Sliced Inverse Regression with Interaction (Siri) Detection for non-Gaussian BN learning

Jun S. Liu
Department of Statistics
Harvard University

Joint work with Bo Jiang

General: Regression and Classification

	Covariates	Responses
Ind 1	$x_{11}, x_{12}, \ldots, x_{1 p}$	Y_{1}
Ind 2	$x_{21}, x_{22}, \ldots, x_{2 p}$	Y_{2}
\bullet		\vdots
•		
Ind N	$x_{N 1}, x_{N 2}, \ldots, x_{N P}$	Y_{N}

Variable Selection with Interaction

Let $Y \in R$ be a univerate response variable and $X \in R^{p}$ be a vector of p continuous predictor variables
$Y=X_{1} \times X_{2}+\epsilon, \epsilon \sim N\left(0, \sigma^{2}\right), X \sim \operatorname{MVN}\left(0, I_{p}\right)$
Suppose $p=1000$. How to find X_{1} and X_{2} ?
One step forward selection :~ 500,000 interaction terms

Variable Selection with Interaction

Let $Y \in R$ be a univerate response variable and $X \in R^{p}$ be a vector of p continuous predictor variables
$Y=X_{1} \times X_{2}+\epsilon, \epsilon \sim N\left(0, \sigma^{2}\right), X \sim \operatorname{MVN}\left(0, I_{p}\right)$
Suppose $p=1000$. How to find X_{1} and X_{2} ?
One step forward selection :~ 500,000 interaction terms Is there any marginal relationship between Y and X_{1} ?

$[\mathrm{Y} \mid \mathrm{X}]$? $[\mathrm{X} \mid \mathrm{Y}]$? Who is behind the bar?

How long should I wait before telling him that he's on the outside of the cage, not the inside?

NKAD
Theldiotical.com

General: Regression and Classification

Covariates
Responses

Ind 1	$x_{11}, x_{12}, \ldots, x_{1 p}$	Y_{1}
Ind 2	$x_{21}, x_{22}, \ldots, x_{2 p}$	Y_{2}
\vdots		\vdots
Ind N		

$$
P(Y \mid \mathbf{X})=P(\mathbf{X} \mid Y) P(Y) / P(\mathbf{X})
$$

How to model this?

Naïve Bayes model

$$
P\left(Y \mid X_{1}, \cdots, X_{m}\right)=\frac{P(Y) \prod_{j=1}^{m} P\left(X_{j} \mid Y\right)}{P\left(X_{1}, \cdots, X_{m}\right)} .
$$

(Augmented) Naïve Bayes Model

- BEAM: Bayesian Epistasis Association Mapping (Zhang and Liu 2007): discrete univariate response and discrete predictors
- (Augmented) Naïve Bayes Classifier with Variable Selection and Interaction Detection (Yuan Yuan et al.): discrete univariate response and continuous (but discretized) predictors
- Bayesian Partition Model for eQTL study (Zhang et al. 2010): continuous multivariate responses and discrete predictors
- Sliced Inverse Regression with Interaction Detection (SIRI): continuous univariate response and continuous predictors

Tree-Augmented Naïve Bayes

Augmented Naïve Bayes

How about continuous covariates?

- We may discretize Y , and discretize each X
- Or discretize Y, assuming joint Gaussian distributions on X ?
- Sound familiar?

An observation:

$$
Y=X_{1} \times X_{2}+\epsilon, \epsilon \sim N\left(0, \sigma^{2}\right), X \sim \operatorname{MVN}\left(0, I_{p}\right)
$$

Sliced Inverse Regression (SIR, Li 1991)

SIR is a tool for dimension reduction in multivariate statistics
Let $Y \in R$ be a univerate response variable and $X \in R^{p}$ be a vector of p continuous predictor variables

$$
Y=f\left(8_{l}^{T} \boldsymbol{X}, \ldots, b_{K}^{T} \boldsymbol{X}, \epsilon\right)
$$

f is an unknown function and ϵ is the error with finite variance How to identify unknown projection vectors b_{1}, \ldots, b_{K} ?

