, because the computation is
distributed. Any measure of the complexity of a distributed algorithm executed over
an interconnection network T must consider at least five quantities: the total number
of messages sent over 7', the maximum number of messages sent over any one link
in T, the maximum size of a message, the local computational burden at each node,
and the storage required at each node. If a distributed algorithm requires an excessive
expenditure of any one of these resources, then its complexity is unacceptable. We will
use the term network complexity to refer to these, and other, metrics of the difficulty of
distributed implementation.

If the interconnection network 7 is trusted by all the agents and can feasibly serve
as the trusted center, then the measure of complexity is the main difference between
AMD and DAMD. However, if the distributed computation is done by the agents, then
a second difference arises: the strategic nature of the computation itself. In AMD,
agents can manipulate a game only by their selection of actions among those described
in the definition of the economic mechanism; they cannot affect the computation
of the mechanism, because all outcomes are computed (by the trusted center) from
the vector of strategies, according to the definition of the mechanism. If the agents
themselves perform the computation using some distributed algorithm, then they have
more opportunities to manipulate the outcome, e.g., by misrepresenting the results
of a local computation to a neighboring agent or, more drastically, by simply not
communicating with that neighboring agent at all, in an attempt to exclude him from the
game. Our assumption of selfishness requires that we consider all forms of manipulative
behavior when designing the economic mechanism; in particular, this means that we
must provide incentives that ensure selfish agents find it in their best interest to perform
the distributed computation correctly.

While this chapter discusses the use of incentives to prevent these other forms of
manipulation, one can also use cryptographic protocols to replace trusted parties in
mechanism computation. This active area of study is covered in Chapter 8 of this
volume.

In the next section of this chapter, we briefly discuss two examples of DAMD. Our
third section is devoted to an in-depth exploration of the incentive issues in interdomain
routing. We conclude with open questions and exercises.
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366 DISTRIBUTED ALGORITHMIC MECHANISM DESIGN

14.2 Two Examples of DAMD

As noted above, DAMD differs from AMD in two respects: the additional ways in
which the agents can influence the outcome (referred to hereafter as ‘‘computational
manipulation”) and the measure of computational complexity (the aforementioned
“petwork complexity”™).

Here, we briefly discuss two examples of DAMD that illustrate these issues. The
first is a distributed implementation of a VCG mechanism (see Chapter 9); we will
ignore network complexity in this example and focus on how to prevent manipulation
of the computation. The second example is sharing the cost of a multicast transmission;
it illustrates the notion of network complexity but, because We assume the presence of
a trusted computational infrastructure, does not involve computational manipulation.

14.2.1 Distributed Implementation of VCG

We now discuss one way a set of agents can jointly implement a VCG mechanism
without fear of manipulation. We start with a set of outcomes O and a collection
of agents N, each with his own valuation v; over those outcomes. In our notation,
& is an outcome that maximizes the total social welfare of the agents. That 18, & =
argmax, o > ien vil0)s W is the maximum total social welfare value, and W_; denotes
the maximum total social welfare of all agents except the i’th. For convenience, we
focus on the particular mechanism in which p; = W_; — W+ vi(9), where p; is the
payment by agent i

We assume that there is no trusted center; i.e., that the computation of the VCG
mechanism must be done by the agents themselves. However, we do presume the
existence of some central enforcer whose responsibility it is to implement the outcome
& decided upon by the agents and collect the payments; the enforcer can impose severe
penalties if the agents do not agree on an outcome.

To see how a distributed computation can be manipulated, consider a network in
which the nodes are connected in a ring, and there is exactly one agent at each node.
Assume that the agents are computing a second-price auction of a single good by
passing around a message containing the top two bids for that good. If an agent puts
his bid on top and puts in a very low bid for the second bid, then he can get the good
more cheaply (as long as these fields are not overwritten by some later agents that have
higher bids).

More generally, consider any distributed algorithm A, capable of running over ai
arbitrary number of computational nodes, that takes as input a set of agent valuations
and produces the maximizing outcome and the payments. As the preceding example
suggests, if we Tun A over any subset of N to compute 5. W, and each W_;, then there
is the possibility that an agent can manipulate the computation.

One way to avoid this is replication: Break the agents into two group
exchange all their valuations, and then have each group compute its own version of o
and the p;. If the two groups agree on the outcomes and payments, then those outcomes
and payments are adopted; if not, all agents suffer a severe penalty. Here, an agent plays
different roles in the two versions of the computation: In the first, his role is o help

s, have them
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compute the outcome and payments; in the other, his role is to provide his valuation so
that others may perform this computation. For the first version, an agent i could engage
in arbitrary computational manipulation in an attempt to obtain a more favorable p; or
choose an outcome he prefers to the socially optimal one; in the second version, all
he could do is lie about v;. Because the VCG mechanism is strategyproof, the agent
will reveal truthfully to the other computational group and therefore, to avoid a severe
penalty for inconsistency, will carry out the computation faithfully.

Notice that faithful computation is not a dominant strategy. If, for instance, all the
other agents decide to choose a suboptimal outcome, then agent i is better off going
along with that choice rather than causing a disagreement (and triggering the severe
penalty). However, if all the other agents faithfully execute the prescribed algorithm
A, then agent i is best off doing so as well. Thus, the most natural solution concept
when considering computational manipulation is not dominant strategies but instead
ex-post Nash equilibrium, which was defined in Chapter 9. We will expand on this
point further when we discuss interdomain routing in Section 14.3 below.

In this example, we have focused on computational manipulation and ignored net-
work complexity. In our next example, we do the opposite.

