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Abstract

We consider truthful implementation of the socially e�cient allocation in a dynamic

private value environment in which agents receive private information over time. We

propose a suitable generalization of the Vickrey-Clarke-Groves mechanism, based on the

marginal contribution of each agent. In the marginal contribution mechanism, the ex

post incentive and ex post participations constraints are satis�ed for all agents after all

histories. It is the unique mechanism satisfying ex post incentive, ex post participation

and e�cient exit conditions.

We develop the marginal contribution mechanism in detail for a sequential auction

of a single object in which each bidders learn over time her true valuation of the object.

We show that a modi�ed second price auction leads to truthtelling.
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1 Introduction

The seminal analysis of second price auctions by Vickrey (1961) established that single or

multiple unit discriminatory auctions can be used to implement the socially e�cient alloca-

tion in private value models in (weakly) dominant strategies. The subsequent contributions

by Clarke (1971) and Groves (1973) showed that the insight of Vickrey extends to general

allocation problems in private value environments. The central idea behind the Vickrey-

Clarke-Groves mechanism is to convert the indirect utility of each agent i into the social

objective function - up to a term which is a constant from the point of view of agent i. In

the class of transfer payments which accomplish this internalization of the social objective,

the pivot mechanism (due to Green and La�ont (1977)) requires the transfer payment of

agent i to match her externality cost on the remaining agents . The resulting net utility for

agent i corresponds to her marginal contribution to the social value.

In this paper, we generalize the idea of a marginal contribution mechanism (or the pivot

mechanism) to dynamic environments with private information. We design an intertem-

poral sequence of transfer payments which allows each agent to receive her 
ow marginal

contribution in every period. In other words, after each history, the expected transfer that

each player must pay coincides with the dynamic externality cost that she imposes on other

agents. In consequence, each agent is willing to truthfully report her information in every

period.

We consider a general intertemporal model in discrete time and with a common discount

factor. The private information of each agent in each period is her perception of her future

payo� path conditional on the realized information and allocations. We assume throughout

that the information that the agents have is statistically independent across agents. At the

reporting stage of the direct mechanism, each agent reports her information. The planner

then calculates the e�cient allocation given the reported information. The planner also

calculates for each i the optimal allocation when agent i is excluded from the mechanism.

The total expected discounted payment of each agent is set equal to the externality cost

imposed on the other agents in the model. In this manner, each player receives as her

payment her marginal contribution to the social welfare in every conceivable continuation

mechanism.

With transferable utilities, the social objective is simply to maximize the expected dis-
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counted sum of the individual utilities. Since this is essentially a dynamic programming

problem, the solution is by construction time consistent. In consequence, the dynamic

marginal contribution mechanism is time consistent and the social choice function can be

implemented by a sequential mechanism without any ex ante commitment by the designer.

In contrast, in revenue maximizing problems, the \ratchet e�ect" leads to very distinct

solutions for mechanisms with and without intertemporal commitment ability (see Freixas,

Guesnerie, and Tirole (1985)). Furthermore since marginal contributions are positive by

de�nition, dynamic marginal contribution mechanism induces all productive agents to par-

ticipate in the mechanism after all histories.

In contrast to the static environment, the thruthtelling strategy in the dynamic setting

forms an ex-post equilibrium rather than an equilibrium in weakly dominant strategies. The

weakening of the equilibrium notion is due to the dynamic nature of the game. The reports

of other agents in period t determine the allocation for that period. In the dynamic game,

the agents' intertemporal payo�s depend on the expected future allocations and transfers as

well. As a result, the agents' current reports need not maximize their current payo�. Since

dishonest reports distort current and future allocations in di�erent ways, agent i0s optimal

report may depend on the reports of others. Nevertheless, truthful reporting is optimal for

all realizations of other players' private information as long as their reports are truthful.

In the intertemporal environment there is a multiplicity in transfer schemes that support

the same incentives as the marginal contribution mechanism. In particular, the monetary

transfers necessary to induce the e�cient action in period t may always become due at some

later period s, provided that the transfers maintain a constant net present value. We say

that a mechanism supports e�cient exit if an agent who ceases to a�ect the current and

future allocations also ceases to receive transfers. Our second characterization result shows

that the marginal contribution mechanism is the unique mechanism that satis�es ex post

incentive, ex post participation and e�cient exit conditions.

The basic idea of the marginal contribution mechanism is �rst explored in the context

of a scheduling problem where a set of privately informed bidders compete for the services

of a central facility over time. This class of problems is perhaps the most natural dynamic

analogue of static single unit auctions. Besides the direct revelation mechanism, we also

show that there is dynamic ascending price auction implements the e�cient allocation when

each bidder has a single task that can be completed in a single period. Unfortunately in the
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case of multiple tasks per bidder, the ascending price auction and other standard auction

formats fail to be e�cient. In contrast, the marginal contribution mechanism continues

to support the e�cient allocation. This gap calls for a more complete understanding of

bidding mechanisms expressible in the willingness to pay in intertemporal environments.

In section 5, we use the marginal contribution mechanism to derive the optimal dynamic

auction format for a model where bidders learn their valuations for a single object over time.

The Bayesian learning framework constitutes a natural setting to analyze the repeated

allocation of an object or a license over time. The key assumption in the learning setting

is that only the current winner gains additional information about her valuation of the

object. If we think about the object as a license to use a facility or to explore a resource for

a limited time, it is natural to assume that the current insider gains information relative to

the outsiders. A conceptual advantage of the sequential allocation problem, often referred

to as multi-armed bandit problem, is that the structure of the socially e�cient program

is well understood. As the monetary transfers allow each agent to capture her marginal

contribution, the properties of the social program translate into properties of the marginal

program. In the case of the dynamic auction, we therefore obtain surprisingly explicit and

informative expressions for the intertemporal transfer prices.

In recent years, a number of papers have been written with the aim to explore various

issues arising in dynamic allocation problems. Athey and Segal (2007b) consider a similar

model as ours. Their focus is on mechanisms that are budget balanced whereas our paper

focuses on mechanisms where the participation constraint is satis�ed in each period. In

the last section of their paper, Athey and Segal (2007b) show that in in�nite horizon prob-

lems, participation constraint can be satis�ed using repeated game strategies if the discount

factors are high enough. The same repeated game strategies are employed by Athey and

Segal (2007a) with a focus on repeated bilateral trade. In contrast, we design a sequence

of transfers which support the 
ow marginal contribution as the net utility of each agent

in every period. In consequence our results work equally well for the �nite horizon model

as for the in�nite one. Cavallo, Parkes, and Singh (2006) consider a dynamic Markovian

model and derive a sequence of Groves like payments which guarantee interim incentive

compatibility but not interim participation constraints. Bapna and Weber (2005) consider

a sequential allocation problem for a single, indivisible object by a dynamic auction. The

basic optimization problem is a multi-armed bandit problem as in the auction we discuss
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here. Their analysis attempts to use the Gittins index of each alternative allocation as

a su�cient statistic for the determination of the transfer price. While the Gittins index

is su�cient to determine the e�cient allocation in each period, the indices, in particular

the second highest index is typically not a su�cient statistic for the incentive compatible

transfer price. Bapna and Weber (2005) present necessary and su�cient conditions when

an a�ne but report-contingent combination of indices can represent the externality cost.