SIR Algorithm

Let $\Sigma_{x x}$ be the covariance matrix of \boldsymbol{X}. Standarize \boldsymbol{X} to :

$$
Z=\Sigma_{x x}^{-1 / 2}\{\boldsymbol{X}-E X\}
$$

Divde the range of y_{i} into S nonoverlapping slices $H_{s \in\{1, \ldots, S\}}$ n_{s} is the number of observations within each slice
Compute the mean of z_{i} over all slices $z_{s}=n_{s}^{-1} \sum_{i \in H_{s}} z_{i}$, and calculate the estimate for $\operatorname{Cov}\{E(X \mid Y)\}$:

$$
\hat{M}=n^{-1} \sum_{s=1}^{s} n_{s}^{-} z_{s}^{-} z_{s}^{T}
$$

Identify largest K eigenvalues of \hat{M}, λ_{k} and corresponding eigenvectors $\hat{\eta}_{k}$. Then,

$$
\hat{B}_{k}=\hat{\Sigma}_{x x}^{-1 / 2} \hat{\eta}_{k} \quad(k=1, \ldots, K)
$$

SIR with Variable Selection

Only a subset of predictors are relevant: b_{1}, \ldots, b_{K} are sparse Backward subset selection (Cook 2004, Li et al. 2005) Shrinkage estimates of b_{1}, \ldots, b_{K} using L_{1} - or L_{2}-penalty: Regularized SIR (RSIR, Zhong et al. 2005) Sparse SIR (SSIR, Li 2007)
Correlation Pursuit (Zhong et al. 2012) : A forward selection and backward elimination procedure motivated by F-test in stepwise regression

$$
F_{1, n-d-1}=(n-d-1) \frac{\left(R_{d+1}^{2}-\wedge R_{d}^{2}\right)}{1-\wedge R_{d+1}^{2}}
$$

Correlation Pursuit (COP)

Let A be the current set of selected predictors and $\hat{\lambda}_{k}^{A}$ the k th largest eigenvalue estimated by SIR based on predictors in A
For j th predictor $(j \notin A), X_{j}$, define statistic

$$
\operatorname{COP}_{k}^{A+j}=n \frac{\left(\hat{\Lambda}_{k}^{A+j}-\hat{\lambda}_{k}^{A}\right)}{1-\hat{\lambda}_{k}^{A+j}}
$$

Correlation Pursuit (COP)

Let A be the current set of selected predictors and $\hat{\lambda}_{k}^{A}$ the k th largest eigenvalue estimated by SIR based on predictors in A For j th predictor $(j \notin A), X_{j}$, define statistic

$$
\operatorname{COP}_{k}^{A+j}=n \frac{\left(\hat{\Lambda}_{k}^{A+j}-\hat{\lambda}_{k}^{A}\right)}{1-\hat{\lambda}_{k}^{A+j}}
$$

If $j \notin A, C O P_{k}^{A+j}(k=1, \ldots, K)$ are asymptotically i.i.d. $\chi^{2}(1)$, and $C O P_{1: K}^{A+j}=\sum_{k=1}^{K} C O P_{k}^{A+j}$ is asymptotically $\chi^{2}(K)$

Correlation Pursuit (COP)

Let A be the current set of selected predictors and $\hat{\lambda}_{k}^{A}$ the k th largest eigenvalue estimated by SIR based on predictors in A For j th predictor $(j \notin A), X_{j}$, define statistic

$$
\operatorname{COP}_{k}^{A+j}=n \frac{\left(\hat{\Lambda}_{k}^{A+j}-\hat{\lambda}_{k}^{A}\right)}{1-\hat{\lambda}_{k}^{A+j}}
$$

If $j \notin A, C O P_{k}^{A+j}(k=1, \ldots, K)$ are asymptotically i.i.d. $\chi^{2}(1)$, and $C O P_{1: K}^{A+j}=\sum_{k=1}^{K} \operatorname{COP}_{k}^{A+j}$ is asymptotically $\chi^{2}(K)$
The stepwise procedure is consistent if $p=O\left(n^{r}\right), r<1 / 2$

Correlation Pursuit (COP)

Let A be the current set of selected predictors and $\hat{\lambda}_{k}^{A}$ the k th largest eigenvalue estimated by SIR based on predictors in A For j th predictor $(j \notin A), X_{j}$, define statistic

$$
\operatorname{COP}_{k}^{A+j}=n \frac{\left(\hat{\Lambda}_{k}^{A+j}-\hat{\lambda}_{k}^{A}\right)}{1-\hat{\lambda}_{k}^{A+j}}
$$