14.2.2 Sharing the Cost of a Multicast Transmission

Multicast is an Internet packet-transmission mode that delivers a single packet to
multiple receivers. It is accomplished by setting up a shared delivery tree that spans all
the receivers; packets sent down this tree are replicated at branch points so that no more
than one copy of each packet traverses each link. Because it is far more efficient than
traditional unicast transmission (in which packets are sent only to a single destination),
multicast is particularly appropriate for distributing popular real-time content, such as
movies, to a large number of receivers.

Internet content distribution both provides benefits and incurs cost, which we can
model as follows. We assume that there are agents, located at various places in the
network, who would derive some utility from receiving the content and that a cost is
incurred each time the content is transmitted over a network link. The policy question
is how these costs and benefits should be distributed; more specifically, which agents
should receive the content, and how much should each agent pay?

To define the problem more precisely, we consider a user population P residing at
a set of network nodes N that are connected by bidirectional network links L. The
multicast flow emanates from a source node o, € N; given any set of receivers § C P,
the transmission flows through a multicast tree T(S) C L rooted at «, that spans the
nodes at which users in § reside. We make the natural assumption that routing is
monotonic, i.e., that §| € Sy = T(S1) € T(S2).

Each link ! € L has an associated cost ¢(/) > 0 that is known by the nodes on
each end, and each user i assigns a utility value u; to receiving the transmission.
The total cost C(S) of reaching a set § of receivers is given by C(S) = Zzer(sy c(l),
and the net welfare NW(S) of delivering content to this set of receivers is given by
NW(S) =3, o i — C(S).

A cost-sharing mechanism determines which users receive the multicast transmis-
sion and how much each receiver is charged. We let p; > 0 denote how much user i
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368 DISTRIBUTED ALGORITHMIC MECHANISM DESIGN

is charged and o; denote whether user i receives the transmission; o; = 1 if the user
receives the multicast transmission, and o; = 0 otherwise.

The mechanism M is then a pair of functions M (1) = (o (u), p(uw)). It is important
to note that both the inputs and the outputs of these functions are distributed throughout
the network: that is, each user inputs his u; from his network location, and the outputs
o:(u) and p; (1) must be delivered to him at that location. The practicality of deploying
the mechanism on the Internet depends on the feasibility of computing the functions
o(u) and p(u) and distributing the results.

In our model, it is the agents who are selfish. The routers (represented by tree
nodes), links, and other network-infrastructural components are obedient. The cost-
sharing algorithm does not know the individual utilities, and so users could lie about
them, but once they are reported to the network infrastructure (e.g., by sending them to
the nearest router), the algorithms for computing o (1) and p(u) can be reliably executed
by the network. Thus, our interest here is in network complexity, not computational
manipulation.

Given the selfish nature of agents, the mechanism should be strategyproof, i.e.,
revealing u; truthfully should be a dominant strategy. There are two other desirable
features one would want in a cost-sharing mechanism: budget balance (the sum of
the charges p; covers the total cost of transmitting the content) and efficiency (the
total welfare is maximized). The classic result of Laffont and Green, as reviewed in
Chapter 9, implies that no strategyproof mechanism with quasilinear utilities can
achieve both budget balance and efficiency?; we therefore consider two separate mech-
anisms, one that achieves budget balance and one that achieves efficiency.

To achieve efficiency, we consider a VCG mechanism called marginal cost (MC). Let
S denote the largest set that maximizes N W (S) (this is uniquely defined), and let NW =
NW(8); similarly, NW _; is the maximum value over all § of NW (S — i). Then the MC
mechanism chooses the receiver set S and sets payments p; = oju; — NW +NW_,.

For budget balance, we choose the Shapley Value (SH) mechanism. The mechanism
shares the cost of each link equally among all the agents downstream of that link; an
agent i is downstream of a link / if [ € T'({i}). To determine which agents receive the
transmission, we first start with § = P and compute the charges. We then eliminate any
agent for which the charge exceeds the agent’s utility (ie., p; > u;) and recursively
prune the receiver set until all agents within the set have utilities greater than or
equal to their charge. The cross-monotonic nature of these charges (an agent is never
charged less after another agent leaves the receiver set) guarantees that the resulting
set is well defined, independent of the order in which agents are eliminated. To see
why the ordering does not matter, consider the following. We say that an elimination
(or pruning) is “legal” if the node to be removed is charged more than its utility; an
elimination ordering is “legal” if each individual pruning is legal. We note that, if an
agent i is charged more than his utility when the set § of agents remains, then this
continues to hold when any subset of S remains (because cross-monotonicity requires

2 More precisely, the Laffont—Green result reviewed in Chapter 9 shows that the only strategyproof, welfare-
maximizing mechanisms with quasi-linear utilities are the VCG mechanisms, which are known not to be
budget-balanced. Myerson and Satterthwaite have shown a more general result about the impossibility of
achieving efficient and budget-balanced allocations with rational agents; see Chapter 9 for details.
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ges are at Jeast as great). This means that the concatenation of any two legal

s is also a legal olimination ordering (where we ignore duplicate
). For example, if 1.5, %3 and (7,2, 5, 8) are tWO Jegal orderings, then
. 1,3) s also legal, as is (1,5,7,3,2, 8). Thus, if any tWO subsets S and S

(7, 2, 5’ 8 . . 2 ’ .
of legal eliminations, then S N S’ can also be arrived at

can be arrived at by sequences

by 2 sequence of legal eliminations.
It is easy 0S¢ that both MC and SH are POlynomiaLtime computable by centralized

algorithms: 5o the 1ssue is whether it is hard to implement themina distributed fashion.

hanism can be computed by sending all the yaluations to a single

Certainly any mee :
. & the computation, and then returning the results to each agent. In the worst

case, this would require sending Q(|P]) bits over qome number of links, which is

clearly not desirable. It turns out that we cannot do substantially better than this for the

SH mechanisi.