In contrast, we consider a direct mechanism and determine the transfers from general prin-

ciples of the incentive problem. In particular we do not require any assumptions beyond

the private value environment and transferable utility. Friedman and Parkes (2003) and

Parkes and Singh (2003) consider a speci�c dynamic environments with randomly arriving

and departing agents in a �nite horizon model. A dynamic version of the VCG mechanism,

termed \delayed VCG" is suggested to guarantee interim incentive compatibility but again

does not address interim participation constraints. In symmetric information environments,

Bergemann and V�alim�aki (2003), (2006) use the notion of marginal contribution to con-

struct e�cient equilibria in dynamic �rst price auctions. In this paper, we emphasize the

role of a time-consistent utility 
ow, namely the 
ow marginal contribution, to encompass

environments with private information.

This paper is organized as follows. Section 2 sets up the general model, introduces the

notion of a dynamic mechanism and de�nes the equilibrium concept. Section 3 introduces

the main concepts in a simple example. Section 4 analyzes the marginal contribution mech-

anism in the general environment. We also show that the marginal contribution mechanism

is the unique dynamic mechanism which satis�es ex post incentive compatibility, ex post

participation and e�cient exit condition. Section 5 analyzes the implications of the general

model for a licensing auction with learning. Section 6 concludes.
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2 Model

Payo�s We consider an environment with private and independent values in a discrete

time, in�nite horizon model. The 
ow utility of agent i 2 f1; 2; :::; Ig in period t 2
f0; 1; 2; ::::g is determined by the past and present allocations and a monetary transfer.
The allocation space At in period t is assumed to be a compact space and an element of the

allocation space is denoted by at 2 At. An allocation pro�le until period t is denoted by:

at = (a0; a1; :::; at) 2 At =
t
�
s=0
As:

The allocation pro�le at gives rise to a 
ow utility !i;t:

!i;t : A
t ! R+;

and we assume that the 
ow payo� in t is quasi-linear in the transfer pi;t and given by:

!i;t
�
at
�
+ pi;t.

By allowing the 
ow utility !i;t of agent i in period t to depend on the past allocations, the

model can encompass learning-by-doing and habit formation.1

All agents discount the future with a common discount factor �; 0 < � < 1.

Information The family of 
ow payo�s of agent i over time

f!i;t (�)g1t=0

is a stochastic process which is privately observed by agent i. In an incomplete information

environment, the private information of agent i in period t is her information about her

current (and future) valuation pro�le. The type of agent i in period t is therefore simply her

information about her current (and future) valuation pro�le. It is convenient to model the

private information of agent i in period t about his current and future valuations as being

represented by a �ltration fFi;tg1t=0 on a probability space (
i;Fi;Pi). An element !i of the
sample space 
i is the in�nite sequence of valuation functions !i = (!i;0; !i;1; :::) : We take


i to be the set of all in�nite sequences of uniformly bounded and continuous functions.

1An alternative (and largely equivalent) approach would allow the past consumption to in
uence the

distribution of future random utility.
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In other words, there exists K > 0 such for all i, all t and all at, !i;t
�
at
�
is continuous

in at and !i;t
�
at
�
< K. The �-algebra Fi represents the family of measurable events in

the sample space 
i and Pi is the probability measure on 
i. The �ltration fFi;tg1t=0 is an
increasing family of sub ��algebras of Fi. Intuitively, the �ltration Fi;t is the information
about !i 2 
i available to agent i at time t. We follow the usual convention to augment
the �ltration Fi;t by all subsets of zero probability of Fi. We denote a typical element of
the �ltration Fi;t in period t by

!ti 2 Fi;t:

The element !ti 2 Fi;t thus represents the information of agent i about her current and
future valuations function (!i;t; !i;t+1; :::) at time t.

2 We observe that the information

model is su�ciently rich to accommodate random entry and exit of the agents over time. In

particular, for any k 2 N, the �rst k utility functions or all but the �rst k utility functions
can be equal to zero utilities.

Finally, in the dynamic model, the independent value condition is guaranteed by assum-

ing that the prior probabilities Pi and the �ltrations Fi;t are independent across i.

Histories In the presence of private information we have to distinguish between private

and public histories. The private history of agent i in period t is the sequence of private

information received by agent i until period t, or hi;t =
�
!0i ; :::; !

t�1
i

�
: The set of possible

private histories in period t is denoted by Hi;t. In the dynamic direct mechanism to be

de�ned shortly, each agent i is asked to report her current information in every period t.

The report ri;t of agent i, truthful or not, is an element of the �ltration Fi;t for every t.
The public history in period t is then a sequence of reports until t and allocative decisions

until period t � 1, or ht = (r0; a0; r1; a1; :::rt�1; at�1; rt), where each rs = (r1;s; :::; rI;s) is a
report pro�le of the I agents. The set of possible public histories in period t is denoted by

Ht. The sequence of reports by the agents is part of the public history and hence the past

and current reports of the agents are observable to each one of the agents.

2An common alternative model of private values in static (and dynamic models) is to assign each indi-

vidual a utility function ui (a; !i) which depends on the allocation and a privately observed random variable

!i. In our speci�cation, we take the utility function itself to be a random function. This direct approach

via random utilities is useful for the characterization results in Theorem 1 and 2.
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Mechanism A dynamic direct mechanism asks every agent i to report her information

!ti in every period t. The report ri;t, truthful or not, is an element of the �ltration Fi;t
for every i and every t. A dynamic direct mechanism is then represented by a family of

allocative decisions:

at : Ht ! �(At) ;

and monetary transfer decisions:

pt : Ht ! RI ;

such that the decisions in period t respond to the reported information of all agents in

period t. A dynamic direct mechanismM is then de�ned by

M = ffHtg1t=0 ; fatg
1
t=0 ; fptg

1
t=0g

such that the decisions fat; ptg1t=0 are adapted to the histories fHtg
1
t=0.

