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General: Regression and Classification 
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Variable Selection with Interaction 

Suppose p= 1000 . How to find X 1  and X 2  ? 
One step forward selection :∼ 500,000  interaction terms 

Y = X 1× X 2+ ϵ , ϵ ∼ N (0,σ 2), X∼MVN(0, I p)

 Let Y ∈ R  be a univerate response variable and X ∈ Rp
 be a vector of p  continuous predictor variables
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Variable Selection with Interaction 

 Let Y ∈ R  be a univerate response variable and X ∈ Rp
 be a vector of p  continuous predictor variables

Suppose p= 1000 . How to find X 1  and X 2  ? 
One step forward selection :∼ 500,000  interaction terms 

Y = X 1× X 2+ ϵ , ϵ ∼ N (0,σ 2), X∼MVN(0, I p)

Is there any marginal  relationship betweenY and X 1 ?

5 



[Y|X] ? [X|Y] ? Who is behind the bar? 
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General: Regression and Classification 
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How to model this? 

Covariates 



Naïve Bayes model 

X1 X2 X3 Xm 

Y 
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l BEAM: Bayesian Epistasis Association Mapping (Zhang and 
Liu 2007): discrete univariate response and discrete 
predictors 

l  (Augmented) Naïve Bayes Classifier with Variable Selection 
and Interaction Detection (Yuan Yuan et al.): discrete 
univariate response and continuous (but discretized) 
predictors 

l Bayesian Partition Model for eQTL study (Zhang et al. 2010): 
continuous multivariate responses and discrete predictors 

l Sliced Inverse Regression with Interaction Detection (SIRI): 
continuous univariate response and continuous predictors  

(Augmented) Naïve Bayes Model 
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Tree-Augmented Naïve Bayes 

X1 

X2 

X3 
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X4 X6 

X5 

(Pearl 1988; Friedman 1997) 

TAN 
(tree-augmented 
naïve Bayes) 
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Augmented Naïve Bayes 
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How about continuous covariates? 
•  We may discretize Y, and discretize each X 
•  Or discretize Y, assuming joint Gaussian 

distributions on X? 
•  Sound familiar?  
 



x1

y
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Y = X 1× X 2+ ϵ , ϵ ∼ N (0,σ 2), X∼MVN(0, I p)
An observation: 



 Let Y ∈ R  be a univerate response variable and X ∈ R p
 be a vector of p  continuous predictor variables

 

 

 

 

 

 

 

 

 
 

Y = f (β 1
T X ,... ,β K

T X ,ϵ )

f is an unknown function and ϵ  is the error with finite variance

SIR is a tool for dimension reduction in multivariate statistics

Sliced Inverse Regression (SIR, Li 1991) 

 How to identify unknown projection vectors β 1 , ... ,β K ?
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 Let Σ xx  be the covariance matrix of X .Standarize X to : 

 

 

 

 

 

 
 

 

SIR Algorithm 

Z= Σ xx
− 1/2 {X − E X }

Divde the range of yi  into S  nonoverlapping slices Hs∈ {1,. .. ,S }

ns  is the number of observations within each slice
Compute the mean of zi  over all slices ̄zs= ns

− 1∑ i∈ H s
zi , and

calculate the estimate for Cov {E (X∣Y ) } :
M̂= n− 1∑ s= 1

S
ns ̄zs ̄z s

T

Identify largest K  eigenvalues of M̂ , λ̂ k  and corresponding 
eigenvectors η̂ k .Then, 

β̂ k= Σ̂ xx
− 1/2η̂ k   (k= 1,. .. , K )
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Shrinkage estimates of β 1 , ... ,β K  using L1 - or L2 -penalty :

Only a subset of predictors are relevant: β 1 , ... ,β K  are sparse

Regularized SIR (RSIR, Zhong et al. 2005)
Sparse SIR (SSIR, Li 2007)
Correlation Pursuit (Zhong et al. 2012) : A forward selection
and backward elimination procedure motivated by F-test
in stepwise regression

Backward subset selection (Cook 2004, Li et al. 2005)

