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Exponential random graph models (ERGM)

p�(G) = exp
⇢ kX

i=1

�iTi(G)�  (�)

�

= exp
�
�0T (G)�  (�)

 
,

where T (G) = (T1(G), · · · , Tk(G)) and

 (�) = log
X

G2Gn

exp
�
�0T (G)

�
.
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Existing methods for estimation

I Pseudolikelihood approach
I Markov chain Monte Carlo based approach

,
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Our approach

I is based on graph limits and a theoretical framework proposed by
Cha�erjee and Diaconis.

I uses techniques such as two dimensional simple function approximation to
generalize the method.

I is an iterative algorithm to approximate the MLE.

,
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Graph limits based approach

I Lovasz, Szegedy, Borgs and their coauthors develop a unifying theory of
graph limits.

I Convergent graph sequences have a limit object, which can be represented
as symmetric measurable functions, i.e, w : [0, 1]2 ! [0, 1] that satisfy
w(x, y) = w(y, x) for all x, y 2 [0, 1].

I w-random graph of size n can be generated by
I first assigning xi, i = 1, . . . , n ⇠ unif[0, 1] to the n nodes,
I and eij ⇠ Bernoulli(w(xi, xj)).

I Every finite simple graph G can also be represented as a graph limit wG in a
natural way. Split the interval [0, 1] into n equal intervals J1, · · · , Jn, where
n = |V (G)|. For x 2 Ji , y 2 Jj , define

wG(x, y) =
⇢

1 if ij 2 E(G),
0 otherwise.

,
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Graph limits based approach (cont’d)

I Cha�erjee and Diaconis propose a quotient space of w , in which every
simple graph G has an equivalence class eG, and define a distance �⇤ such
that (fW, �⇤) is a metric space.

I �⇤(ef ,eg) := inf
�
d⇤(f , g�), g�(x, y) := g(�x,�y) and � is a measure

perserving bijection.

I Here d⇤ = sup
S,T✓[0,1]

���
R
S⇥T [f (x, y)� g(x, y)]dxdy

��� .

I where S, T are measurable subsets of [0, 1].

,

Estimation of ERGM via Graph Limits, Nov. 7th, 2013 8



Graph limits based approach (cont’d)

I Cha�erjee and Diaconis propose a quotient space of w , in which every
simple graph G has an equivalence class eG, and define a distance �⇤ such
that (fW, �⇤) is a metric space.

I �⇤(ef ,eg) := inf
�
d⇤(f , g�), g�(x, y) := g(�x,�y) and � is a measure

perserving bijection.

I Here d⇤ = sup
S,T✓[0,1]

���
R
S⇥T [f (x, y)� g(x, y)]dxdy

��� .

I where S, T are measurable subsets of [0, 1].

,

Estimation of ERGM via Graph Limits, Nov. 7th, 2013 8



Graph limits based approach (cont’d)

I Cha�erjee and Diaconis propose a quotient space of w , in which every
simple graph G has an equivalence class eG, and define a distance �⇤ such
that (fW, �⇤) is a metric space.

I �⇤(ef ,eg) := inf
�
d⇤(f , g�), g�(x, y) := g(�x,�y) and � is a measure

perserving bijection.

I Here d⇤ = sup
S,T✓[0,1]

���
R
S⇥T [f (x, y)� g(x, y)]dxdy

��� .

I where S, T are measurable subsets of [0, 1].

,

Estimation of ERGM via Graph Limits, Nov. 7th, 2013 8



Graph limits based approach (cont’d)

I Cha�erjee and Diaconis propose a quotient space of w , in which every
simple graph G has an equivalence class eG, and define a distance �⇤ such
that (fW, �⇤) is a metric space.

I �⇤(ef ,eg) := inf
�
d⇤(f , g�), g�(x, y) := g(�x,�y) and � is a measure

perserving bijection.

I Here d⇤ = sup
S,T✓[0,1]

���
R
S⇥T [f (x, y)� g(x, y)]dxdy

��� .

I where S, T are measurable subsets of [0, 1].

,

Estimation of ERGM via Graph Limits, Nov. 7th, 2013 8



Graph limits based approach (cont’d)

I ERGM graph can be wri�en as:

pn(G) := en
2(T(eG)� n),

where T : fW ! R be a bounded continuous function on the metric space
(fW , �⇤).

I Example:

T (eG) =
3X

i=1

�i t(Hi, eG)

=
2�1(# edges in G)

n2
+

6�2(# two-stars in G)
n3

+
6(�3 � 2�2)(# triangles in G)

n3
.