Social E�ciency In an environment with quasi-linear utility the socially e�cient policy

is obtained by maximizing the utilitarian welfare criterion, namely the expected discounted

sum of valuations. Given a history ht in period t under truthful reporting, the socially

optimal program can be written simply as

W (ht) = max
fasg1s=t

E

( 1X
s=t

�s�t
IX
i=1

!i;s (a
s)

)
:

Alternatively, we can represent the social program in its recursive form:

W (ht) = max
at
E

(
IX
i=1

!i;t
�
at
�
+ �EW (ht; at)

)
;

where W (ht; at) represents the optimal continuation value conditional upon history ht and

allocation at. We note that the optimal continuation value W (ht; at) is well de�ned for all

feasible allocations at 2 At The socially e�cient policy is denoted by a� = fa�t g
1
t=0. In the

remainder of the paper we focus attention on direct mechanisms which truthfully implement

the socially e�cient policy a�.

The social externality cost of agent i is determined by the optimal continuation plan in

the absence of agent i. It is therefore useful to de�ne the value of the social program after

removing agent i from the set of agents:

W�i (ht) = max
fasg1s=t

E
1X
s=t

�s�t
X
j 6=i

!i;s (a
s) :
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The marginal contribution Mi (ht) of agent i at history ht is naturally de�ned by:

Mi (ht) ,W (ht)�W�i (ht) : (1)

The marginal contribution is the change in social value due to the addition of agent i.

Equilibrium In a dynamic direct mechanism, a reporting strategy for agent i in period

t is a mapping from the private and public history into the �ltration Fi;t:

ri;t : Hi;t �Ht�1 ! Fi;t.

Each agent i reports her information on the current and future valuation process that she

has gathered up to period t: In a dynamic direct mechanism, a reporting strategy for agent

i in period t is simply a mapping from the private and public history into an element of the

�ltration Fi;t in period t:
ri;t : Hi;t �Ht�1 ! Fi;t.

In other words, each agent i reports her information on her entire valuation process that she

has gathered up to period t: For a given mechanismM, the expected payo� for agent i from

reporting strategy ri = fri;tg1t=0 given that the others agents are reporting r�i = fr�i;tg1t=0
is given by

E
1X
t=0

�t
�
!i;t

�
at (ht�1; ri;t; r�i;t)

�
+ pi;t (ht�1; ri;t; r�i;t)

�
:

Given the mechanism M and the reporting strategies r�i, the optimal reporting strategy

of bidder i solves a sequential optimization problem which can be phrased recursively in

terms of value functions, or

Vi(ht�1; hi;t) = max
ri;t2Fi;t

E
�
!i;t

�
at (ht�1; ri;t; r�i;t)

�
+ pi;t (ht�1; ri;t; r�i;t) + �Vi (ht; at; hi;t+1)

	
:

The pro�le of allocative decisions at (ht�1; ri;t; r�i;t) is determined by the past history ht�1

as it includes the past choices (a0; :::at�1) and the current choice at is determined by the

history ht�1 and the current reports rt. The value function Vi (ht; at; hi;t+1) represents the

continuation value given the current history ht, the current action at and tomorrow's private

history hi;t+1. We say that a dynamic direct mechanismM is interim incentive compatible,

if for every agent and every period, truthtelling is a best response given that all other agents
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report truthfully. In terms of the value function, it means that a solution to the dynamic

programming equations is to report truthfully ri;t = !
t
i:

!ti 2 argmax
ri;t2Fi;t

E
�
!i;t

�
at
�
ht�1; ri;t; !

t
�i
��
+ pi;t

�
ht�1; ri;t; !

t
�i
�
+ �Vi (ht; at; hi;t+1)

	
:

We say that M is periodic ex post incentive compatible if truthtelling is a best response

regardless of the signal realization of the other agents:

!ti 2 argmax
ri;t2Fi;t

�
!i;t

�
at
�
ht�1; ri;t; !

t
�i
��
+ pi;t

�
ri;t; !

t
�i
�
+ �EVi (ht; at; hi;t+1)

	
;

for all !t�i 2 F�i;t. In the dynamic context, the notion of ex post incentive compatibility
has to be quali�ed by periodic as it is ex post with respect to all signals received in period t,

but not ex post with respect to signals arriving after period t. The periodic quali�cation is

natural in the dynamic environment as agent i may receive information at some later time

s > t such that in retrospect she would wish to change the allocation choice in t and hence

her report in t.

Finally we consider the interim participation constraint of each agent. If agent i were to

irrevocably leave the mechanism in period t, then an e�cient mechanism would prescribe

the e�cient policy a��i for the remaining agents. By leaving the mechanism, agent i may

still enjoy the value of allocative decisions supported by the remaining agents. We de�ne

the value of agent i from being outside the mechanism as:

Oi(ht�1; hi;t) = max
ri;t2Fi;t

E
�
!i;t

�
at�i (ht�1; r�i;t)

�
+ �Oi (ht; a�i;t; hi;t+1)

	
.

By being outside of the mechanism, the value of agent i is generated from the allocative

decision of the remaining agents and naturally agent i neither in
uences their decision

nor does she receive monetary payments. The interim participation constraint of agent i

requires that for all ht:

Vi(ht�1; hi;t) � Oi(ht�1; hi;t).

Again, we can strengthen the interim participation constraint to periodic ex post partici-

pation constraints for all ht and !
t :

!i;t
�
at
�
ht�1; !

t
��
+ pi;t

�
ht�1; !

t
�
+ �EVi (ht; at; hi;t+1) n

� !i;t
�
at�i

�
ht�1; !

t
�i
��
+ �EOi (ht; a�i;t; hi;t+1) .
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The periodic ex post participation constraint requires that for all possible signal pro�les of

the remaining agents and induced allocations, agent i would prefer to stay in the mechanism

rather than leave the mechanism. For the remainder of the text we shall refer to periodic

ex post constraints simply as ex post constraints.

3 Scheduling: An Example

We begin the analysis with a class of scheduling problems. The scheduling model is kept

deliberately simple to illustrate the insights and results which are then established for

general environments in the subsequent sections.

We consider the problem of allocating time to use a central facility among competing

agents. Each agent has a private valuation for the completion of a task which requires the

use of the central facility. The facility has a capacity constraint and can only complete one

task per period. The cost of delaying any task is given by the discount rate � < 1: The

agents are competing for the right to use the facility at the earliest available time. The

objective of the social planner is to sequence the tasks over time so as to maximize the sum

of the discounted utilities.