SIR with Variable Selection 

F 1, n− d − 1= (n− d− 1)
( R̂d + 1

2 − R̂d
2 )

  1− R̂d+ 1
2
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Correlation Pursuit (COP) 

 

 

 

 
 

 

 
 

 

Let A  be the current set of selected predictors and λ̂ k
A  the k th

largest eigenvalue estimated by SIR based on predictors in A
For j th predictor ( j∉ A) , X j ,define statistic

COPk
A+ j= n

( λ̂ k
A+ j− λ̂ k

A)
  1− λ̂ k

A+ j
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Correlation Pursuit (COP) 

 

 

 

 
 

 

 
 

 

Let A  be the current set of selected predictors and λ̂ k
A  the k th

largest eigenvalue estimated by SIR based on predictors in A
For j th predictor ( j∉ A) , X j ,define statistic

If j∉ A ,COPk
A+ j(k= 1,. .. , K )  are asymptotically  �i.i.d. χ 2(1) ,

and COP1 :K
A+ j= ∑ k= 1

K
COPk

A+ j is asymptotically  χ 2(K )

COPk
A+ j= n

( λ̂ k
A+ j− λ̂ k

A)
  1− λ̂ k

A+ j
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Correlation Pursuit (COP) 

 

 

 

 
 

 

 
 

 

Let A  be the current set of selected predictors and λ̂ k
A  the k th

largest eigenvalue estimated by SIR based on predictors in A
For j th predictor ( j∉ A) , X j ,define statistic

COPk
A+ j= n

( λ̂ k
A+ j− λ̂ k

A)
  1− λ̂ k

A+ j

The stepwise procedure is consistent  if p= O (nr) , r< 1/2

If j∉ A ,COPk
A+ j(k= 1,. .. , K )  are asymptotically  �i.i.d. χ 2(1) ,

and COP1 :K
A+ j= ∑ k= 1

K
COPk

A+ j is asymptotically  χ 2(K )
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Correlation Pursuit (COP) 

 

 

 

 
 

 

 
 

 

Let A  be the current set of selected predictors and λ̂ k
A  the k th

largest eigenvalue estimated by SIR based on predictors in A
For j th predictor ( j∉ A) , X j ,define statistic

COPk
A+ j= n

( λ̂ k
A+ j− λ̂ k

A)
  1− λ̂ k

A+ j

The stepwise procedure is consistent  if p= O (nr) , r< 1/2
Dimension K and threshold in forward selection (backward 
elimnation) are chosen by cross-validation

If j∉ A ,COPk
A+ j(k= 1,. .. , K )  are asymptotically  �i.i.d. χ 2(1) ,

and COP1 :K
A+ j= ∑ k= 1

K
COPk

A+ j is asymptotically  χ 2(K )
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SIR via MLE 

 
 

 
 

 
 

 

X A∣Y ∈ H s∼ N (μ s , Σ )
Let A  be the set of relevant predictors and C= AC , d= ∣A∣
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SIR via MLE 

 
 

 
 

 
 

 

XC∣X A , Y ∈ H s∼ N ( X A β , Σ 0)
X A∣Y ∈ H s∼ N (μ s , Σ )

Let A  be the set of relevant predictors and C= ¬ A , d= ∣A∣

38 



SIR via MLE 

 
 

 
 

 
 

 

XC∣X A , Y ∈ H s∼ N ( X A β , Σ 0)
X A∣Y ∈ H s∼ N (μ s , Σ )

Let A  be the set of relevant predictors and C= AC , d= ∣A∣

μ s= α + Γ γ s ,where γ s∈ RK  and Γ is a d× K  orthogonal matrix
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SIR via MLE 

 
 

 
 

 
 

 

Let A  be the set of relevant predictors and C= AC , d= ∣A∣

XC∣X A , Y ∈ H s∼ N ( X A β , Σ 0)
X A∣Y ∈ H s∼ N (μ s , Σ )

μ s= α + V K ,belongs to a K -dimensional affine space (K< d )
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SIR via MLE 

 
 

 
 

 
 

 