Theorem 141 Any distributed algorithm, deterministic OF randomized, that

computes the SH multicast cost-sharing mechanisnt Must send (| P|) bits over

linearly many links in the worst case.

By contrast, it is possible 10 compute MC using only two short messages per link
and two simple calculations per node. This is done in two phases, the first a bottom-up

|fare values are computed for each subtree of T(P)and the second

traversal in which we
are computed for

a top-down traversal in which membership bits i and cost shares pi
cachi € P.The algorithms are given in Figures 14.1 and 14.2. In these figures, V(P)
denotes the node set of tree T(P), Chia) the set of children of node o, res(a) the set
of users resident at node o, u* the sum of utilities of users in res(a), ¢* the cost of the
link connecting & t0 its parent in T(P), and TY(P) the union of the subtree rooted at
« and the link connecting o to 1ts parent.

The reason that this simple two-phase algorithm suffices is that computing the MC
cost share p; doesnot require 2 from-scratch computation of NW_;. Rather, it1s enough
to compute W for every node « in V(P) during the computation of N'W. Suppose that

Atnode o € V(P)
After receiving a message AP from each child B € C hc)
W < u + (pgech APy — ¢
£ W* = 0then
{
g; < | for alli € res(a)
Send W® to parent (o)

}

Else

{

g; < 0 for alli e res(a)
Send 0 to parent(@)

Figure 14.1. Bottom-up traversal: Computing welfare values.

{
|
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Initialize: Root ¢, sends W< to each of its children.
Foreacha € V(P) — {ao)
After receiving message A from parent(a)
J/fCase 1: T*(P)N T(S) = 0.
//Set a;’s properly at o and propagate non-membership downward.
If o; = 0, foralli € res(w), or A < 0, then
{
pi < 0and o; < Oforalli € res(a)
send —1 to g for all g € Chix)
}
/[Case 2: T*(P) N T(8) # @.
//Compute cost shares and propagate minimum welfare value downward.
Else
{
A < min(A, W)
Foreachi ¢ res(w)
Ifu; < A, then p; < O,else p; < u; — A
For each € Ch{w)
Send A to g

}

Figure 14.2. Top-down traversal: Computing membership bits and cost shares.

i € res(f) and that y;(u) is the smallest W* of any node & on the path from f to the
rootof T(P). If u; < y;(u), then removing i from the set of potential receivers does not
change the set of nodes to which the content is delivered. If u; > y;i(u), then removing
i from the set of potential receivers does change the set of nodes, and the resulting
difference NW — NW_; is yi(u). The proofs of these facts are left as an exercise for
the reader.

Theorem 14.2  MC cost sharing requires exactly two messages per link. There is
an algorithm that computes the cost shares by performing one bottom-up traversal
of T(P), followed by one top-down traversal’

More information about AMD for cost sharing can be found in Chapter 15.

14.3 Interdomain Routing

We now turn to the problem of interdomain routing. To provide reachability between
hosts, the various ASes that make up the Internet must be interconnected. However, a3

imal

3 The algorithm is provably optimal with respect to the number of messages sent but is not known to be opt
al in

with respect to the maximum size of a message. However, the maximum size of a message is polynomi
may; size(c(l)) and max; size(i;) and polylogarithmic in | P| and |N|, and the two local computations required
at each node are fast and space-efficient.
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we noted earlier, the ASes are economically independent entities (indeed, frequently
competitors), and there is no trusted center to which they are all accountable that could
assign interdomain routes. Thus, the ASes themselves must compute the routes in
a distributed fashion. The route computation scheme must handle three problematic
aspects of interdomain routing: (i) there is a large number of ASes; (ii) different ASes
have different criteria for choosing one route over another, and these criteria may
conflict; and (iii) the collection of ASes and the links between them change frequently.
All of these factors make DAMD a highly suitable approach to interdomain routing.

We can formally define the interdomain-routing problem as follows. The network
topology is defined in terms of the AS graph G = (N, L), where each node in N =
(1,...,n} corresponds to an AS in the Internet, and each link in L corresponds to
a direct connection between a pair of neighboring ASes. Because routing protocols
typically compute routes for each destination independently, we can choose a particular
destination AS d and let P be the set of all loop-free paths from i to d in G that are
not removed from consideration.! An interdomain-routing protocol allocates to each
source node i € N aroute R; € P'.

We now describe this problem in greater detail, first from the hetworking perspective
and then from the mechanism-design perspective.

14.3.1 Networking Perspective

From a networking or protocol-design point of view, any wide-area routing protocol
must fulfill, to some extent, the following requirements:

« For reasons of trust, scale, and robustness, the routing protocol must be distributed,
carried out by the ASes themselves. ‘

+ Tn order to reduce routing state, the routing protocol must use destination-based for-
warding; i.e., all routing decisions must be based solely on a packet’s destination.
Each AS has a single next hop for the destination , and the resulting route allocation
T, =1{R,. ..., R,} forms a confluent tree to the destination d.

+ The routing protocol should be adaptive, adjusting to the current network topology
without relying on any a priori topology information.

« The routing protocol should be time-efficient. communication-efficient (in its use of
communication between the ASes). and space-efficient (in its use of the storage space
that each individual AS needs in order to participate in the protocol).