If $j \notin A, C O P_{k}^{A+j}(k=1, \ldots, K)$ are asymptotically i.i.d. $\chi^{2}(1)$, and $C O P_{1: K}^{A+j}=\sum_{k=1}^{K} C O P_{k}^{A+j}$ is asymptotically $\chi^{2}(K)$
The stepwise procedure is consistent if $p=O\left(n^{r}\right), r<1 / 2$
Dimension K and threshold in forward selection (backward elimnation) are chosen by cross-validation

SIR via MLE

Let A be the set of relevant predictors and $C=A^{C}, d=|A|$

$$
X_{A} \mid Y \in H_{s} \sim N\left(\mu_{s}, \Sigma\right)
$$

SIR via MLE

Let A be the set of relevant predictors and $C=\neg A, d=|A|$

$$
\begin{gathered}
X_{A} \mid Y \in H_{s} \sim N\left(\mu_{s}, \Sigma\right) \\
\boldsymbol{X}_{\mathrm{C}} \boldsymbol{X}_{A}, Y \in H_{S} \sim N\left(X_{A} B, \Sigma_{0}\right)
\end{gathered}
$$

SIR via MLE

Let A be the set of relevant predictors and $C=A^{C}, d=|A|$

$$
\begin{gathered}
X_{A} \mid Y \in H_{s} \sim N\left(\mu_{s}, \Sigma\right) \\
\boldsymbol{X}_{\mathrm{C}} \boldsymbol{X}_{A}, Y \in H_{s} \sim N\left(X_{A} B, \Sigma_{0}\right)
\end{gathered}
$$

$\mu_{s}=\alpha+\Gamma \gamma_{s}$, where $\gamma_{s} \in R^{K}$ and Γ is a $d \times K$ orthogonal matrix

SIR via MLE

Let A be the set of relevant predictors and $C=A^{C}, d=|A|$

$$
\begin{gathered}
\boldsymbol{X}_{A} \mid Y \in H_{s} \sim N\left(\mu_{s}, \Sigma\right) \\
\boldsymbol{X}_{C} \mid \boldsymbol{X}_{A}, Y \in H_{s} \sim N\left(X_{A} B, \Sigma_{0}\right)
\end{gathered}
$$

$\mu_{s}=\alpha+V^{K}$, belongs to a K-dimensional affine space $(K<d)$

SIR via MLE

Let A be the set of relevant predictors and $C=A^{C}, d=|A|$

$$
\begin{gathered}
\boldsymbol{X}_{A} \mid Y \in H_{s} \sim N\left(\mu_{s}, \Sigma\right) \\
\boldsymbol{X}_{C} \mid \boldsymbol{X}_{A}, Y \in H_{s} \sim N\left(X_{A} B, \Sigma_{0}\right)
\end{gathered}
$$

$\mu_{s}=\alpha+V^{K}$, belongs to a K-dimensional affine space $(K<d)$
MLE of the span of subspace V^{K} coincides with SIR directions
(Cook 2007, Szretter and Yohai 2009)

SIR via MLE

Let A be the set of relevant predictors and $C=\neg A, d=|A|$

$$
\begin{gathered}
\boldsymbol{X}_{A} \mid Y \in H_{s} \sim N\left(\mu_{s}, \Sigma\right) \\
\boldsymbol{X}_{C} \mid \boldsymbol{X}_{A}, Y \in H_{s} \sim N\left(X_{A} B, \Sigma_{0}\right)
\end{gathered}
$$

$\mu_{s}=\alpha+V^{K}$, belongs to a K-dimensional affine space ($K<d$)
MLE of the span of subspace V^{K} coincides with SIR directions
(Cook 2007, Szretter and Yohai 2009)
Given current A and predctor $X_{j \notin A}$, we want to test
$H_{0}: X_{j}$ is irrelevant, vs. $H_{1}: X_{j}$ is relevant

SIR via MLE

Let A be the set of relevant predictors and $C=A^{C}, d=|A|$

$$
\begin{gathered}
\boldsymbol{X}_{A} \mid Y \in H_{s} \sim N\left(\mu_{s}, \Sigma\right) \\
\boldsymbol{X}_{C} \mid \boldsymbol{X}_{A}, Y \in H_{s} \sim N\left(X_{A} B, \Sigma_{0}\right)
\end{gathered}
$$

