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The dimensionality d increases with the sample size n

Approximation Error +  Estimation Error  +  Computing Error

Well studied under linear and Gaussian modelsThis talk

A little nonparametricity goes a long way

High Dimensional Data Analysis
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Infer conditional independence based on observational data

   (Xi ,Xj )∉ E ⇔ Xi ⊥ Xj | the rest 

 G= (V ,E)

 ⇒

   d  variables X1,…,Xd

  

x11 … x1d
  
xn1  xnd
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Applications: density estimation, computing, visualization...

Xi Xj

Graph Estimation Problem
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Characterize the performance using different criteria

Model	  class
 F

true	  func-on
f *

f o
oracle

f̂

es-mator

   Persistency: Risk(f̂ ) -Risk(f o) = oP (1) 

   Consistency: Distance(f̂ , f *) = oP (1) 

    Sparsistency: P graph(f̂ )≠ graph(f *)( )= o(1) 

 Minimax optimality

Desired Statistical Properties



6

Nonparanormal 

Forest Density Estimation 

Summary

Outline
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   X ~ Nd µ,Σ( )  Ω= Σ−1

    
min
Ω0
{tr(ŜΩ)− log |Ω |+λ Ω jk

j ,k
∑ }

glasso--Graphical Lasso (Yuan and Lin 06, Banerjee 08, Friedman et al. 08)

Sample covariance

Neighborhood selection (Meinshausen and Buhlmann 06)

Negative Gaussian log-likelihood
  
                    

L1-regularization
  
           

  Ω jk = 0⇔ Xj ⊥ Xk | the rest (Lauritzen 96)

Gaussian Graphical Models
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min
Ω

Ω jk
j ,k
∑  subject to ‖ŜΩ−I‖max≤λ

CLIME -- Constrained L1-Minimization Method (Cai et al. 2011)

gDantzig -- Graphical Dantzig Selector (Yuan 2010)

Gaussian Graphical Models
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Theory: persistency, consistency, sparsistency, optimal rate,... 

language:    Fortran
scalability:  d<3000
Speed:     very fast

language:          C
scalability:  d<6000
Speed:    3 x faster

huge (Zhao and Liu) glasso (Hastie et al.) 

  
‖Ŝ−Σ‖max=OP

logd
n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟

key result for analysis

sample covariance population covariance

Computing: scalable up to thousands of dimensions

Computation and Theory
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Normal Q-Q plot of one typical gene

Arabidopsis Data (Wille et al. 04) 
(n = 118, d=39)

Relax the Gaussian assumption without losing statistical and 
computational efficiency?

Many Real Data are non-Gaussian
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f j (t)=

t−µ j

σ j
 

  Gaussian ⇒ Gaussian Copula

 ⇒ recover arbitrary Gaussian distributions

   A random vector X = (X1,…,Xd ) is  nonparanormal 

   in case f (X)= f1(X1),…, fd (Xd )( ) is normal

 X ~ NPNd Σ,{ f j} j=1
d( )

   Here f j 's are  strictly monotone and diag(Σ)=1.
   f (X) ~ Nd 0,Σ( ).

Nonparanormal Definition (Liu, Lafferty, Wasserman 09)

The Nonparanormal
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Bivariate nonparanormal densities with different transformations

Visualization
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 pX (x)=

1
(2π)d /2 |Ω |−1/2

exp −1
2
f (x)TΩ f (x)

⎧
⎨
⎪⎪
⎩⎪⎪

⎫
⎬
⎪⎪
⎭⎪⎪

′f j (x j )
j=1

d

∏    

   Let X ~ NPNd Σ,{ f j} j=1
d( ) and Ω= Σ−1,  then

The graph is encoded in the inverse correlation matrix

  Ωij = 0⇔ Xi ⊥ Xj | the rest

 ⇒

Not jointly convex, how to estimate the parameters?