These requirements are satisfied by each of the common routing-protocol designs —
namely distance-vector, link-state, and path-vector — although these designs differ in :
their space requirements. However, interdomain routing has one additional require-
ment:

* The routing protocol must produce loop-free routes even while individual ASes make
autonomous decisions about which routes are preferable.

1 4 A path from i to d could be “removed from consideration” because it is filtered by i or one of i’s neighbors or
because of link or node failures.
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Update messages between neighboring ASes

. 52, o =
N ~
s o
— oA |- —| / |
—a
o T I
s - i
/ BGP router BGProuter / \ BGP router
e
/ —~ N Via update
/ s = \ messages
I Via update _ Lw » A
| messages ~ Import routes Wait for updates /" Bxport route
| 3 g from neighbors to neighbors
ANROUnce If best route
destination is unchanged,
Store roufes
Initialize at in routing table Choose best
destination AS route based If best route
on policy changes

BGP Router at one AS

Figure 14.3. Route computation using a path-vector protocol.

Of the common routing-protocol designs, only path-vector satisfies this requirement.
As a result, the current standard protocol for Internet interdomain routing, the Border
Gateway Protocol (BGP), is a path-vector protocol. To see why path-vector is a suitable
design choice, we describe BGP in more detail.

BGP allows adjacent nodes to exchange information through update messages that
announce newly chosen routes (see illustration in Figure 14.3); a route announcement
contains the entire path to the destination (the list of ASes in the path). A path-
vector protocol (like most other routing protocols) computes routes {o every destination
AS independently; so we can focus on routes to a single destination d. The route-
computation process is initialized when d announces itself to its neighbors by sending
update messages. The rest of the routing tree to d is built recursively, as knowledge of
how to reach d propagates through the network via subsequent update messages. We
assume that the network is asynchronous, meaning that the arrival of update messages
along selective links can be delayed.

The routing process at a particular node i has three stages that are iteratively applied:

(i) Importing routes: Routes to d are received via update messages from its neighbors.
Node i has an import policy that specifies which of the routes it is willing to consider.
All such importable routes are stored in an internal routing table. At any given time,
i’s internal routing table contains the latest importable routes.

(i) Route selection: If there is more than one route to 4 in the routing table (i.e., more than
one of i 's neighbors has announced an importable route to d), node i must choose 0ne
(expressing a local preference over routes).

(iii) Exporting routes: Whenever there is a change to i’s best route, it announces the newly
selected route to some or all of its neighbors using update messages. Node i has




[s.
er.
1€,

lan
me

wly
has

INTERDOMAIN ROUTING 373

Figure 14.4. When AS 1 prefers route 12d to 1d, and AS 2 prefers route 21d to 2d, BGP (or
any other path-vector protocol) can oscillate indefinitely.

an export policy that determines, for each neighbor j, which routes it is willing to

announce to j at any given time.

AS autonomy is expressed through the freedom each AS has in choosing its routes,
its import policy, and its export policy. These choices are based on local policy con-
siderations and need not be coordinated with any other AS. The inclusion of the entire
path in route announcements allows ASes to avoid routes with loops even while making
otherwise arbitrary policy choices. Link-state or distance-vector routing protocols can
avoid loops only if all ASes use the same criterion to choose routes and thus do not
support autonomy.

One design requirement not explicitly listed here is convergence. Clearly the routing

protocol should eventually enter a stable state in which every node prefers its currently
chosen route to all others in its routing table, and all routing tables reflect the current
route choices of its neighbors. Moreover, we would like the protocol to be robust,
converging for every AS graph obtained by removing any set of nodes and links from
the original instance.

Unfortunately, while the path-vector form of routing prevents loops, it does not
ensure convergence; the routing announcements can enter a persistent oscillatory state.
Consider the simple example depicted in Figure 14.4. Both nodes 1 and 2 would rather
send traffic through the other source node than send traffic directly to the destination.
Let us now simulate the execution of a path-vector protocol in the worst-case scenario:
The computation is initialized when d announces itself to its two neighbors, nodes
| and 2. At this point in time, these direct paths are the only routes available to d.
Hence, 1 and 2 will choose the routes 1d and 2d, respectively, and inform each other,
via update messages, of their selected routes. Upon receipt of these update messages,
nodes 1 and 2 will change their selected routes to, respectively, 12d and 21d. However,
now that none of the direct routes is being used, the indirect routes are no longer viable;
so 1 and 2 are forced to return to their former routes 1d and 2d, and the oscillation
continues indefinitely. Note that, if the network had started with node 1's choosing and
announcing 1d (having not yet seen an announcement of route 2d), and then node 2
had chosen 21d (having seen route 1d announced before it chose and announced its
own direct route 2d), then no further changes would occur, and the network would be
in a stable configuration; thus, convergence and oscillations can depend on timing.

A large body of networking research has addressed the problem of providing suffi-
cient conditions on routing policies for the convergence of path-vector protocols. There
is an inherent trade-off between the desired autonomy at the local level and robustness
(in the sense defined above) at the global level. However, there is a known sufficient
condition on policies, called no dispute wheel, that guarantees robust convergence

!
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while allowing fairly expressive local routing policies. Any network instance on which
a path-vector protocol might oscillate contains a dispute wheel and, more importantly,
the absence of a dispute wheel means that the instance and every subinstance of it have
unique stable route allocations to which the routing protocol converges, i.€., no dispute
wheel implies robustness. The following definition provides an equivalent sufficient
condition:

Definition 14.3 Define two relations on permitted routes:

(i) Let R; & R, iff R, is a subpath of R, that ends at d.