We denote by !i;t
�
at
�
the private valuation for bidder i 2 f1; :::; Ig in period t. The

prior probability over valuation functions f!i;t (�)g1t=0 is given Pi. An allocation policy in
this setting is a sequence of choices at 2 f0; 1; :::; Ig; where at denotes the bidder chosen in
period t: We allow for at = 0 and hence the possibility that no bidder is selected in t. Each

agent has only one task to complete and the value !i 2 R+ of the task is constant over time
and independent of the realization time (except for discouting). The utility function !i;t (�)
for bidder i from an allocation policy at is represented by:

!i;t
�
at
�
=

8<: !i if at = i and as 6= i for all s < t,
0 if otherwise.

(2)

For this scheduling model we �nd the marginal contribution of each agent and then derive

the associated marginal contribution mechanism. We also show that a natural indirect

mechanism, a dynamic bidding mechanism, will lead to the e�cient scheduling of tasks over

time with the same 
ow utilities. Finally we extend the scheduling model to allow each

agent to have multiple tasks. In this slightly more general setting, the dynamic bidding
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mechanism fails to lead to an e�cient allocation, but the marginal contribution mechanism

continues to implement the e�cient allocation.

Marginal Contribution We determine the marginal contribution of bidder i by com-

paring the value of the social program with and without i. We can assume without loss of

generality (after relabelling) that the valuations !i of the agents are ordered with respect

to their identity i:

!1 � � � � � !I � 0: (3)

With stationary valuations !i for all i, the optimal policy is clearly given by assigning in

every period the alternative j with the highest remaining valuation, or

a�t = t+ 1, for all t < I.

The descending order of the valuations of the bidders allows us to identify each alternative

i with the time period i+ 1 in which it is employed along the e�cient path and so:

W (h0) =

IX
t=1

�t�1!t. (4)

Similarly, the e�cient program in the absence of bidder i assigns the bidders in descending

order, but necessarily skips bidder i in the assignment process. In consequence it assign all

bidders after i one period earlier relative to the program with bidder i:

W�i (h0) =
i�1X
t=1

�t�1!t +
I�1X
t=i

�t�1!t+1: (5)

By comparing the social program with and without i, (4) and (5), respectively, we �nd

that the assignments for bidders j < i remain unchanged after i is removed, but that each

bidder j > i is allocated the slot one period earlier than in the presence of i. The marginal

contribution of i form the point of view of period 0 is:

Mi (h0) =W (h0)�W�i (h0) =
IX
t=i

�t�1 (!t � !t+1) ;

and from the point of view of period hi�1 along the e�cient path is

Mi (hi�1) =W (hi�1)�W�i (hi�1) =
IX
t=i

�t�1 (!t � !t+1) : (6)
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The social externality cost of agent i is now established in a straightforward manner. At

time t = i�1, i will complete her task and hence realize a gross value of !i. The immediate
opportunity cost is given by the next highest valuation !i+1. But this alone would overstate

the externality cost, because in the presence of i all less valuable tasks will now be realized

one period later. In other words, the insertion of i into the program leads to the realization

of a relatively more valuable task in all subsequent periods The externality cost of agent i

is hence equal to the value of the next valuable task !i+1 minus the improvement in future

allocations due the delay of all tasks by one period:

pi;t (ht) = �!i+1 +
IX

t=i+1

�t�i (!t � !t+1) . (7)

Since by construction (see (3)), we have !t � !t+1 � 0, it follows that the externality cost
of agent i in the intertemporal framework is less than in the corresponding single allocation

problem where it would be !i+1. Consequently, we can rewrite (7) to:

pi;t (ht) = � (1� �)
IX
t=i

�t�i!t+1, (8)

which simply states that the externality cost of agent i is the cost of delay, namely (1� �)
imposed on the remaining and less valuable tasks. With the monetary transfers given by

(7), Theorem 1 will formally establish that the marginal contribution mechanism leads to

thruthtelling with ex post incentive and ex post participation constraints.

In the present scheduling model, the relevant private information for all agents arrives

in period t = 0 and by the stationarity assumption is not changing over time. It would

therefore be possible to assign the tasks completely in t = 0 and also assess the appropriate

transfers in t = 0. In this static version of the direct mechanism each bidder reports her value

of the task and the allocation is determined in the order of the reported valuations. The

static VCG mechanism then has a truthful dominant strategy equilibrium if the payments

are set with reference to (8) as:

pi = � (1� �)
IX
t=i

�t!t+1, (9)

which equals the payments in the dynamic directed mechanism appropriately discounted as

the payments are now assessed at t = 0:
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Dynamic Bidding Mechanism In this scheduling problem a number of bidders compete

for a scare resource, namely timely access to the central facility. It is then natural to ask

whether the e�cient allocation can be realized through a bidding mechanism rather than

a direct revelation mechanism. We �nd a dynamic version of the ascending price auction

where the contemporaneous use of the facility is auctioned. As a given task is completed,

the number of e�ective bidders decreases by one. We can then use a backwards induction

algorithm to determine the values for the bidders starting from a �nal period in which only

a single bidder is left without e�ective competition.

Consider then an ascending auction in which all tasks except that of bidder I have been

completed. Along the e�cient path, the �nal ascending auction will occur at time t = I�1.
Since all other bidders have vanished along the e�cient path at this point, bidder I wins the

�nal auction at a price equal to zero. By backwards induction, we consider the penultimate

auction in which the only bidders left are I � 1 and I. As agent I can anticipate to win the
auction tomorrow even if she were to loose it today, she is willing to bid at most

bI (!I) = !I � � (!I � 0) ; (10)

namely the net value gained by winning the auction today rather than tomorrow. Naturally,

a similar argument applies to bidder I�1, by dropping out of the competition today bidder
I � 1 would get a net present discounted value of �!I�1 and hence her maximal willingness
to pay is given by

bI�1 (!I�1) = !I�1 � � (!I�1 � 0) .

Since bI�1 (!I�1) � bI (!I), given !I�1 � !I , it follows that bidder I�1 wins the ascending
price auction in t = I � 2 and receives a net payo�:

!I�1 � (1� �)!I :

We proceed inductively and �nd that the maximal bid of bidder I � k in period t =
I � k � 1 is given by:

bI�k (!I�k) = !I�k � �
�
!I�k � bI�(k�1)

�
!I�(k�1)

��
(11)

In other words, bidder I � k is willing to bid as much as to be indi�erent between being
selected today and being selected tomorrow, when she would be able to realize a net valua-

tion of !I�k � bI�(k�1), but only tomorrow, and so the net gain from being selected today
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rather than tomorrow is:

!I�k � �
�
!I�k � bI�(k�1)

�
(12)

The maximal bid of bidder I � (k � 1) generates the transfer price of bidder I � k and by
solving (11) recursively with the initial condition given by (10), we �nd that the price in

the ascending auction equals the externality cost in the direct mechanism given by (8). In

this class of scheduling problems, the e�cient allocation can therefore be implemented by

a bidding mechanism.3

Multiple Tasks We end this section with a minor modi�cation of the scheduling model

to allow for multiple tasks. For this purpose it will su�ce to consider an example with two

bidders. The �rst bidder has an in�nite series of single period tasks, each delivering a value

of !1. The second bidder has only a single task with a value !2. The utility function of

bidder 1 is thus given by

!1;t
�
at
�
=

8<: !i if at = 1 for all t,

0 if otherwise.

whereas the utility function of bidder 1 is as described earlier by (2).