MLE of the span of subspaceV K coincides with SIR directions
(Cook 2007, Szretter and Yohai 2009)

XC∣X A , Y ∈ H s∼ N ( X A β , Σ 0)
X A∣Y ∈ H s∼ N (μ s , Σ )

μ s= α + V K ,belongs to a K -dimensional affine space (K< d )

Let A  be the set of relevant predictors and C= AC , d= ∣A∣

41 



SIR via MLE 

 
 

 
 

 
 

 

X A∣Y ∈ H s∼ N (μ s , Σ )
XC∣X A , Y ∈ H s∼ N ( X A β , Σ 0)

MLE of the span of subspaceV K coincides with SIR directions
(Cook 2007, Szretter and Yohai 2009)
Given current A  and predctor X j∉ A, we want to test
H 0 : X j is irrelevant, vs. H 1 : X j is relevant

μ s= α + V K ,belongs to a K -dimensional affine space (K< d )

Let A  be the set of relevant predictors and C= ¬ A , d= ∣A∣
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SIR via MLE 

 
 

 
 

 
 

 

X A∣Y ∈ H s∼ N (μ s , Σ )
XC∣X A , Y ∈ H s∼ N ( X A β , Σ 0)

MLE of the span of subspaceV K coincides with SIR directions
(Cook 2007, Szretter and Yohai 2009)

PM 1
(X∣Y )

PM 0
(X∣Y ) =

PM 1
( X j∣X A ,Y )

PM 0
( X j∣X A , Y )

Given current A  and predctor X j∉ A, we want to test
H 0 : X j is irrelevant, vs. H 1 : X j is relevant

μ s= α + V K ,belongs to a K -dimensional affine space (K< d )

Let A  be the set of relevant predictors and C= AC , d= ∣A∣
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SIR via MLE 

 
 

 
 

 
 

 

X A∣Y ∈ H s∼ N (μ s , Σ )

MLE of the span of subspaceV K coincides with SIR directions
(Cook 2007, Szretter and Yohai 2009)

LR j=
PM̂ 1

( X j∣X A , Y )
PM̂ 0

( X j∣X A ,Y )

XC∣X A , Y ∈ H s∼ N ( X A β , Σ 0)

Given current A  and predctor X j∉ A, we want to test
H 0 : X j is irrelevant, vs. H 1 : X j is relevant

μ s= α + V K ,belongs to a K -dimensional affine space (K< d )

Let A  be the set of relevant predictors and C= AC , d= ∣A∣
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2LR j= − n (∑ k= 1

K
log (1− λ̂ k

A+ j)− ∑ k= 1

K
log (1− λ̂ k

A))

LR Test vs. COP 

 = n∑ k= 1

K
log(1+ λ̂ k

A+ j− λ̂ k
A

  1− λ̂ k
A+ j)

COPk
A+ j= n

( λ̂ k
A+ j− λ̂ k

A)
  1− λ̂ k

A+ j →p χ
2(1) ,   

( λ̂ k
A+ j− λ̂ k

A)
  1− λ̂ k

A+ j →p0

Given current A, the likelihood ratio (LR) test statistic of 
H 0 : X j is irrelevant, vs. H 1 : X j is relevant

Under H 0 : X j is irrelevant
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2LR j= − n (∑ k= 1

K
log (1− λ̂ k

A+ j)− ∑ k= 1

K
log (1− λ̂ k

A))

LR Test vs. COP 

 = n∑ k= 1

K
log(1+ λ̂ k

A+ j− λ̂ k
A

  1− λ̂ k
A+ j)

COPk
A+ j= n

( λ̂ k
A+ j− λ̂ k

A)
  1− λ̂ k

A+ j →p χ
2(1) ,   

( λ̂ k
A+ j− λ̂ k

A)
  1− λ̂ k

A+ j →p0

2LR j→pCOP1:K
A+ j= ∑ k= 1

K
COPk

A+ j→p χ
2(K )

Under H 0 : X j is irrelevant

Given current A, the likelihood ratio (LR) test statistic of 
H 0 : X j is irrelevant, vs. H 1 : X j is relevant
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Beyond the First-order 
•  E(X1|Y)=0 