(ii) Let Ry ©, Ry iff Ji € N : Ry, Ry € P', and i prefers R, over Rj.

Let @ = (©; U ©,)* be the transitive closure of S, ©,. Note that @ is inherently
reflexive and transitive.

An interdomain-routing instance has no dispute wheel iff Ry @ Ry and Ry @ R,
together imply that Ry, R; start at the same node. (Informally, this is antisymmetry of
@ except that ties are allowed in valuations.)

Let us revisit the example in Figure 14.4. Recall that, on this instance, path-vector
protocols may oscillate forever. This anomaly is manifested by the following dispute
wheel:

1d & 21d &, 2d 51 12d &; 14d.

So far, our discussion of interdomain routing has focused on traditional networking
concerns. We now consider the problem from a mechanism-design perspective.

14.3.2 Mechanism-Design Perspective

The policy autonomy in BGP, which was previously allowed to be an arbitrary choice,
can be seen as expressing a preference that an AS is selfishly trying to satisfy. To do so,
we let each source node i have a private valuation function v; : S' — R=q, Where S5t
is the set of all simple (noncyclic) routes from i to d in the complete graph we get by
adding links to G.° The valuation function v; specifies the “monetary value” of each
route to source node i. We assume that v;(#1) = 0 and that, for all pairs of routes R,
and R, through different neighboring nodes, v;(R;) # v;(R;).° The routing policy of
each node i is thus captured by v;.

While each individual AS is trying to optimize its individual welfare, society as a
whole has an interest in reaching a globally desirable outcome. While there are many
goals one could choose, we shall focus here on social-welfare maximization. A route

5 Because we do not assume that nodes know the network topology, we cannot assume that they can distinguish
valid routes from invalid ones. Thus, the valuation functions are defined over the complete graph to model the
possibility of nodes” announcing nonexistent routes.

© This assumption is consistent with current interdomain routing: Because at most one route to cach destination
can be installed in a router’s forwarding table, nodes have some way to break ties, e.g., based on the next hop’s
IP address: so, valuations can be adjusted accordingly to match this. However, because only one route per
neighbor is considered at a time, ties in valuation are permitted for routes through the same neighboring node.
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allocation T, maximizes the social welfare if
n
T; = argmaxy_(g,, .R,) Z vi(R;).
_ i=l
If we view a routing protocol from a mechanism-design perspective, it should satisfy

the following two requirements:

« [f implemented honestly. the protocol should maximize the social welfare.
« The protocol should be incentive-compatible, in that no AS is motivated to deviate from

the actions it is asked to perform.

The precise definition of incentive compatibility needed in this setting depends on
the nature of the solution concept (or economic equilibrium). We shall now discuss in
detail the solution concept that we adopt for interdomain-routing mechanisms. Recall
from Section 14.1 that DAMD poses. inherently different strategic challenges from
AMD, because, in the absence of a trusted center, the computation is performed by
the strategic agents themselves. This allows the computational nodes to manipulate the
mechanism strategically in ways other than “lying” about their private types. They can,
for instance, alter the computation to their own benefit or refuse to pass messages if
it suits their needs. In such a scenario, aiming for strategyproofness might be futile,
because it is unlikely that there is a single computational behavior that is optimal no
matter what the other agents do.

A more suitable solution concept is ex-post Nash equilibrium. The need to settle for
ex-post Nash, rather than strategyproofness, can be viewed as the cost of distributing
mechanism computation among the agents. We shall now formally define ex-post Nash
in a distributed setting: Consider a computational network with 7 nodes and a set of
possible outcomes O. Each node i has a private type 6; € ©; and a utility function

u; 0 x ®; = R.

Definition 14.4 A distributed mechanism d™ is a 3-tuple d M_(%,¢ LM,
where Z = (1, -+, Zn) is the feasible strategy space ofthenodes, g : & — Ols
the outcome function computed by the mechanism, and sM = (s{w A sf Ye X
is the prescribed strategy.

For every node i, 5;” e ; can be thought of as the algorithm that the mechanism
designer intends i to execute. sM is parameterized by the private type 6; of the node
i, with s(8;) specifying which actions node i should perform in every state of the
mechanism and network, given that its type is o;.

Definition 14.5 A strategy profile s™ € X is an ex-post Nash equilibrium of a
distributed mechanism d¥ = (£ . g MY
wi(g(sT(B1)s - - -5 5, (6n)). ) = Ui (g(sT @), + .. 5[(6:), - 57 (60)): 01)

for every node i, for every possible strategy s{ € X, for every possible 6;, and for
all possible private types 01y sBim1, 041505 6, of the other nodes.
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Although weaker than a dominant-strategy equilibrium, ex-post Nash equilibrium
is a fairly strong solution concept; it does not require strategic agents to have any
knowledge of or to make any assumptions about the private types of other agents.
Contrast this with the standard Nash-equilibrium concept, in which agents are assumed
to know the private types of other agents; in the interdomain-routing context, this would
mean that ASes are assumed to know the local routing policies of other ASes, which
is certainly unrealistic.

The ex-post Nash equilibrium solution concept is susceptible to collusion.” That is,
while it is true that unilateral deviation by an AS from the prescribed strategy profile
cannot benefit it, coordinated deviation by several ASes might prove to be beneficial
to some. Therefore, if at all possible, we would like our mechanisms to ensure that no
deviation by a group of ASes from the prescribed strategy profile is worthwhile. To
achieve this, we introduce collusion-proof ex-post Nash equilibria. In a collusion-proof
ex-post Nash equilibrium, no deviation by a group of agents can strictly improve the
outcome of even a single agent in that group without strictly harming another.