The socially e�cient allocation in this setting either has at = 1 for all t if !1 � !2 or
a0 = 2; at = 1 for all t � 1 if !1 < !2: For the remainder of this example, we will assume
that !1 > !2: Under this assumption the e�cient policy will never complete the task of

bidder 2. The marginal contribution of each bidder is:

M1 (h0) = (!1 � !2) +
�

1� �!1 (13)

and

M2 (h0) = 0.

Along any e�cient path ht, we have Mi (h0) = Mi (ht) for all i and we compute the social

externality cost of agent 1, p1;t for all t, by using (13):

p1;t = � (1� �)!2.
3The nature of the recursive bidding strategies bears some similarity to the construction of the bidding

strategies for multiple advertising slots in the keyword auction of Edelman, Ostrovsky, and Schwartz (2007).

In the auction for search keywords, the multiple slots are di�erentiated by their probability of receiving a

hit and hence generating a value. In the scheduling model here, the multiple slots are di�erentiated by the

time discount associated with di�erent access times.

15



The externality cost is again the cost of delay imposed on the competing bidder, namely

(1� �) times the valuation of the competing bidder. This accurately represent the social
externality cost of agent 1 in every period even though agent 2 will never receive access to

the facility.

We contrast the e�cient allocation and transfer with the allocation resulting in the

dynamic ascending price auction. For this purpose, suppose that the equilibrium path

generated by the dynamic bidding mechanism would be e�cient. In this case bidder 2

would never be chosen and hence would receive a net payo� of 0 along the equilibrium

path. But this means that bidder 2 would be willing to bid up to !2 in every period. In

consequence the �rst bidder would receive a net payo� of !1 � !2 in every period and her
discounted sum of payo� would then be:

1

1� � (!1 � !2) < M1: (14)

But more important than the failure of the marginal contribution is the fact that the

equilibrium will not support the e�cient assignment policy. To see this, notice that if

bidder 1 looses to bidder 2 in any single period, then the task of bidder 2 is completed and

bidder 2 will drop out of the auction in all future stages. Hence the continuation payo� for

bidder 1 from dropping out in a given period and allowing bidder 2 to complete his task is

given by:
�

1� �!1: (15)

If we compare the continuation payo�s (14) and (15) respectively, then we see that it is

bene�cial for bidder 1 to win the auction in all periods if and only if

!1 �
!2
1� � ;

but the e�ciency condition is simply !1 � !2. It follows that for a large range of valuations,
the outcome in the ascending auction is ine�cient and will assign the object to bidder 2

despite the ine�ciency of this assignment. The reason for the ine�ciency is easy to detect

in this simple setting. The forward looking bidders consider only their individual net payo�s

in future periods. The planner on the other hand is interested in the level of gross payo�s

in the future periods. As a result, bidder 1 is strategically willing and able to depress the

future value of bidder 2 by letting bidder 2 win today to increase the future di�erence in

the valuations between the two bidders. But from the point of view of the planner, the
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di�erential gains for bidder 1 is immaterial and the assignment to bidder 2 represents an

ine�ciency. The rule of the ascending price auction, namely that the highest bidder wins,

only internalizes the individual equilibrium payo�s but not the social payo�s.

This small extension to multiple tasks shows that the logic of the marginal contribution

mechanism can account for subtle intertemporal changes in the payo�s. On the other hand,

common bidding mechanisms may not resolve the dynamic allocation problem in an e�cient

manner. Indirectly, it suggests that suitable indirect mechanisms have yet to be devised for

scheduling and other sequential allocation problems.

4 Marginal Contribution Mechanism

In this section we construct the marginal contribution mechanism for the general model

described in Section 2. We show that it is the unique mechanism which guarantees the

ex post incentive constraints, the ex post participation constraints and an e�cient exit

condition.

4.1 Characterization

In the static Vickrey auction, the price of the winning bidder is equal to the highest valuation

among the loosing bidders. The highest value among the remaining bidders represents

the social opportunity cost of assigning the object to the winning bidder. The marginal

contribution of agent i is her contribution to the social value. At the same time, it is

the information rent that agent i can secure for herself if the planner wishes to implement

the socially e�cient allocation. In a dynamic setting if agent i can secure her marginal

contribution in every continuation game of the mechanism, then she should be able to receive

the 
ow marginal contribution mi (ht) in every period. The 
ow marginal contribution

accrues incrementally over time and is de�ned recursively:

Mi (ht) = mi (ht) + �Mi (ht; a
�
t ) :

As in the notations of the value functions, W (�) and Vi (�) above, Mi (ht; at) represents the

marginal contribution of agent i in the continuation problem conditional on the history ht

and the allocation at today. The 
ow marginal contribution can be expressed more directly

17



using the de�nition of the marginal contribution (1) as

mi (ht) =W (ht)�W�i (ht)� � (W (ht; a
�
t )�W�i (ht; a

�
t )) . (16)

We can replace the value functions W (ht) and W�i (ht) by the corresponding 
ow payo�s

and continuation payo�s to get the 
ow marginal contribution of agent i:

mi (ht) =
X
j

!j;t
�
a�t ; a

t�1��X
j 6=i

!j;t
�
a��i;t; a

t�1�+� �W�i (ht; a
�
t )�W�i

�
ht; a

�
�i;t
��
. (17)

If the presence of i, leads the designer to adopt the allocation a�t , then this preempts the

preferred allocation a��i;t for all agents but i. To the extent that a decision for a
�
t irrevocably

changes the value (including continuation value) of the remaining agents, the di�erence in

value represents the social externality cost of agent i in period t. It is natural to suggest

that a monetary transfer by agent i such that the resulting 
ow net utility matches her 
ow

marginal contribution will lead agent i to dynamically internalize her social externalities,

or

p�i;t (ht) , mi (ht)� !i;t
�
a�t ; a

t�1� ; (18)

and inserting (17) into (18) we have the transfer payment of the dynamic marginal contri-

bution mechanism:

p�i;t (ht) =
X
j 6=i

!j;t
�
a�t ; a

t�1�+ �W�i (ht; a
�
t )�

X
j 6=i

!j;t
�
a��i;t; a

t�1�� �W�i
�
ht; a

�
�i;t
�
: (19)

The monetary transfers based on the marginal contribution of each agent i can support the

e�cient allocation in the resulting dynamic direct mechanism. We observe that the transfer

pricing (19) for agent i depends on the report of agent i only through the determination

of the social allocation which already appeared as a prominent feature in the static VCG

environment. The monetary transfers p�i;t (ht) are always non-positive as the policy a
�
�i;t is

by de�nition an optimal policy to maximize the social value of all agents exclusive of i. It

follows that in every period t the sum of the monetary transfers across all agents generates

a weak budget surplus. Thus the design of the transfers p�i;t guarantees that the designer

does not face a budget de�cit in any single period.
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Theorem 1 (Dynamic Marginal Contribution Mechanism)

The dynamic marginal contribution mechanism fa�t ; p�t g
1
t=0 is e�cient and satis�es ex post

incentive and ex post participation constraints for all i and all ht.