Basic Properties
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  Fj (t)= P Xj ≤ t( )= P f j (Xj )≤ f j (t)( )= Φ f j (t)( )
  CDF of  Xj   f j  strictly monotone f j (Xj ) ~ N (0,1)

 f j (t)= Φ−1 Fj (t)( )

 ⇒

 
F̂j (t)=

1
n+1

I
i=1

n

∑ (x j
i ≤ t)

  Directly estimate { f j} j=1
d  without worrying about Ω

Normal-score transformation

Estimating Transformation Functions
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  Step 2 : transform R̂ρ  into Σ̂ρ  according to

   
(∗)     Σ̂ρjk = 2 ⋅sin π

6
R̂ρjk

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

  Step 3 : plug Σ̂ρ  into glasso / CLIME / gDantzig to get Ω̂ρ  and the graph

Nonparanormal Algorithm (Liu, Han, Lafferty, Wasserman 12)

  Step 1 : calculate the Spearman's  rank correlation coefficient matrix R̂ρ

  ̂Σ
ρ  provides good estimate of Σ.

The same procedure is independently proposed by (Xue and Zou 12)

Estimating Inverse Correlation Matrix
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 ⇒

The nonparanormal is a safe replacement of the Gaussian model

Theorem (Liu, Han, Lafferty, Wasserman 12)

  Let X ~ NPNd (Σ, f ) and Ω= Σ−1.  Given whatever conditions on Σ and Ω 

 that secure the consistency and sparsistency of glasso / CLIME / gDantzig 

 under the Gaussian models, the nonparanormal is also consistent and 

 sparsistent with exactly the same parametric rates of convergence.

Nonparanormal Theory
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Proof: 

Population Spearman’s 
rank coefficient

    
The key is to show that  ‖Σ̂ρ−Σ‖max=OP

logd
n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
 .

   
      Σ jk = 2 ⋅sin π

6
Rρjk

⎛
⎝
⎜⎜⎜

⎞
⎠
⎟⎟⎟

 For Gaussian distribution, Kruskal (1948)  shows

monotone transformation invariant

     
 ‖Σ̂ρ−Σ‖max ‖R̂ρ−Rρ‖max=OP

logd
n

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟
 .

Also true for the nonparanormal distribution

 the theory of U - statistics.

Pearson’s 
correlation coefficient

Proof of the Theorem
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For nonGaussian data, the nonparanormal >> glasso 

true graph nonparanormal glasso

Oracle graph: pick the best tuning parameter along the path

   Sample xi ~ NPNd Σ, f( ) with n= 200,  d = 40 and transformation f j

FP

FN

Empirical Results
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For Gaussian data, the nonparanormal almost loses no efficiency

 Computationally -- no extra cost

   Statistically -- sample x1,…, xn ~ Nd (0,Σ) with n= 80 and d =100

ROC curve for graph recovery

1-FP

1-
FN

almost no efficiency loss

Nonparanormal: Efficiency Loss
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The nonparanormal behaves differently from glasso on the Arabidopsis data

nonparanormalglasso difference

 λ1

 λ2

 λ3

The paths are different

Graphical Lasso (glasso) Nonparanormal (npn) Difference

Nonlinear transformation 
causes graph difference

f̂ j

highly nonlinear

MECPS

Arabidopsis Data
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MEP Pathway MVA Pathway 

MECPS

HMGR2

glasso

Still open in the current biological literature (Hou et al. 2010) 

Cross-pathway interactions?

HMGR1

nonparanormal

Scientific Implications
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Nonparanormal: unrestricted graphs, more flexible distributions

Tradeoff structural flexibility for greater nonparametricity

What if the true distribution is not nonparanormal?

Tradeoff
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   A forest F = (V ,EF ) is an acylic graph.