14.3.3 A DAMD Approach: Combining the Two Perspectives

To achieve incentive-compatible interdomain routing, we must design a protocol that
makes sense from both the networking and the mechanism-design perspectives. The
networking requirements point to a path-vector framework combined with a class of
routing preferences that guarantees convergence. Mechanism design requires that we
incent agents to implement this routing protocol faithfully. I[ncentive compatibility is
often achieved through payments; however, below we show that, under a reasonable set
of assumptions about routing policies, one can achieve collusion-proof ex-post Nash
equilibrium without payments simply by executing BGP.

14.3.3.1 Commercial Internet Routing and the Gao-Rexford Model

There are two types of business relationships that characterize most AS intercon-
nections: customer-provider and peering. Customer ASes pay their provider ASes for
connectivity, and peers are AS pairs that find it mutually advantageous to exchange traf-
fic for free. One advantage of peering is that the two peers need not pay their respective
providers to exchange traffic directly. An AS can be in many different relationships si-
multaneously: It can be a customer of one or more ASes, a provider to others, and a peer
to yet others. These agreements are assumed to be relatively long-term contracts that
are formed because of various external factors, e.g., traffic patterns and network sizes.

These business relationships naturally induce the following constraints on routing
policies, known as the Gao—-Rexford constraints:

No customer-provider cycles: Let Gep be the digraph with the same set of nodes as
G and with a directed edge from every customer to its provider. The Gao-Rexford
constraints require that there be no directed cycles in this graph. This requirement is
a natural economic assumption, because a cycle in G¢p implies that at least one AS
is (indirectly) its own provider.

7 The Nash equilibrium and dominant-strategy equilibrium concepts are also susceptible to collusion.




INTERDOMAIN ROUTING 377

v4(432d) =1+ a
04(431d) = 0

v (1d) =1
©1(132d) = 0

vp(2d) =1

Figure 14.5. A routing instance that satisfies the Gao—Rexford constraints on which every
path-vector protocol converges to a route allocation that is arbitrarily far from optimal.

Prefer customers over peers and peers over providers: A customer route is a route
in which the next-hop AS is a customer. Provider and peer routes are defined sim-
ilarly. Because, typically, customers pay providers for service, and peers exchange
service for free, the Gao—Rexford constraints require that nodes always prefer (i.e.,
assign a higher value to) customer routes over peer routes, which are in turn preferred
over provider routes.

Provide transit services only to customers: Transit service is carrying packets that
originate and terminate at hosts outside the node. ASes are paid to carry customer
packets but are not paid to carry peer or provider traffic. The Gao-Rexford con-
straints require that ASes not carry transit traffic between their providers and peers.
Therefore, ASes should announce only customer routes to their providers and peers
but should announce all of their routes to their customers.

These constraints ensure robustness without requiring coordination between ASes.
In fact, if all ASes obey the Gao—Rexford constraints, then their valuations cannot
induce a dispute wheel. :

The Gao—Rexford constraints ensure robust convergence, but in general they do not
guarantee that BGP converges to the social-welfare-maximizing route allocation. To see
this, consider the example in Figure 14.5. Assume that d is a customer of 1 and 2, that 1
and 2 are customers of 3, that 3 is a customer of 4, and that @ > 0. Observe that this AS
graph satisfies all the Gao—Rexford constraints. The unique stable route allocation (to
1,...,4,respectively) is {1d, 2d, 31d, 431d}. However, the optimal route allocation is
{1d, 2d,32d, 432d}. This allocation will never be chosen by local decisions, because
node 3 would much prefer routing through node 1, a route that is always available for
it to choose. Therefore, because the value of « can be arbitrarily high, this implies that
the route allocation computed by a path-vector protocol could be arbitrarily far from
the welfare-maximizing route allocation.

This problem can be overcome by imposing the policy-consistency property.

Definition 14.6  Policy consistency holds iff, for every two adjacentnodes i, j €
N, and every two routes {Q, R} € P/ such that {(i, /YO, (i, )R} € P*® (in

(i, /)0 and (i, j)R are the routes from i to d that have (i, j) as a first link and then follow Q and R, respectively.
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particular, node i is not on Q or R),

if v;(Q) = v;(R), then vi((, NO) = u(l HR.

Informally, policy consistency holds if, for every two neighboring nodes i, J,such
that j is i’s next-hop node on two routes, we have that, if j weakly prefers one route
over another, then so must I. The policy-consistency property holds in the two most
well studied special cases of interdomain routing. The first is the case in which the
valuation of a route is solely a function of the route’s next hop. (These are called
“next-hop policies.”) The second is the case in which there is some metric function that
assigns a “length” to every Jink, and every valuation function prefers “shorter” routes
(i.e., those with smaller total lengths in this metric). (These are called “metric-based
policies.”)

We are now ready to state, and prove, the following theorem.

Theorem 14.7 If the Gao-Rexford constraints and policy consistency hold, then
BGP converges tothe social-welfare-maximizing route allocation and is incentive-
compatible in collusion-proof ex-post Nash equilibrium (without any monetary

transfer).

PROOF We will actually prove a result that is stronger in two senses: First, we shall
prove our result in the more general setting in which the valuation functions do not
induce a dispute wheel, and policy consistency holds. Second, we shall prove that BGP
actually converges to a solution (an allocation of routes) in which every AS gets its
most desired route to the destination. That is, every AS will be assigned a route that
maximizes its valuation function. We call this kind of route allocation a locally optimal
solution. Observe that any locally optimal solution is also globally optimal in that it
maximizes the total social welfare. Moreover, locally optimal solutions are deviation-
proof in that there is no deviation by a group of agents that can strictly improve the
outcome of even a single agent. This is far stronger than collusion-proof ex-post Nash
equilibrium, which only requires that no deviation by a group of agents can strictly
improve the outcome of a single agent in the group without strictly harming another
agent in the group.