Proof. By the unimprovability principle, it su�ces to prove that if agent i will receive as

her continuation value her marginal contribution, then truthtelling is incentive compatible

for agent i in period t, or:

!i;t
�
a�t ; a

t�1�� p�i;t �ht�1; at�1; !ti; !t�i�+ �Mi (ht; a
�
t ) (20)

� !i;t
�
at; a

t�1�� p�i;t (ht�1; at�1; ri;t; !�i;t) + �Mi (ht; at) ;

for all ri;t 2 Fi;t and all !�i;t 2 F�i;t, where at is the socially e�cient allocation if the

report ri;t would be the true information in period t, or at = a�t
�
ht�1; at�1; !ti; !

t
�i
�
. By

construction of the transfer price p�i;t (�) in ( ), the lhs of (20) represents the marginal
contribution of agent i. Similarly, we can express the continuation marginal contribution

Mi (ht; a) in terms of the values of the di�erent social programs to get

W (ht)�W�i (ht) � (21)

!i;t
�
at; a

t�1�� p�i;t (ht�1; at�1; ri;t; !�i;t) + � (W (ht; at)�W�i (ht; at)) :

By construction of the transfer price p�i;t (�), we can represent the price that agent i would
have to pay if allocation at were to be chosen in terms of the marginal contribution if the

reported signal ri;t were the true signal received by agent i. We can then insert the transfer

price (19) associated with the history pro�le (ht�1; at�1; ri;t; !�i;t) into (21) to obtain:

W (ht)�W�i (ht) �

!i;t
�
at; a

t�1��X
j 6=i

!j;t
�
a��i;t; a

t�1�� �W�i
�
ht; a

�
�i;t
�
+
X
j 6=i

!j;t
�
at; a

t�1�+ �W (ht; at) :

But now we can reconstitute the entire expression in terms of the social value of the program

with and without agent i and we are lead to the �nal inequality:

W (ht)�W�i (ht) �
X
j

!j;t
�
at; a

t�1�+ �W (ht; at)�W�i (ht) ;

where the later is true by the social optimality of a�t at ht.
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Theorem 1 gives a characterization of the monetary transfer. In speci�c environments,

as in the earlier scheduling problem or the licensing auction in the next section, we gain

additional insights into the structure of the e�cient transfer prices by analyzing how the

policies would change with the addition or removal of an arbitrary agent i.

The design of the transfer price pursued the objective to match the 
ow marginal contri-

bution of every agent in every period. The determination of the monetary transfer is based

exclusively on the reported signals of the other agents, rather than their true signals. For

this reason, truthtelling is not only Bayesian incentive compatible, but ex post incentive

compatible where ex post refers to reports conditional on all signals received up to and

including period t.

An important insight from the static analysis of the private value environment is the

fact that incentive compatibility can be guaranteed in weakly dominant strategies. This

strong result does not carry over into the dynamic setting due to the interaction of the

strategies. Since the e�cient allocation in t+1 depends on information reported in t; there

is no reason to believe that truthful reporting remains an optimal strategy for an agent

when other agents have misreported their information. It is possible, for example, that

agents other than i report in period t information that results in a negative 
ow marginal

contribution for i when the e�cient allocation is calculated according to this report. If the

reports are not truthful, there is no guarantee that i can recoup period t losses in future

periods. Nevertheless, our argument shows that the weaker condition of ex post incentive

compatibility can be satis�ed.

4.2 Uniqueness

The marginal contribution mechanism speci�es a unique monetary transfer in every period

and after every history. This mechanism guarantees that the ex post incentive and ex post

participation constraints are satis�ed after every history ht, but it is not the only mecha-

nism to satisfy these constraints over time. In the intertemporal environment, each agent

evaluates the monetary transfers to be paid in terms of the expected discounted transfers,

but is indi�erent (up to discounting) about the incidence of transfers over time. The nat-

ural consequence is a multiplicity of transfer schemes that support the same intertemporal

incentives as the marginal contribution mechanism. In particular, the monetary transfers

necessary to induce the e�cient action in period t may always be due to transfers to be paid
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at a later period s, provided that the relevant transfers grow at the required rate of 1=� to

maintain a constant net present value. Agent i may therefore be called to make a payment

long after agent i ceased to be important for the mechanism in sense of in
uencing current

or future allocative decisions.4

This temporal separation between allocative in
uence and monetary payments may be

undesirable for may reasons. First, agent i could be tempted to leave the mechanisms

and break her commitment after she ceases to have a pivotal role but before her payments

come due. Second, if the arrival and departure of the agents were random, then an agent

could falsely claim to depart to avoid future payments. Finally, the designer could wish to

minimize communication cost by eliciting information and payments only from agents who

are pivotal with positive probability. In the intertemporal environment it is then natural

to require that if agent i ceases to in
uence current or future allocative decisions in period

t, then she also ceases to have monetary obligations. Formally, for agent i let time � i be

the �rst time such that the e�cient social decision as will be una�ected by the absence of

agent i for all possible future states of the world, or

� i = min
�
t
��a�s (ht; (at; !t+1) ; :::; (as�1; !s)) = a�i;s �ht; �at; !t+1� ; :::; (as�1; !s)� , 8s � t;8!s	 :

We now say that a mechanism satis�es the e�cient exit condition if the end of economic

in
uence coincides with the end of monetary payments.

De�nition 1 (E�cient Exit)

A dynamic mechanism satis�es the e�cient exit condition if for all i, ht and � i :

pi;s (hs) = 0; for all s � � i: (22)

The e�cient exit condition is su�cient to uniquely identify the marginal contribution

mechanism among all dynamic mechanism which satis�es the ex post incentive and the ex

post participation constraints.

