Characterizing Individual Behavior from Interaction History

Patrick Perry NYU Stern

Case Study: UCI Online Network

Online community for University of California, Irvine (Opsahl & Panzarasa, 2009)

Dataset covers seven-month period: April - October 2004

2000 users, 60K messages

Goal: Characterize user messaging behavior

Degrees Are Not Enough

Can we do better?

- 1. Framework for studying interaction histories
- 2. Macroscopic behavior
- 3. Microscopic behavior

Events, Not Links

Messag	es
--------	----

Time	Sender	Receiver
t_1	i_1	j_1
t_2	i_2	j_2
• •	• •	• •
t_n	i_n	j_n

Point Process Model

Model via intensity, $\lambda_t(i, j)$:

 $\lambda_t(i,j) dt = \operatorname{Prob}\{i \text{ sends to } j \text{ in } [t,t+dt)\}$

Key Insight: Use Past History

Hypotheses:

If you send me a message, I am likely to respond

If I have sent you a message in the past, I am likely to repeat this action in the future

These effects all decay with time.

History-Dependent Covariates

$$\mathbf{send}_{t}^{(k)}(i,j) = \#\{i \to j \text{ in } I_{t}^{(k)}\},\$$
$$\mathbf{receive}_{t}^{(k)}(i,j) = \#\{j \to i \text{ in } I_{t}^{(k)}\};\$$

Cox Proportional Intensity Model

$$\lambda_t(i,j) = \bar{\lambda}_t(i) \exp\{\beta^{\mathrm{T}} x_t(i,j)\}\$$

$\lambda_t(i,j) dt$	<pre>Prob{i sends j a message in time [t,t+dt)}</pre>
$ar{\lambda}_t(i)$	Baseline intensity for sender i
β	Vector of coefficients
$x_t(i,j)$	Vector of time-varying covariates

(Butts 2008, Vu et al. 2011, POP & Wolfe 2013)

Interpretation

$$\lambda_t(i,j) = \bar{\lambda}_t(i) \exp\{\beta^{\mathrm{T}} x_t(i,j)\}\$$

 $\beta_k \qquad \mbox{Increasing } [x_t(i,j)]_k \mbox{ by one unit while holding all other} \\ \mbox{ covariates constant is associated with multiplying the} \\ \mbox{ message rate by } e^{\beta_k} \mbox{ units.}$

 $ar{\lambda}_t(i)$ Treated as a nuisance parameter, estimated non-parametrically

Example: Self-Reinforcing Send

$$\lambda_t(i,j) = \bar{\lambda}_t(i) \exp\{1.8[x_t(i,j)]_1 + 0.7[x_t(i,j)]_2\}$$

$$[x_t(i,j)]_1 = \#\{i \to j \text{ in } [t-1 \text{ day}, t)\}$$
$$[x_t(i,j)]_2 = \#\{i \to j \text{ in } [t-1 \text{ week}, t-1 \text{ day})\}$$

Every sent message is associated with an e^{1.8}-fold **increase** for 1 day, followed by an e^{0.7}-fold **increase** for 6 days (relative to the baseline).

After one week, the message is not associated with a change in rate

Example: Response Model

$$\lambda_t(i,j) = \bar{\lambda}_t(i) \exp\{1.8[x_t(i,j)]_1 - 0.3[x_t(i,j)]_2\}$$

$$[x_t(i,j)]_1 = \#\{j \to i \text{ in } [t-1 \text{ day}, t)\}$$
$$[x_t(i,j)]_2 = \#\{j \to i \text{ in } [t-1 \text{ week}, t-1 \text{ day})\}$$

Every received message is associated with an e^{1.8}-fold **increase** for 1 day, followed by an e^{0.3}-fold **decrease** for 6 days (relative to the baseline).

After one week, the message is not associated with a change in rate

Users Respond to Messages

Coefficient of $\operatorname{receive}_t^{(k)}(i,j) = \#\{j \to i \text{ in } I_t^{(k)}\}$

Time Elapsed (Days)

Time Elapsed (Days)

(1) receiving is associated with responding
 (2) users repeat their past behaviors
 (3) effect (2) decays faster than effect (1)

Same behavior for each user?

Micro-level Model

Old Model:

$$\lambda_t(i,j) = \bar{\lambda}_t(i) \exp\{\beta^{\mathrm{T}} x_t(i,j)\}\$$

New Model:

$$\lambda_t(i,j) = \bar{\lambda}_t(i) \exp\{\beta_i^{\mathrm{T}} x_t(i,j)\}\$$
$$\beta_i \sim \operatorname{Normal}(\mu, \Sigma)$$

(Related model: DuBois et al. 2013)

Estimating User-Specific Coefficients

Fitting time: 3 CPU hours

2000 sets of coefficients (one set for each user)

Need summarization method to visualize

Visualize by Factor Analysis

2000 sets of coefficients (one set for each user)

Reduce dimensionality via principle components

First 2 components explain 87% of variance

User-specific Principle Component Scores

Component 1

Variation in Response

Variation in Repetition

(1) two dimensions of behavior
(2) large range of response rates, similar qualitative patterns
(3) some users repeat, others innovate; big effects in both directions

Theory for Macro Case

Theorem (POP & Wolfe): Under regularity conditions, MPLE satisfies:

$$\hat{\beta}_n \xrightarrow{P} \beta$$

2.
$$\sqrt{n}(\hat{\beta}_n - \beta) \xrightarrow{d} \text{Normal}(0, \Sigma(\beta))$$

Related results:

Cox (1975): heuristic argument ("under mild conditions implying some degree of independence... and that the information values are not too disparate")

Andersen & Gill (1982): survival analysis, fixed time interval

Implementation

$$PL_{t_n}(\beta) = \prod_{\substack{t_m \leq t_n}} \frac{e^{\beta^{\mathrm{T}} x_{t_m}(i_m, j_m)}}{\sum_j e^{\beta^{\mathrm{T}} x_{t_m}(i_m, j)}}$$

Loop over all messages
Loop over all receivers

Na ve: O(messages × receivers) With bookkeeping: O(messages + receivers)

Implementation Trick: Sparsity

Inner sum:
$$\sum_{j} e^{\beta^{\mathrm{T}} x_{t}(i,j)} = \sum_{j} e^{\beta^{\mathrm{T}} x_{0}(i,j)} + \left[\sum_{j} e^{\beta^{\mathrm{T}} x_{t}(i,j)} - e^{\beta^{\mathrm{T}} x_{0}(i,j)}\right]$$

Note!
$$x_t(i, j) = x_0(i, j) + d_t(i, j)$$

Implementation Trick: Structure

Initial sum:

$$\sum_{j} e^{\beta^{\mathrm{T}} x_0(i,j)}$$

Redundancy in
$$\{(x_0(i,1), x_0(i,2), \dots, x_0(i,J))\}_{i=1}^{I}$$

More Details

Computing $d_t(i, j)$ Self-loops Similar tricks for gradient, Hessian Numerical overflow

R package forthcoming

- 1. Events, not links
- 2. Point process model captures behavior
- 3. User-specific coefficients allow for heterogeneity