Because the Gao—Rexford constraints imply that there is no dispute wheel, we are
assured (by the result mentioned in Section 14.3.1) that BGP will converge to a unique
stable solution. We denote this solution by Ty = {S1.---» S,), where S; is the route

allocated to node i.

Lemma 14.8  If the valuation functions do not induce a dispute wheel, and
policy consistency holds, then BGP converges to a unique stable, locally optimal

route allocation Ty.

prOOF Consideranodem N.Let R = upp—1.--Uj--- 40 be some loop-free
route in P, such thatuy = m andug = d.By induction, we show for eachu; € R
that S;, the solution’s route for node u; in Ty, is at least as good as Ry = ti .-+ -
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Ifi = m,then S, is atleastas good as R; because R and m were chosen arbitrarily,
this establishes the local optimality of Tj.

Base case. i = 0. The induction hypothesis is trivially true, because the only route
is the empty one.

Induction step. Assume that the induction hypothesis is true for u;_1, i.e.,
Uu;,l(Sifl) = U!I,‘_;(R!—l)' (141)
Note that u; does not lie on R,_1, because R i8 loop-free.

Case 1. Assume that u; & Si—1- Then extend S;_; and Ri— along the edge
(i, Uim1)- (Wi, ui—1)Si—1 € Pt thus, from (14.1) and policy consistency, we
have

v, (1, i—1)Si—1) = Vi (Ri)- (14.2)
T, is stable; so, S; is at least as good as any other route at i;; in particular,
Vy, (S1) = vy, (i, wi—1)Si-1)- (14.3)
Combining (14.2) and (14.3) gives
Vi (Si) = v (Ri),
which is the induction statement for u;.

Case IL. Assume that u; € S;—1. We cannot use the policy-consistency argument
as in Case I, because extending S;—i to u; creates a Joop. This implies that
u;_1 ¢ S;.Suppose that the induction statement is not true fori,i.e.,thatvy (R;) >
UHI(S,').ThBIl R; &2 S;. Because ;) ¢ S;butu; € S,--‘,itmustbethat S; ©1 Si-1-
From the induction hypothesis, S;—1 S2 R;_1, and, because R; = (-1 Ri—1s
Ri_1 ©1 R;. Therefore, we have a cycle in the relation @; in particular, we can
say that R; @ Ri— and R;_; @ R;, but these routes do not start at the same node.
This violates the no-dispute-wheel property and shows that the assumption that
vy, (Ri) > v,,.(S;) leads to a contradiction. Therefore, v, (R;) < vy, (S:), which is

f

the induction statement for u;. (Recall that there are no ties in valuations.) O

Remark 14.9 Lemma 14.8 holds for every subinstance of the AS graph, be-
cause both the Gao—Rexford constraints and policy consistency hold for every
subinstance.

Remark 14.10 No dispute wheel implies a unique collusion-proof ex-post Nash
solution to which BGP converges. Hence, we are not concerned with the standard
problem that arises when multiple equilibria exist, namely whether nodes select
the same equilibrium.

e ———— s TR

14.4 Conclusion and Open Problems

In this chapter, we have reviewed the work that has been done on distributed algorithmic
mechanism design, in which the presence of strategic computational agents introduces
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new incentive and computational challenges for distributed computing. In particular,
we have presented in detail some of the known results about DAMD for interdomain
routing, which is the best motivated and most extensively studied problem in the area.
There are at least two interesting directions for further research.

First, there is the general question of which other problems in networked computa-
tion are amenable to the approaches explored in this chapter. Several good candidates
have been proposed, i.e., web caching, peer-to-peer file sharing, overlay-network con-
struction, and distributed task allocation. Although both distributed algorithms and
incentive compatibility have been considered in the literature about these problems,
the results have not been pulled together into a coherent DAMD theory. The construc-
tion of such a theory remains a worthy goal.

Second, there are many questions about interdomain routing that have not been fully
answered. There is still no complete characterization of the conditions under which BGP
converges robustly. (“No dispute wheel” is sufficient but not known to be necessary.)
Similarly, the conditions under which collusion-proof ex-post Nash equilibrium is
reached simply by executing BGP have not been characterized completely. (Again, the
Gao-Rexford and policy-consistency conditions presented in this chapter are sufficient
but not known to be necessary.) In fact, necessary and sufficient conditions on AS
graphs and routing policies have not yet been obtained for ex-post Nash equilibrium,
even if we ignore collusion and allow payments. Both policy consistency and local
optimality play an essential role in the main result presented in this chapter, and little is
known about what can be obtained without them. In general, the network complexity
of BGP is open, even in cases when convergence is assured.

14.5 Notes

Given the distributed and autonomous nature of Internet users, it is no surprise that the
networking and distributed-systems literature provides some of the earliest applications
of game theory and mechanism design to computer-science problems. These themes
were first explored in an early series of papers from Columbia University, e.g., Ferguson
(1989), Hsiao and Lazar (1988), Kurose et al. (1985), Kurose and Simha (1989),
Mazumdar and Douligeris (1992), and Yemini (1981), which were followed by contri-
butions from Miller and Drexler (1988a, 1988b), Sanders (1986, 1988a, 1988b), and
others (Kelly, 1997; Kelly et al., 1998; La and Anantharam 1997; Murphy and Murphy,
1994; Mackie-Mason and Varian, 1995; Shenker, 1990, 1995). Because networking
problems are inherently distributed, and network protocols must have reasonable net-
work complexity, these papers were actually early forerunners of DAMD.