,
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Graph limits based approach (cont’d)
I Assumefw0 is the graph limit of fGn as n ! 1.
I For a graph Gn of size n, assuming w0, we have

log pn(Gn) = T (Gn)�  n

=
nX

i=1

nX

j=i+1

[eij logw0(xi, xj) + (1� eij) log(1� w0(xi, xj))] ,

I Here xi and xj are random draws from the uniform distribution on [0, 1].
I As n ! 1, we then have

lim
n!1

 n = sup
w̃2eW

(T (w̃)� I(w̃)) ,

where

I(w̃) =

ZZ

[0,1]2
I(w(x, y))dxdy

I(u) =
1
2
u log u +

1
2
(1� u) log(1� u)

,
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Graph limits based approach (cont’d)

I When n is large, almost all random graphs Gn drawn from ERGM induced
by T are close to w random-graphs F when T (eF )� I(eF ) is maximized.

I Based on these findings, Cha�erjee and Diaconis remarked that one can
approximate MLE, by evaluating  (�) on a fine grid in � space and then
carrying out the maximization by classical methods such as a grid search.

,
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Two-dimensional simple functions
approximation

I For any m, split [0, 1]2 into m2 la�ices with equal area,

Aij =

⇢
(x, y) : x 2

h i � 1
m

,
i
m

⌘
and y 2

h j � 1
m

,
j
m

⌘�
,

where i, j = 1, · · · ,m. And let {cij} be a sequence of real numbers between
0 and 1.

I

ŵm =
mX

i,j=1

ĉij1Aij (x, y),

where {ĉij; i, j = 1, . . .m} = argmax
{cij ;i,j=1,...m}

[T (wm)� I(wm)].

,
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Two-dimensional simple functions
approximation (cont’d)

I For example, we can easily derive (for an ERGM model using egdes,
two-stars and triangles.)

T (wm)� I(wm)

=
�1
m2

X

ij

cij +
�2
m3

X

ijk

cijcjk +
�3
m3

X

ijk

cijcjkcik

� 1
2m2

X

ij

[cij log cij + (1� cij) log(1� cij)] .
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Estimating parameters of ERGM
via graph limits

I Give an initial value of �, �(0).
I For each t ,

I Given �(t), use simple function approximation to estimate w̃(t) by maximizing
T�(t)(w̃)� I(w̃).
The corresponding simple function is

ŵ(t)
m =

mP
i,j=1

ĉij1Aij (x, y)

and  ̂(t) = T�(t)

✓
ĝw(t)
m

◆
� I

✓
ĝw(t)
m

◆
.

I set �(t+1) = argmax
�

log p̂n(�;G, ŵ
(t)
m ).

I Stop once ||�(t+1) � �(t)|| < " for some fixed ". And the corresponding
�(t+1) is the GLMLE.

,
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Practical remarks

I Initial values: use w corresponding to the observed graph to find initial
value of �.

I Updating wm

I Updating �
I For exponential family,

E�
⇥
T (G)

⇤
= r (�)

.
I Thus the first derivative of the log-likelihood function for an ERGM graph G is

r log pn(�;G) = n2 {T (G)�r (�)}
= n2

�
T (G)� E�

⇥
T (G)

⇤ 
.

I Computational complexity
I Obtaining wG

m in the initial step takes O(n2).
I In each iteration, the computational complexity is O(m3).

,
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Results

I Can be used on large network.
I Outperform MCMC-based algorithm, especially when the network is large.
I Run faster then MCMC-based algorithm.

,
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Simulation study 1

I Consider an ERGM using homomorphism densities t(Hi, ·) as su�icient
statistics, where H1 is edge, H2 is two-star and H3 is triangle.

I The true value of the parameters � is � = (�2,�1, 1).
I Using the R function simulate.ergm from the ergm package, we

generate ERGM graphs of di�erent sizes
(n = 100, 200, 500, 1000, 2000, 4000) for this model.

I In each case, we simulate 100 graphs and apply our algorithm as well as
MCMC algorithm (R function ergm) to model these data.

I We set m = 10

,
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Simulation study 1 (cont’d)

GLMLE MCMCMLE

size n Bias(�̂1)
se(�̂1)

Bias(�̂2)
se(�̂2)

Bias(�̂3)
se(�̂3)

Bias(�̂1)
se(�̂1)

Bias(�̂2)
se(�̂2)

Bias(�̂3)
se(�̂3)

100 �0.017
(0.206)

�0.429
(5.055)

0.929
(7.161)

0.042
(0.163)

�0.496
(1.738)

9.800
(7.638)

200 �0.022
(0.100)

0.137
(1.369)

0.075
(1.667)

0.033
(0.188)

�1.757
(3.968)

23.780
(18.074)

500 �0.490
(0.019)

0.285
(0.491)

0.079
(2.433)

�0.481
(0.069)

0.598
(1.725)

�9.748
(43.559)

1000 �0.922
(0.013)

0.045
(0.381)

0.154
(0.330)

�0.917
(0.048)

0.483
(2.660)

�27.233
(102.808)

2000 �1.347
(0.009)

�0.209
(0.347)

0.355
(0.255)

�1.346
(0.029)

0.458
(3.787)

�20.266
(188.530)

4000 �1.741
(0.007)

�0.417
(0.307)

0.547
(0.127)

�1.742
(0.023)

0.588
(6.431)

18.510
(379.371)

,

Estimation of ERGM via Graph Limits, Nov. 7th, 2013 20



Simulation study 2

I W -random graph is a method to generate random graph using a given
graph limit w .