Theorem 2 (Uniqueness)

If a dynamic direct mechanism is e�cient, satis�es the ex post incentive constraints, the

ex post participation constraints and the e�cient exit condition, then it is the dynamic

marginal contribution mechanism.

4We would like to thank an anonymous referee to suggest to us a link between exit and uniqueness of the

transfer rule.
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Proof. We �x an arbitrary e�cient dynamic mechanism which satis�es the ex post in-

centive, ex post participation and e�cient exit conditions with transfer payments fpi;t (�)g1t=0
for all i. We �rst establish that for the given mechanism and for every i, ht�1; at and !t�i,

there exists some type !ti such that the monetary transfer pi;t
�
ht�1; at�1; !t

�
for the e�-

cient allocation a�t is equal to the transfer payment (19) under the marginal contribution

mechanism. Consider a type !ti of the form

!ti = (!i;t (�) ;0;0;:::) . (23)

In words, type !ti of agent i has a valuation function !i;t (�) today and a valuation of zero for
all allocations beyond period t. By the e�cient exit condition, it follows that pi;s (�) = 0 for
all s > t. Given !t�i, the optimal allocation in the absence of i is given by some a

�
�i;t. For an

arbitrary allocation at, we can now always �nd a utility function !i;t (�) with a su�ciently
high valuation for at such that at is the socially e�cient allocation today, or at = a

�
t even

though i will have zero valuations starting from tomorrow. In particular we consider

!i;t
�
a0t
�
=

8<: 0 if a0t 6= at;
!i if a0t = at;

(24)

for some !i 2 R+. (We can always �nd a continuous approximation of !i;t (�) to stay in the
class of continuous utility functions.) Now if !i 2 R+ is su�ciently large so as to outweigh
the social externality cost of imposing at as the e�cient allocation, or

!i >
X
j 6=i

!j;t
�
a��i;t; a

t�1��X
j 6=i

!j;t
�
at; a

t�1�+ � �W�i
�
ht; a

�
�i;t
�
�W�i (ht; at)

�
;

then at is the e�cient allocation in period t. By the e�cient exit condition, the ex post

incentive and participation constraints for type !ti de�ned by (23) and (24) reduces to

the static ex post incentive and ex post participation constraints. It now follows that the

transfer payment pi;t (ht) has to be exactly equal to (19). For, if pi;t (ht) were smaller than

p�i;t (ht) of (19), then there would be valuations !i above but close to the social externality

cost such that agent i would �nd the transfer payment too large to report truthfully in an

ex post equilibrium. Likewise if the monetary transfer to agent i would be above p�i;t (ht) of

(19), then agent i would have an incentive to induce the allocation at even so it would not

be the socially e�cient decision.

Next we argue that for all i, ht, and at, the monetary transfer is equal to or below (19).

Suppose not, i.e. there exists an i and ht such that pi;t is above the value p
�
i;t (ht) of (19).
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Then by the argument above, we can �nd a type of the form (23), who would want to claim

pi;t even though at is not the socially e�cient decision.

Finally, we argue that for all i and ht the monetary transfer pi;t (ht) cannot be below

the value p�i;t (ht) of (19) either. We observe that we already showed that the monetary

transfer pi;t (ht) in any period will not exceed the value of p
�
i;t (ht). Thus if in any period t

agent i receives less than indicated by (19), she will not able to recover her loss relative to

the social externality cost (19) in any future period. But in the �rst argument we showed

that i always has the possibility, i.e. for all ht and !
t
�i, to induce the e�cient allocation at

with a monetary transfer equal to (19) by reporting a type !ti of the form (23). It follows

that agent i will never receive less than p�i;t (ht). We thus have shown that the lower and

upper bound of the monetary transfer under ex post incentive and ex post participation

constraints are equal to p�i;t (ht) provided that the e�cient exit condition holds.

The uniqueness results uses the richness of the set of current and future utility functions

to uniquely identify the set of transfers which satisfy the e�cient exit condition. The

argument begins with the class of types !ti which cease to be economic in
uence after period

t and given by: !ti = (!i;t (�) ;0;0;:::) : For these types, the incentive and participation
constraints are similar to the corresponding static constraints though the transfer remain

forward looking in the sense that they incorporate information about future utilities of the

other agents. We then show that for these types, the marginal contribution mechanism is

the only e�cient mechanism which satis�es the ex post incentive, ex post participation and

e�cient exit conditions. We can then show that in presence of the marginal contribution

transfers pi;t = p�i;t for the above class of types !
t
i, the 
ow transfers of all types then

have to agree with the marginal contribution transfers. We establish this by �rst arguing

that the 
ow transfers for any type !t0i cannot be larger than p
�
i;t or else some of the types

!ti = (!i;t (�) ;0;0;:::) would have an incentive to misrepresent. Finally with an upper bound
on the transfers given by the marginal contribution mechanism, it follows that every type

!t0i has to receive the upper bound or else type !
t0
i would have an incentive to misreport to

receive a larger 
ow transfer without a�ecting the social decision.
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5 Learning and Licensing

In this section, we show how our general model can be interpreted as one where the bidders

learn gradually about their preferences for an object that is auctioned repeatedly over time.

We use the insights from the general marginal contribution mechanism to deduce properties

of the e�cient allocation mechanism. A primary example of an economic setting that �ts

this model is the leasing of a resource or license over time.

In every period t; a single indivisible object can be allocated to a bidder i 2 f1; :::; Ig.
The true valuation of bidder i is given by �i 2 �i = [0; 1]. The prior distribution of �i is

given by Fi (�i) and the distributions are independent across bidders. In period 0, bidder i

does not know the realization of �i, instead she receives an informative signal s
0
i 2 Si = [0; 1]

about her true value of the object. The signal si is generated by a conditional distribution

function Gi (si j�i ). In each subsequent period t, only the winning bidder in period t � 1
receives additional information about her valuation �i in the form of an additional and

conditionally independent signal si;t 2 Si from the same conditional distribution Gi (si j�i ).
If bidder i does not win in period t, we assume that she gets no information, and we denote

this by an uninformative signal si;t = ;: Apart from the uninformative signals, si;t is private
information to bidder i.5

In terms of the notation of the general model, !i;t is the posterior expectation of �i

conditional on the information revealed in previous periods:

!i;t
�
at
�
=

8<: E [�i jhi;t ] if at = i,

0 if otherwise.