$\mu_{s}=\alpha+V^{K}$, belongs to a K-dimensional affine space $(K<d)$
MLE of the span of subspace V^{K} coincides with SIR directions
(Cook 2007, Szretter and Yohai 2009)
Given current A and predctor $X_{j \notin A}$, we want to test
$H_{0}: X_{j}$ is irrelevant, vs. $H_{1}: X_{j}$ is relevant

$$
\frac{P_{M_{1}}(X \mid Y)}{P_{M_{0}}(X \mid Y)}=\frac{P_{M_{1}}\left(X_{j} \mid \boldsymbol{X}_{A}, Y\right)}{P_{M_{0}}\left(X_{j} \mid \boldsymbol{X}_{A}, Y\right)}
$$

SIR via MLE

Let A be the set of relevant predictors and $C=A^{C}, d=|A|$

$$
\begin{gathered}
\boldsymbol{X}_{A} \mid Y \in H_{s} \sim N\left(\mu_{s}, \Sigma\right) \\
\boldsymbol{X}_{C} \mid \boldsymbol{X}_{A}, Y \in H_{s} \sim N\left(X_{A} B, \Sigma_{0}\right)
\end{gathered}
$$

$\mu_{s}=\alpha+V^{K}$, belongs to a K-dimensional affine space $(K<d)$
MLE of the span of subspace V^{K} coincides with SIR directions (Cook 2007, Szretter and Yohai 2009)
Given current A and predctor $X_{j \notin A}$, we want to test $H_{0}: X_{j}$ is irrelevant, vs. $H_{1}: X_{j}$ is relevant

$$
L R_{j}=\frac{P_{M_{1}}\left(X_{j} \mid \boldsymbol{X}_{A}, Y\right)}{P_{\hat{M}_{0}}\left(X_{j} \mid X_{A}, Y\right)}
$$

LR Test vs. COP

Given current A, the likelihood ratio (LR) test statistic of $H_{0}: X_{j}$ is irrelevant, vs. $H_{1}: X_{j}$ is relevant

$$
\begin{aligned}
2 \mathrm{LR}_{j} & =-n\left(\sum_{k=1}^{K} \log \left(1-\hat{\lambda}_{k}^{A+j}\right)-\sum_{k=1}^{K} \log \left(1-\hat{\lambda}_{k}^{A}\right)\right) \\
& =n \sum_{k=1}^{K} \log \left(1+\frac{\hat{\lambda}_{k}^{A+j}-\hat{\lambda}_{k}^{A}}{1-\hat{\lambda}_{k}^{A+j}}\right)
\end{aligned}
$$

Under $H_{0}: X_{j}$ is irrelevant

$$
\operatorname{COP}_{k}^{A+j}=n \frac{\left(\lambda_{k}^{A+j}-\hat{\lambda}_{k}^{A}\right)}{1-\hat{\lambda}_{k}^{A+j}} \rightarrow_{p} \chi^{2}(1), \frac{\left(\lambda_{k}^{A+j}-\hat{\lambda}_{k}^{A}\right)}{1-\hat{\lambda}_{k}^{A+j}} \rightarrow_{p} 0
$$

LR Test vs. COP

Given current A, the likelihood ratio (LR) test statistic of $H_{0}: X_{j}$ is irrelevant, vs. $H_{1}: X_{j}$ is relevant

$$
\begin{aligned}
2 \mathrm{LR}_{j} & =-n\left(\sum_{k=1}^{K} \log \left(1-\hat{\lambda}_{k}^{A+j}\right)-\sum_{k=1}^{K} \log \left(1-\hat{\lambda}_{k}^{A}\right)\right) \\
& =n \sum_{k=1}^{K} \log \left(1+\frac{\hat{\lambda}_{k}^{A+}-\hat{\lambda}_{k}^{A}}{1-\hat{\lambda}_{k}^{A+j}}\right)
\end{aligned}
$$