I Generate n independent numbers X1, · · · , Xn from the uniform distribution
U(0, 1).

I Connect nodes i and j by an edge with probability w(Xi, Xj), independently for
every pair.

I All other se�ings are the same as simulation study 1.

,
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Simulation study 2 (cont’d)

GLMLE MCMCMLE

size n Bias(�̂1)
se(�̂1)

Bias(�̂2)
se(�̂2)

Bias(�̂3)
se(�̂3)

Bias(�̂1)
se(�̂1)

Bias(�̂2)
se(�̂2)

Bias(�̂3)
se(�̂3)

100 0.110
(0.694)

�2.412
(16.639)

0.182
(10.243)

0.004
(0.150)

0.487
(1.546)

7.164
(8.593)

200 �0.018
(0.045)

0.357
(0.661)

�0.098
(2.275)

�0.015
(0.114)

0.803
(1.125)

�6.063
(17.025)

500 �0.009
(0.012)

0.223
(0.064)

�0.103
(0.127)

�0.031
(0.068)

0.979
(0.661)

�1.681
(8.269)

1000 �0.009
(0.006)

0.225
(0.021)

�0.125
(0.040)

�0.031
(0.051)

0.962
(0.520)

�0.557
(5.283)

2000 �0.007
(0.003)

0.219
(0.021)

�0.110
(0.045)

�0.031
(0.030)

0.982
(0.307)

�1.263
(4.180)

4000 �0.007
(0.002)

0.212
(0.017)

�0.094
(0.029)

�0.035
(0.024)

1.029
(0.240)

�1.452
(2.960)
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Real data analysis

I We apply our method to two real large social networks from Slashdot, a
technology-related news website that has a large specific user community.

nodes edges two-stars triangles transtivity
ratio

Slashdot0811 77,360 469,180 68,516,301 551,724 0.02416
Slashdot0902 82,168 504,230 74,983,589 602,592 0.02411

I Although MCMC-based approach works in theory for large networks, it
fails in practice, primarily because these two networks are too large to be
coerced to objects to which the ergm function can be applied. Our GLMLE
algorithm still works.

I Slashdot0811: (�4.5109,�1.5863, 1.6871), running time for obtaining wG is 392
seconds, while that of estimation is 153 seconds.

I Slashdot0902: (�4.6502,�1.8122, 1.9430), running time for obtaining wG is 436
seconds, while that of estimation is 124 seconds.
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Real data analysis (cont’d)

I In order to compare our method with MCMC-based approach, we obtain a
random subnetwork Gsub from the Slashdot0902 network via
link-tracing-based sampling method. It contains 376 nodes, 1, 609 edges,
48, 915 two-stars and 1, 661 triangles.

I Besides the above model, we consider another model:

T (eG) = �1(edges density) + �2(triangle percent)

=
2�1(# edges in G)

n2

+
�2(# triangles in G)

(# two-stars in G)� 2⇥ (# triangles in G)
.
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Real data analysis (cont’d)

Method �̂ corresponding w 1
n2 log(pn)

Model 1
MCMCMLE (�2.5161, 3.3917, 43.2382) w1 �44.1442
GLMLE (�1.8415,�0.7689, 0.7705) w2 �0.0558
Model 2
MCMCMLE (�1.6072, 0.1206) w3 �0.1408
GLMLE (�2.1921, 0.0714) w4 �0.0518

,
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Visualization of graph limit objects used

wG(data) w1 w2

w3 w4
0.00

0.01

0.06

0.20

0.50

1.00

Figure : Heat map of graph limits w1,w2,w3,w4 and the graph limit representation of Gsub ,
wG , as in above table. The di�erent shades of gray represent the values of

w(x, y) 2 [0, 1], with black being 1 and white 0.

,
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Hypothesis testing

I We conduct a likelihood ratio test based on the approximate likelihood
values for a number of models to test whether the values of each parameter
in GLMLE is statistically significant.

Model log-likelihood Deviance Deviance d.f. p-value

Model 1
NULL �48997.19 — — —
T1 only �8085.31 40911.88 1 < 1⇥ 10�16

T1 and T2 �8019.34 65.97 1 4.44⇥ 10�16

model 1 �7887.76 131.58 1 < 1⇥ 10�16

Model 2
NULL �48997.19 — — —
T1 only �8085.31 40911.88 1 < 1⇥ 10�16

model 2 �7321.27 764.04 1 < 1⇥ 10�16

,
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Future work

I Choosing m.
I Examine the numerical stability.
I Apply our algorithm to more general exponential random graph models.

,
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Thank you!
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