Nisan and Ronen were the first to combine algorithmic and economic concerns in
a new area of study for which they coined the term “algorithmic mechanism design,”
and this book is largely an outgrowth of their seminal paper Nisan and Ronen (2001).
The extension of AMD to DAMD was first explored in Feigenbaum et al. (2001),
which considered the multicast cost-sharing problem described in Section 14.2 and
articulated the notion of network complexity; the DAMD agenda was more broadly
described soon thereafter in Feigenbaum and Shenker (2002). Subsequent work on
DAMD for multicast cost sharing can be found in, e.g., Archer et al. (2004), Adler and
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Rubenstein (2002), Fiat et al. (2002), and Feigenbaum et al. (2003). In particular, a
generalization of Theorem 14.1 is proven in Feigenbaum et al. (2003).

Distributed VCG computation and the importance of ex-post Nash equilibria in
DAMD were first presented by Parkes and Shneidman (2004) and developed further
by Petcu et al. (2006).

The BGP specification can be found in Rekhter et al. (2006). The fact that BGP
may not converge if there are no constraints on the AS graph or the domains’ routing
policies was first observed by Varadhan et al. (2000). The example of BGP divergence
in Figure 14.4 and the proof that “no dispute wheel” guarantees robust convergence
are presented in Griffin et al. (2002). Abstract properties of path-vector protocols are
developed in, e.g., Griffin et al. (1999, 2003), Sobrinho (2005). The Gao—Rexford
conditions and their implications were first studied in Gao and Rexford (2001) and
further developed in, e.g., Gao et al. (2001). Partial results on the network complexity
of BGP can be found in, e.g., Karloff (2004).

DAMD was first applied to interdomain routing by Feigenbaum et al. (2005b). who
devised a BGP-based algorithm for lowest-cost routing. Computational manipulation
by ASes and ex-post Nash equilibrium in BGP-based, lowest-cost routing was first
studied by Shneidman and Parkes (2004). Hardness results for more general classes of
routing policies can be found in Feigenbaum et al. (2005a, 2006b). A positive result
about BGP-based, incentive-compatible routing under the Gao—Rexford and policy-
consistency conditions is given in Feigenbaum et al. (2006a) and is the direct precursor
of the result presented in Section 14.3. Sobrinho was the first to study policy constraints
that guarantee optimality, both global and local; a result that is similar to (but weaker
than) Lemma 14.8 is presented in Sobrinho (2005).

For basic background on Internet routing, see Kurose and Ross (2005), Peterson and
Davie (2003), or other networking textbooks.
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Exercises

14.1 Recall from Chapter 9 that, in a second-price Vickrey auction of a single item,
the item is sold to the highest bidder, and the price that the winner pays is the
second-highest bid. Consider a network in which there is one bidder at each node,
and the nodes lie on a cycle. As in Section 14.2, we assume that there is no
trusted center to implement an algorithm but that there is a central enforcer that
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can implement the outcome decided upon by the agents and can impose severe
penalties if the agents do not agree on an outcome. Give a distributed algorithm
for computing the winner and the price in a second-price Vickrey auction on such
a network that has the following properties: (i) it is incentive-compatible in ex-post
Nash equilibrium; (ii) it requires no more than two messages to Cross each link;
and (iii) each message is at most Ollog m + log n) bits long, where m is the highest
bid, and n is the number of bidders. Prove that your algorithm satisfies these three
properties

Prove that, in the MC multicast cost-sharing mechanism, there is a single “largest”
receiver set that maximizes NW.

Prove the correctness of the algorithm given in Section 14.2.2 for computation of
MC cost shares.

A strategyproof mechanism is group strategyproof (GSP) if no coalition of deviating
agents can achieve an outcome that is at least as good for all deviating agents and
strictly better for at least one. For each of the MC and SH multicast cost-sharing
mechanisms, either prove that it is GSP or provide a counterexample.

Consider a single-item, ascending-price auction with “jump bids.” Type ¢; denotes
agenti’s value for the item. Bids are associated with a “bid price.” In round t, the
auctioneer announces an “ask price” pf thatis e > 0 above the highest bid received
so far. Any agent can bid in round t, as long as the bid is at some price at or above
p'. The provisional winner is the agent with the current highest bid (breaking ties at
random). The auction terminates when no agent bids at the current ask price, and
the item is then sold to the provisional winner at its final bid price. The information
state (p', x*) defines the current ask price p* and provisional winner x* € {1, ..., n}.
The following is a straightforward bidding strategy that determines what agent i
will do in state (p, x): If p < 6; and x # i, then bid p; otherwise, do not bid. Prove
that this strategy profile is an ex-post Nash equilibrium but not a dominant-strategy
equilibrium.

Prove that policy consistency is satisfied if all ASes use next-hop policies, or if all
use metric-based policies.

Give an interdomain-routing instance (i.e., an AS graph in which one AS is identi-
fied as the destination, each edge is identified as a peer edge or a customer-provider
edge, and a valuation function is given for each source AS) that does not contain a
dispute wheel but also does not satisfy the Gao—Rexford constraints. Explain why
the Gao-Rexford constraints are not satisfied by this instance.

Prove that, in the interdomain-routing problem, it is NP-hard to find a route allo-
cation that comes within a constant factor of the maximum social welfare if no
restrictions are made on the valuation functions.
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