Under $H_{0}: X_{j}$ is irrelevant

$$
C O P_{k}^{A+j}=n \frac{\left(\lambda_{k}^{A+j}-\hat{\lambda}_{k}^{A}\right)}{1-\hat{\lambda}_{k}^{A+j}} \rightarrow_{p} \chi^{2}(1), \frac{\left(\lambda_{k}^{A+j}-\hat{\lambda}_{k}^{A}\right)}{1-\hat{\lambda}_{k}^{A+j}} \rightarrow_{p} 0
$$

$$
2 \mathrm{LR}_{j} \rightarrow_{p} C O P_{1: K}^{A+j}=\sum_{k=1}^{K} \operatorname{COP}_{k}^{A+j} \rightarrow_{p} \chi^{2}(K)
$$

Beyond the First-order

- $E\left(X_{1} \mid Y\right)=0$

An Augmented Model

- For $h=1, \ldots, H$,

$$
\begin{aligned}
\mathbf{X}_{\mathcal{A}} \mid Y \in S_{h} & \sim \mathrm{~N}\left(\mu_{h}, \Sigma_{h}\right) \\
\mathbf{X}_{\mathcal{A}^{c}} \mid \mathbf{X}_{\mathcal{A}}, Y \in S_{h} & \sim \mathrm{~N}\left(\alpha+\beta^{\prime} \mathbf{X}_{\mathcal{A}}, \Sigma_{0}\right)
\end{aligned}
$$

- If $\operatorname{Cov}(\mathbf{X})$ is not degenerate, the minimum set \mathcal{A} satisfying the above model is unique.
- Likelihood ratio test for $H_{0}: \mathcal{A}=\mathcal{C}$ v.s. $H_{1}^{*}: \mathcal{A}=\mathcal{C} \cup\{j\}$,

$$
L_{j \mid \mathcal{C}}^{*}=\frac{P_{\mathcal{M}_{1}^{*}}(\mathbf{x} \mid y)}{P_{\mathcal{M}_{0}}(\mathbf{x} \mid y)}=\frac{P_{\mathcal{M}_{1}^{*}}\left(x_{j} \mid \mathbf{x}_{\mathcal{C}}, y\right)}{P_{\mathcal{M}_{0}}\left(x_{j} \mid \mathbf{x}_{\mathcal{C}}, y\right)}
$$

Likelihood Ratio Test

- Assume $\left[\widehat{\sigma}_{j}^{(h)}\right]^{2}$ is the estimated variance by regressing X_{j} on $X_{\mathcal{C}}$ in slice S_{h} and $\widehat{\sigma}_{j}^{2}$ is the overall estimated variance. Then,

$$
\widehat{D}_{j \mid \mathcal{C}}^{*}=\frac{2}{n} \log \left(L_{j \mid \mathcal{C}}^{*}\right)=\log \widehat{\sigma}_{j}^{2}-\sum_{h=1}^{H} \frac{n_{h}}{n} \log \left[\widehat{\sigma}_{j}^{(h)}\right]^{2}
$$

- When $\mathcal{A} \subset \mathcal{C}$ and $|\mathcal{C}|=d, n \widehat{D}_{j \mid \mathcal{C}}^{*} \xrightarrow{d} \chi_{(H-1)(d+2)}^{2}$

$$
\widehat{D}_{j \mid \mathcal{C}}^{*} \sim \log \left(1+\frac{Q_{0}}{\sum_{h=1}^{H} Q_{h}}\right)-\sum_{h=1}^{H} \frac{n_{h}}{n} \log \left(\frac{Q_{h} / n_{h}}{\sum_{h=1}^{H} Q_{h} / n}\right)
$$

where $Q_{0} \sim \chi_{(H-1)(d+1)}^{2}$ and $Q_{h} \sim \chi_{n_{h}-d-1}^{2}(h=1, \ldots, H)$ are mutually independent according to Cochran's theorem.

- As $n \rightarrow \infty$, we have

$$
\begin{aligned}
& \widehat{D}_{j \mid \mathcal{C}}^{*} \xrightarrow{\text { a.s. }} D_{j \mid \mathcal{C}}^{*} \\
= & \log \left(1+\frac{\operatorname{Var}\left(M_{j}\right)-\operatorname{Cov}\left(M_{j}, \mathbf{X}_{\mathcal{C}}\right)\left[\operatorname{Var}\left(\mathbf{X}_{\mathcal{C}}\right)\right]^{-1} \operatorname{Cov}\left(M_{j}, \mathbf{X}_{\mathcal{C}}\right)^{\prime}}{\mathbb{E}\left(V_{j}\right)}\right) \\
+ & \log \mathbb{E}\left(V_{j}\right)-\mathbb{E} \log \left(V_{j}\right)
\end{aligned}
$$

where $M_{j}=\mathbb{E}\left(X_{j} \mid \mathbf{X}_{\mathcal{C}}, \mathbb{S}(Y)\right)$ and $V_{j}=\operatorname{Var}\left(X_{j} \mid \mathbf{X}_{\mathcal{C}}, \mathbb{S}(Y)\right)$.

