Characterizing Individual Behavior from Interaction History

Patrick Perry
NYU Stern

Case Study: UCI Online Network

Online community for University of California, Irvine
(Opsahl \& Panzarasa, 2009)
Dataset covers seven-month period: April - October 2004
2000 users, 60 K messages

Goal: Characterize user messaging behavior

Degrees Are Not Enough

Can we do better?

Agenda

1. Framework for studying interaction histories
2. Macroscopic behavior
3. Microscopic behavior

Events, Not Links

Messages		
Time	Sender	Receiver
t_{1}	i_{1}	j_{1}
t_{2}	i_{2}	j_{2}
\vdots	\vdots	\vdots
t_{n}	i_{n}	j_{n}

Point Process Model

Messages from i to j :

Model via intensity, $\lambda_{t}(i, j)$:

$$
\lambda_{t}(i, j) d t=\operatorname{Prob}\{i \text { sends to } j \text { in }[t, t+d t)\}
$$

Key Insight: Use Past History

Hypotheses:

If you send me a message, lam likely to respond
If I have sent you a message in the past, I am likely to repeat this action in the future

These effects all decay with time.

History-Dependent Covariates

$$
\begin{aligned}
\operatorname{send}_{t}^{(k)}(i, j) & =\#\left\{i \rightarrow j \text { in } I_{t}^{(k)}\right\}, \\
\operatorname{receive}_{t}^{(k)}(i, j) & =\#\left\{j \rightarrow i \operatorname{in} I_{t}^{(k)}\right\}
\end{aligned}
$$

Cox Proportional Intensity Model

$$
\lambda_{t}(i, j)=\bar{\lambda}_{t}(i) \exp \left\{\beta^{\mathrm{T}} x_{t}(i, j)\right\}
$$

```
\lambdat}(i,j)dt\quad\mathrm{ Prob{i sends ja message in time [t,t+dt }}
    \overline{\lambda}
    \beta Vector of coefficients
xt (i,j) Vector of time-varying covariates
```

(Butts 2008 , Vu et al. 2011, POP \& Wolfe 2013)

Interpretation

$$
\lambda_{t}(i, j)=\bar{\lambda}_{t}(i) \exp \left\{\beta^{\mathrm{T}} x_{t}(i, j)\right\}
$$

$\beta_{k} \quad$ Increasing $\left[x_{t}(i, j)\right]_{k}$ by one unit while holding all other covariates constant is associated with multiplying the message rate by $e^{\beta_{k}}$ units.
$\bar{\lambda}_{t}(i) \quad$ Treated as a nuisance parameter, estimated non-parametrically

Example: Self-Reinforcing Send

$$
\lambda_{t}(i, j)=\bar{\lambda}_{t}(i) \exp \left\{1.8\left[x_{t}(i, j)\right]_{1}+0.7\left[x_{t}(i, j)\right]_{2}\right\}
$$

$$
\begin{aligned}
{\left[x_{t}(i, j)\right]_{1} } & =\#\{i \rightarrow j \text { in }[t-1 \text { day, } t)\} \\
{\left[x_{t}(i, j)\right]_{2} } & =\#\{i \rightarrow j \text { in }[t-1 \text { week, }, t-1 \text { day })\}
\end{aligned}
$$

Every sent message is associated with an $e^{18-}-$ fold increase for 1 day, followed by an en ${ }^{0.7}$-fold increase for 6 days (relative to the baseline).

After one week, the message is not associated with a change in rate

Example: Response Model

$$
\lambda_{t}(i, j)=\bar{\lambda}_{t}(i) \exp \left\{1.8\left[x_{t}(i, j)\right]_{1}-0.3\left[x_{t}(i, j)\right]_{2}\right\}
$$

$$
\begin{aligned}
& {\left[x_{t}(i, j)\right]_{1}=\#\{j \rightarrow i \text { in }[t-1 \text { day }, t)\}} \\
& {\left[x_{t}(i, j)\right]_{2}=\#\{j \rightarrow i \text { in }[t-1 \text { week, }, t-1 \text { day })\}}
\end{aligned}
$$

Every received message is associated with an ${ }^{18}$-fold increase for 1 day, followed by an $e^{0.3-}$-fold decrease for 6 days (relative to the baseline).