An Augmented Model 
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Likelihood Ratio Test 





Example revisit 
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Sure independence screening (SIS) when p>>n 



Siri: An interweaving strategy 



Theoretical Properties 





Consistency of Stepwise Procedure 



Implementation Issues 



 

 

Simulation I (linear) 

Y = X pβ+ ϵ , ϵ ~ N (0,1) , Cov (X i , X j)= 0.5∣i− j∣

n= 200, p= 1000, β= (3,1.5,1,1,2,1,0 .9,1,1,1,0,... ,0)T

Method FP(0, 990) FN(0, 10) 

SIRI-C 
[CV minimizing 

classification error] 
1.86 (0.222) 1.66 (0.117) 

SIRI-M 
[CV minimizing mean 

square error] 
0.76 (0.120) 1.75 (0.114) 

COP 1.62 (0.165) 1.67 (0.118) 

SIS-SCAD 0.10 (0.030) 0.64 (0.069) 

LASSO 5.40 (0.188) 0.00 (0.000) 



Simulation II: hierarchical interactions 



Simulation III: non-hierarchical 



Simulation IV: Non-multiplicative  



 
 

 

Simulation V (heteroscedastic, single index)  

Y =          0.2ϵ

1.5+ ∑ j= 1

8
X j

, X p~ indepdent normal

n= 1000, p= 1000

Method FP(0, 992) FN(0, 8) 

SIRI-C 2.00 (0.163) 0.42 (0.138) 

SIRI-M 0.43 (0.079) 4.60 (0.274) 

COP 1.26 (0.128) 3.32 (0.192) 

SIS-SCAD 3.23 (0.356) 8.00 (0.000) 

LASSO 0.64 (0.255) 8.00 (0.000) 



Simulation VI (hub with linear effect) 

n= 200, p= 1000
 

 

Method FP(0, 997) FN(0, 3) 

SIRI-C 0.39 (0.115) 0.12 (0.046) 

SIRI-M 0.03 (0.017) 0.04 (0.020) 

SIS-SCAD-2 0.00 (0.000) 0.45 (0.068) 

Y = X 1+ X 1× ( X 2+ X 3)+ 0.2ϵ , X p~ indepdent normal



Simulation VII (three-way interaction) 

n= 500, p= 1000
 

 

Y = X 1× X 2× X 3+ 0.2ϵ , X p~ indepdent normal



Bayesian Networks 





Learning BN structures 

•  Global approach (Score/likelihood based): 
•  Posterior inference: 

•  Or score-based criterion 
•  AIC = 
•  BIC =  

P(G |Data)∝ P(Data |θG,G)p(θG |G)p(G)d∫ θG

−2 logP(Data |θ̂G,G)+ 2pG
−2 logP(Data |θ̂G,G)+ log(n)pG



Learning structures 

•  Local approaches: using conditional
 independence statements as constraints. 
•  Represented by “Inductive causality” (IC) algorithm

 due to Pearl (2000). 
1. First, the skeleton of the network (undirected graph

 underlying the network structure) is learned by recursively
 testing the conditional independence between nodes. 

2. Set all direction of the arcs that are part of a v-structure,
 which is a triplet of nodes incident on a converging
 connection  Xj à Xiß Xk 

3. Set the directions of the order arcs as needed to satisfy the
 acyclicity constraint. 



Finding Markov blanket for each note
 using Growth-Shrink (GS) algorithm 

•  It is like a stepwise regression. For each note
 Xi, we treat it as the response variable and 
(a) gradually add variables that are predictive of Xi;  
(b) Backward removing those “redundant” Xj’s

 obtained from the growth phase. 



l  Cross-validation to select the dimension and thresholds 

 

l  Back to full Bayesian model with dynamic slicing 

l We want to have flexibility in choosing slicing boundaries 

l Connection with Mutual-Information Criterion (MIC) 

l Many interesting possibilities  

 

l  Robustness to the distribution of predictors 

Discussion 
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