- $\widehat{D}_{j \mid \mathcal{C}}^{*} \xrightarrow{\text { a.s. }} 0$ if and only if $\mathbb{E}\left(X_{j} \mid \mathbf{X}_{\mathcal{C}}, \mathbb{S}(Y)\right)=\mathbb{E}\left(X_{j} \mid \mathbf{X}_{\mathcal{C}}\right)$ and $\operatorname{Var}\left(X_{j} \mid \mathbf{X}_{\mathcal{C}}, \mathbb{S}(Y)\right)=\operatorname{Var}\left(X_{j} \mid \mathbf{X}_{\mathcal{C}}\right)$
- A stepwise procedure based on $\widehat{D}_{j \mid \mathcal{C}}^{*}$ is consistent when $p=O\left(n^{\gamma}\right)$ with $\gamma<1 / 2$.

Example revisit

- $\operatorname{Var}\left(X_{1} \mid Y\right)$ depends on Y.

- $\mathbb{E}\left(X_{2} \mid X_{1}, Y\right)$ depends on Y.

Sure independence screening (SIS) when p>>n

- Independence screening: first independently selects variables based on their marginal relationships with the response and then applies refined methods in the second step.
- Rank predictors according to $\widehat{D}_{j \mid \mathcal{C}}^{*}$ with $\mathcal{C}=\emptyset$:

$$
\begin{array}{rll}
\widehat{D}_{j \mid \mathcal{C}=\emptyset}^{*} & \xrightarrow{\text { a.s. }} & \log \left(1+\frac{\operatorname{Var}\left(\mathbb{E}\left(X_{j} \mid \mathbb{S}(Y)\right)\right)}{\mathbb{E}\left(\operatorname{Var}\left(X_{j} \mid \mathrm{S}(Y)\right)\right)}\right) \\
& +\quad \log \mathbb{E}\left(\operatorname{Var}\left(X_{j} \mid \mathbb{S}(Y)\right)\right)-\mathbb{E} \log \left(\operatorname{Var}\left(X_{j} \mid \mathbb{S}(Y)\right)\right)
\end{array}
$$

- The first $n-1$ variables have a high probability to include the true predictors \mathcal{A} (almost surely under moderate conditions) even when $\log (p)=O\left(n^{\gamma}\right)$ with $\gamma<1$.

Siri: An interweaving strategy

Theoretical Properties

- Under moderate conditions, a stepwise procedure with forward selection and backward elimination is consistent when $p=O\left(n^{\gamma}\right)$ with $\gamma<1 / 2$.
- By choosing the threshold appropriately, the addition step will not stop selecting variables until all the true predictors have been included.
- Once all the true predictors have been included, all the redundant variables will be removed from the selected variables.

Conditions for consistency

- For $j \in \mathcal{A}$, we have

$$
X_{j} \mid \mathbf{X}_{\mathcal{A}-\{j\}}, Y \in S_{h} \sim \mathrm{~N}\left(\alpha_{j}^{(h)}+\beta^{\prime} \mathbf{X}_{\mathcal{A}-\{j\}}, \sigma_{j}^{2}\right) .
$$

- Condition 1 (detectability): Let $\alpha_{j}(Y)=\sum_{h}^{H} \alpha_{j}^{(h)} \mathbb{I}\left(Y \in S_{h}\right)$. There exist $\xi>0$ and $\kappa>0$ such that

$$
\operatorname{Var}\left(\alpha_{j}(Y)\right) \geq \xi n^{-\kappa} \text { for } j \in \mathcal{A}
$$

- Condition 2 (dependency): The eigenvalues of $\operatorname{Var}(\mathbf{X})$ and $\operatorname{Var}\left(\mathbf{X} \mid Y \in S_{h}\right)(h=1, \ldots, H)$ have positive lower and upper bounds.
- Condition 3 (dimensionality): $\lim _{n \rightarrow \infty}(p)=\infty$ and $p=o\left(n^{\rho}\right)$ with $\rho>0$ and $2 \rho+2 \kappa<1$.