After one week, the message is not associated with a change in rate

Users Respond to Messages

Coefficient of receive ${ }_{t}^{(k)}(i, j)=\#\left\{j \rightarrow i\right.$ in $\left.I_{t}^{(k)}\right\}$

Users Repeat Past Behavior

Coefficient of $\operatorname{send}_{t}^{(k)}(i, j)=\#\left\{i \rightarrow j\right.$ in $\left.I_{t}^{(k)}\right\}$

receive

send

(1) receiving is associated with responding
(2) users repeat their past behaviors
(3) effect (2) decays faster than effect (1)

Same behavior for each user?

Micro-level Model

Old Model:

$$
\lambda_{t}(i, j)=\bar{\lambda}_{t}(i) \exp \left\{\beta^{\mathrm{T}} x_{t}(i, j)\right\}
$$

New Model:

$$
\begin{aligned}
\lambda_{t}(i, j) & =\bar{\lambda}_{t}(i) \exp \left\{\beta_{i}^{\mathrm{T}} x_{t}(i, j)\right\} \\
\beta_{i} & \sim \operatorname{Normal}(\mu, \Sigma)
\end{aligned}
$$

(Related model: DuBois et al. 2013)

Estimating User-Specific Coefficients

Fitting time: 3 CPU hours
$२ ० ० ०$ sets of coefficients (one set for each user)
Need summarization method to visualize

Visualize by Factor Analysis

2000 sets of coefficients (one set for each user)

Reduce dimensionality via principle components

First 2 components explain 87\% of variance

User-specific Principle

 Component Scores

Variation in Response

receive

Variation in Repetition

Comparing Macro and Micro

send

Theory for Macro Case

Theorem (POP \& Wolfe): Under regularity conditions, MPLE satisfies:
1.

$$
\hat{\beta}_{n} \xrightarrow{P} \beta
$$

2. $\sqrt{n}\left(\hat{\beta}_{n}-\beta\right) \xrightarrow{d} \operatorname{Normal}(0, \Sigma(\beta))$

Related results:

Cox (1975): heuristic argument ("under mild conditions implying some degree of independence... and that the information values are not too disparate")

Andersen \& Gill (1982): survival analysis, fixed time interval

Implementation

$$
\left.\begin{aligned}
& \quad P L_{t_{n}}(\beta)=\prod_{t_{m} \leq t_{n}} \frac{e^{\beta^{\mathrm{T}} x_{t_{m}}\left(i_{m}, j_{m}\right)}}{\sum_{j} e^{\beta^{\mathrm{T}} x_{t_{m}}\left(i_{m}, j\right)}} \\
& \text { Loop over all messages }
\end{aligned}\right|_{\text {Loop over all receivers }}
$$

Na ve: O(messages \times receivers)
With bookkeeping: O[messages + receivers)

Implementation Trick: Sparsity

Inner sum: $\sum_{j} e^{\beta^{\mathrm{T}} x_{t}(i, j)}=\sum_{j} e^{\beta^{\mathrm{T}} x_{0}(i, j)}$

$$
+\left[\sum_{j} e^{\beta^{\mathrm{T}} x_{t}(i, j)}-e^{\beta^{\mathrm{T}} x_{0}(i, j)}\right]
$$

Note! $\quad x_{t}(i, j)=x_{0}(i, j)+d_{t}(i, j)$

Implementation Trick: Structure

Initial sum:

$$
\sum_{j} e^{\beta^{\mathrm{T}} x_{0}(i, j)}
$$

Redundancy in $\left\{\left(x_{0}(i, 1), x_{0}(i, 2), \ldots, x_{0}(i, J)\right)\right\}_{i=1}^{I}$

More Details

Computing $d_{t}(i, j)$
Self-loops
Similar tricks for gradient, Hessian
Numerical overflow

R packoge forthcoming

Summary

1. Events, not links
2. Point process model captures behovior
3. User-specific coefficients allow for heterogeneity