The type !ti of agent i is a sequence of posterior expectations of �i generated by Fi and

sti = (si;0; :::; si;t�1) :

Social E�ciency The socially optimal assignment over time is a standard multi{armed

bandit problem and the optimal policy is characterized by an index policy (see Gittins

(1989) and Whittle (1982) for a textbook introduction). In particular, we can compute for

every bidder i the Gittins index based exclusively on the information about bidder i. The

5We describe the arrival of new information as a Bayesian sampling process. The equilibrium character-

ization in Theorem 3 would continue to hold for any stochastic process, possibly non-Markovian, provided

that the signal realizations are independent across agents and that signals only arrive for winning bidders.
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index of bidder i after private history hi;t is the solution to the following optimal stopping

problem:


i (hi;t) = max� i
E

(P�
ki=0

�s!i;t+ki
�
at+ki

�P�
ki=0

�ki

)
;

where at+ki denotes the path in which alternative i has been chosen ki times following the

allocation pro�le at and where the expectation is taken with respect to the signal realizations

si;t+k: An important property of the index policy is that the index of alternative i can be

computed independent of any information about the other alternatives. In particular, the

index of bidder i remains constant if bidder i does not win the object. The socially e�cient

allocation policy a� = fa�t g
1
t=0 is to choose in every period a bidder i if:


i (hi;t) � 
j (hj;t) for all j:

Dynamic Direct Mechanism In the direct dynamic mechanism, we take the 
ow

marginal contribution to be the net utility that each bidder should receive in each pe-

riod t. We construct a transfer price such that under the e�cient allocation, each bidder's

net payo� coincides with her 
ow marginal contribution mi (ht). We also show that this

pricing rule makes truthtelling incentive compatible in the dynamic mechanism.

We consider �rst an e�cient bidder i following a history ht.and to match her net payo�

to her 
ow marginal contribution, we must have:

mi (ht) = !i (hi;t) + pi (ht) : (25)

The remaining bidders, j 6= i, should not receive the object in period t and their transfer
price must o�set the 
ow marginal contribution:

mj (ht) = pj (ht) :

We expand the 
ow marginal contribution in (25) by noting that i is the e�cient assignment

and that another bidder, say k, would constitute the e�cient assignment in the absence of

bidder i:

mi (ht) = !i (hi;t)� !k (hk;t)� � (W�i (ht; i)�W�i (ht; k)) : (26)

In (26), W�i (ht; i) and W�i (ht; k) represent the continuation value of the social program

without i, conditional on the history ht and the current assignment being i or k�i respec-

tively. We notice that with private values, the continuation value of the social program
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without i but conditional on the object to agent i in period t is simply equal to the value

of the program conditional on ht alone, or

W�i (ht; i) =W�i (ht) :

The additional information generated by the assignment to agent i only pertains to agent

i and hence has no value for the allocation problem once i is removed. We can therefore

rewrite the 
ow marginal contribution of the winning agent i as:

mi (ht) = !i (hi;t)� (1� �)W�i (ht) :

It follows that the transfer price should simply be given by:

p�i (ht) = � (1� �)W�i (ht) , (27)

which is the 
ow social opportunity cost of assigning the object today to agent i:

A similar analysis, based on the 
ow marginal contribution (26) leads to the determina-

tion of the transfer price for the losing bidders. Consider a bidder j who should not get the

object in period t. Her 
ow utility is clearly zero in period t. Moreover, by the optimality

of the index policy, the removal of alternative j from the set of possible allocations does not

change the optimal assignment today. In consequence, the identity of the winning bidder

does not depend on the presence of alternative j. In other words the e�cient assignment

to i will remain e�cient after we remove j. As a result the 
ow marginal contribution of

the loosing bidder is zero, and we have:

p�j (ht) = mj (ht) = 0.

Our main result in this section collects this information on the transfers in the dynamic

marginal contribution mechanism.

Theorem 3 (Dynamic Second Price Auction)

The socially e�cient allocation rule a� is ex post incentive compatible in the dynamic direct

mechanism with the payment rule p� where:

p�j (ht) =

8<: � (1� �)W�j (ht) if a�t = j;

0 if a�t 6= j:
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The incentive compatible pricing rule has a few interesting implications. First, we

observe that in the case of two bidders, the formula for the dynamic second price reduces to

the static solution. If we remove one bidder, the social program has no other choice but to

always assign it to the remaining bidder. But then, the expected value of that assignment

policy is simply equal to the expected value of the object for bidder j in period t by the

martingale probability of the Bayesian posterior. In other words, the transfer is equal to

the current expected value of the next best competitor. It should be noted, though, that

the object is not necessarily assigned to the bidder with the highest current 
ow payo�.

With more than two bidders, the 
ow value of the social program without bidder i is

di�erent from the 
ow value of any remaining alternative. Since there are at least two

bidders left after excluding i; the planner has the option to abandon any chosen alternative

if its value happens to fall su�ciently much. This option value increases the social 
ow

payo� and hence the transfer that the e�cient bidder must pay. In consequence the social

opportunity cost is higher than the highest expected valuation among the remaining bidders.

Second, we observe that the transfer price of the winning bidder is independent of her

own information about the object. This means, that for any number of periods in which the

ownership of the object does not change, the transfer price will stay constant as well, even

though the valuation of the object by the winning bidder may undergo substantial change.

6 Conclusion

This paper suggest the construction of a direct dynamic mechanism in private value en-

vironments with transferable utility. The design of the monetary transfers relies on the

notions of marginal contribution and 
ow marginal contribution. These notions allow us to

transfer the insights of the Vickrey-Clarke-Groves mechanism from a static environment to

intertemporal settings. In the case of the sequential allocation of a single indivisible object,

we show that the notion of marginal contribution and its relationship to the social program

allow us to give explicit solutions of the monetary transfers in each period.

Many interesting questions are left open. Our examples show that the most immediate

generalizations of standard auction formats such as dynamic ascending price auction may

fail to lead to e�cient allocations in dynamic models. The direct mechanism calculated

in this paper is straightforward from a theoretical point of view. Nevertheless, in practice
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the designer may wish to �nd equivalent bidding mechanisms in which reports are simply

statements about the willingness to pay. The initial scheduling problem points to issue

of de�ning and analyzing reasonable or simple auction mechanisms for dynamic allocation

problems.

The dynamic mechanism considered here satis�es incentive compatibility and partici-

pation constraints with respect to the e�cient allocation. It is natural to ask whether the

approach here may yield insights into revenue maximizing problems in dynamic models.

In order to make progress in this direction, a characterization of the set of implementable

dynamic allocations would be necessary. In particular with intertemporal models the signal

space of every agent inherently becomes multidimensional. Finally, we restricted our atten-

tion to private value environments. A recent literature, beginning with Maskin (1992) and

Dasgupta and Maskin (2000) showed how to extend the VCG mechanism to interdependent

value environments. In dynamic settings, the single crossing condition will then typically

involve a dynamic element which will introduce some complications. These questions are

left for future research.
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