Consistency of Stepwise Procedure

- Under Condition 1-3, as $n \rightarrow \infty$, there exist constants $c>0$ and $\kappa \geq 0$ such that

$$
\begin{gathered}
\operatorname{Pr}\left(\min _{c: \mathcal{C}^{c} \cap \mathcal{A} \neq \emptyset} \max _{j \in \mathcal{C}^{C}} \widehat{D}_{j \mid \mathcal{C}} \geq c n^{-\kappa}\right) \rightarrow 1, \text { and } \\
\operatorname{Pr}\left(\max _{C: C^{c} \cap \mathcal{A}=\emptyset} \max _{j \in \mathcal{C}^{C}} \widehat{D}_{j \mid \mathcal{C}}<C n^{-\kappa}\right) \rightarrow 1 \text { for any } C>0 .
\end{gathered}
$$

- If we choose $t_{a}=c n^{-\kappa}$ and $t_{d}=(c / 2) n^{-\kappa}$, then the addition step will not stop selecting variables until all the true predictors have been included.

Implementation Issues

- Under Condition 1-3, as $n \rightarrow \infty$, there exist constants $c>0$ and $\kappa \geq 0$ such that

$$
\begin{gathered}
\operatorname{Pr}\left(\min _{C: C^{c} \cap \mathcal{A} \neq \emptyset} \max _{j \in \mathcal{C}^{c}} \widehat{D}_{j \mid \mathcal{C}} \geq c n^{-\kappa}\right) \rightarrow 1, \text { and } \\
\operatorname{Pr}\left(\max _{\mathcal{C}: \mathcal{C}^{\complement} \cap=\emptyset=\emptyset \in \mathcal{C}} \max _{j \in C^{c}} \widehat{D}_{j \mid \mathcal{C}}<C n^{-\kappa}\right) \rightarrow 1 \text { for any } C>0 .
\end{gathered}
$$

- If we choose $t_{a}=c n^{-\kappa}$ and $t_{d}=(c / 2) n^{-\kappa}$, then the addition step will not stop selecting variables until all the true predictors have been included.
- Once all the true predictors have been included, all the redundant variables will be removed from the selected variables.

Simulation I (linear)

$$
\begin{aligned}
& Y=\boldsymbol{X}_{p} b+\epsilon, \epsilon \sim N(0,1), \operatorname{Cov}\left(X_{i}, X_{j}\right)=0.5^{\mathbf{i}-j \mathbf{l}} \\
& n=200, p=1000, b=(3,1.5,1,1,2,1,0.9,1,1,1,0, \ldots, 0)^{T}
\end{aligned}
$$

Method	FP(0, 990)	FN(0, 10)
SIRI-C [CV minimizing classification error]	$1.86(\mathbf{0 . 2 2 2})$	$1.66(0.117)$
SIRI-M [CV minimizing mean square error]	$0.76(0.120)$	$1.75(0.114)$
COP	$1.62(0.165)$	$1.67(0.118)$
SIS-SCAD	$0.10(0.030)$	$0.64(0.069)$
LASSO	$5.40(0.188)$	$0.00(0.000)$

Simulation II: hierarchical interactions

- $\mathbf{X} \sim \operatorname{MVN}\left(\mathbf{0}, \mathbb{I}_{p}\right)$ with $n=200, p=1000$, and

$$
Y=X_{1}+X_{1} X_{2}+X_{1} X_{3}+0.2 \epsilon
$$

Simulation III: non-hierarchical

- X $\sim \operatorname{MVN}\left(\mathbf{0}, \mathbb{I}_{p}\right)$ with $n=200, p=1000$, and

$$
Y=X_{1} X_{2}+X_{1} X_{3}+0.2 \epsilon
$$

Simulation IV: Non-multiplicative

- $\mathbf{X} \sim \operatorname{MVN}\left(\mathbf{0}, \mathbb{I}_{p}\right)$ with $n=200, p=1000$, and

$$
Y=\frac{X_{1}}{X_{2}+X_{3}}+0.2 \epsilon
$$

Simulation V (heteroscedastic, single index)

$$
\begin{aligned}
& Y=\frac{0.2 \epsilon}{1.5+\sum_{j=1}^{8} X_{j}}, \boldsymbol{X}_{p} \sim \text { indepdent normal } \\
& n=1000, p=1000
\end{aligned}
$$

Method	FP(0,992)	FN(0, 8)
SIRI-C	$2.00(0.163)$	$0.42(0.138)$
SIRI-M	$0.43(0.079)$	$4.60(0.274)$
COP	$1.26(0.128)$	$3.32(0.192)$
SIS-SCAD	$3.23(0.356)$	$8.00(0.000)$
LASSO	$0.64(0.255)$	$8.00(0.000)$

Simulation VI (hub with linear effect)

$Y=X_{1}+X_{1} \times\left(X_{2}+X_{3}\right)+0.2 \epsilon, X_{p} \sim$ indepdent normal $n=200, p=1000$

Method	FP(0,997)	FN(0,3)
SIRI-C	$0.39(0.115)$	$0.12(0.046)$
SIRI-M	$0.03(0.017)$	$0.04(0.020)$
SIS-SCAD-2	$0.00(0.000)$	$0.45(0.068)$

Simulation VII (three-way interaction)

$$
\begin{aligned}
& Y=X_{1} \times X_{2} \times X_{3}+0.2 \epsilon, X_{p} \sim \text { indepdent normal } \\
& n=500, p=1000
\end{aligned}
$$

Bayesian Networks

Example: Printer Troubleshooting

Instead of 2^{26} parameters we get

$$
99=17 \mathrm{x} 1+1 \mathrm{x} 2^{1}+2 \mathrm{x} 2^{2}+3 \mathrm{x} 2^{3}+3 \times 2^{4}
$$

Bayesian Network: BN=(G, ©)

G - directed acyclic graph (DAG) nodes - random variables edges - direct dependencies
\boldsymbol{O} - set of parameters in all conditional probability distributions (CPDs)

Compact representation of joint distribution in a product form (chain rule):

$$
P(S, C, B, X, D)=P(S) P(C \mid S) P(B \mid S) P(X \mid C, S) P(D \mid C, B)
$$

$$
1+2+2+4+4=13 \text { parameters instead of } 2^{5}=32
$$

Learning BN structures

- Global approach (Score/likelihood based):
- Posterior inference:

$$
P(G \mid \text { Data }) \propto \int P\left(\text { Data } \mid \theta_{G}, G\right) p\left(\theta_{G} \mid G\right) p(G) d \theta_{G}
$$

- Or score-based criterion
- $\mathrm{AIC}=-2 \log P\left(\right.$ Data $\left.\mid \hat{\theta}_{G}, G\right)+2 p_{G}$
- $\mathrm{BIC}=-2 \log P\left(\right.$ Data $\left.\mid \hat{\theta}_{G}, G\right)+\log (n) p_{G}$

Learning structures

- Local approaches: using conditional independence statements as constraints.
- Represented by "Inductive causality" (IC) algorithm due to Pearl (2000).

1. First, the skeleton of the network (undirected graph underlying the network structure) is learned by recursively testing the conditional independence between nodes.
2. Set all direction of the arcs that are part of a v-structure, which is a triplet of nodes incident on a converging connection $X_{j} \rightarrow X_{i} \leftarrow X_{k}$
3. Set the directions of the order arcs as needed to satisfy the acyclicity constraint.

Finding Markov blanket for each note using Growth-Shrink (GS) algorithm

- It is like a stepwise regression. For each note X_{i}, we treat it as the response variable and
(a) gradually add variables that are predictive of X_{i};
(b) Backward removing those "redundant" X_{j} 's obtained from the growth phase.

Discussion

- Cross-validation to select the dimension and thresholds
- Back to full Bayesian model with dynamic slicing
- We want to have flexibility in choosing slicing boundaries
- Connection with Mutual-Information Criterion (MIC)
- Many interesting possibilities
- Robustness to the distribution of predictors

Acknowledgment

Bo Jiang - who did all the work
Dr. Tingting Zhang, Dr. Wenxuan Zhong
Joseph K. Blitzstein