  Gaussian Copula ⇒ Fully nonparametric distribution

 
pF (x)=

p(xi , x j )
p(xi )p(x j )(i, j )∈EF

∏ ⋅ p
k∈V
∏ (xk )

A distribution is supported on a forest F=(V, EF) if

 p̂(xi , x j ),   p̂(xk ) F̂ = (V ,EF̂ ) Forest density estimator

Advantages:  visualization, computing, distributional flexibility, inference

Forest Densities
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Chow and Liu (1968)

Bach and Jordan (2003)

Tan et al. (2010)

Chechetka and Guestrin (2007)

Most existing work on forests are for discrete distributions

Our focus: statistical properties in high dimensions

Some Previous Work
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 mutual information

 
I (pij )= p(xi , x j )log

p(xi , x j )
p(xi )p(x j )

dxi dx j∫

    
Find a forest F (k ) = argmin

F
KL p(x)‖ pF (x)( ) subject to EF ≤ k

 true density   projection of p(x) onto F

Maximum weight forest problem (Kruskal 56)

   
F (k ) = argmax

F
I (pij )

(i, j )∈EF
∑  subject to EF  ≤ k

 Clipped KDE p̂(xi , x j ),   p̂(xk )

Estimation
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2. Greedily pick a set of edges such that no cycles are formed 

3. Output the obtained forest after k edges have been added

Forest Density Estimation Algorithm

1. Sort edges according to empirical mutual information I ( p̂ij )

Forest Density Estimation Algorithm
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    (A1)  Bivariate marginals p(x j , xk )∈2nd - order Holder class

    

(A2)   p(x) has bounded support (e.g. [0,1]d )  and 

          κ1≤minj ,k  p(x j , xk )≤maxj ,k
 p(x j , xk )≤κ2

  (A3)   p(x j , xk ) has vanishing partial derivatives on boundaries

  

(A4)   For a "crucial" set of edges, their mutual info. distinct enough from

           each other

To secure enough signal-to-noise-ratio for correct structure recovery
(Tan, Anandkumar, Willsky 11)

Assumptions for Forest Graph Estimation
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P (k ) :densities supported by  
forests with at most k  edges

true density

p

p
F( k )

Oracle density estimator

Forest Estimator

p̂
F̂( k )

   
F (k ) = argmin

F:  EF≤k
KL p(x)‖ pF (x)( )

Theorem-Oracle Sparsistency (Liu et al. 12)

   
we have sup

k
P F̂ (k ) ≠ F (k )( )= o(1). 

 For graph estimation, let

 and 1d and 2d KDEs use the same bandwidth

  h n−1/4 ,

 
logd
n
→ 0, parametric scaling

undersmooth

Forest Density Estimation Theory
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Proof:  The key is to bound

 
I p̂ jk( )− I (pjk )

   
Bias Ep̂ jk (x)− pjk (x)⎡

⎣
⎤
⎦∫
2
dx + E∫ p̂ jk (x)− pjk (x)⎡

⎣
⎤
⎦
2
dx

  
           

 IBias( p̂ jk )   
           

 IMSE( p̂ jk )  h
2

  
 h4 +

1
nh2

   P Stochastic≥ t( )≤ c1 exp −c2nt
2( )

  ≤ I p̂ jk( )−EI p̂ jk( ) + EI p̂ jk( )− I (pjk )

  
           

 Stochastic   
           

 Biasestimated 
mutual info.

population
mutual info.

McDiarmaid’s inequality

Proof of the Sparsistency Result
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Theorem-Oracle Consistency (Liu et al. 12)

   
sup
p

E‖p̂
F̂( k )
− p

F( k )
‖1≤C ⋅

k
n2/3

+
d
n4/5

.

   h1 n
−1/5 and  h2  n

−1/6 .

 We have

 For density estimation,we set the bandwidths for the 1d and 2d KDE as

Proof Pinsker’s inequality and the decomposability of the forest density in 
terms of KL-divergence

minimax optimal

univariate KDEbivariate KDE

optimal rates for KDE

Consistency 
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MEP Pathway MVA Pathway 

MECPS

Forest density estimation is consistent with the nonparanormal

HMGR1

FDE

HMGR2

Forest Graphs on the Arabadopsis Data
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Second order log-density ANOVA models

Trade off structural complexity with distributional flexibility

  

Forest Density Estimation : 

only involve at most (d −1) 

interaction terms f jk (x j , xk ).

  
log p(x)=α+

i=1

d

∑ fi (xi )+ f jk
j<k
∑ (x j , xk )

   

Nonparanormal : 

f jk (x j , xk )=Ω jk f j (x j ) fk (xk ) 
and  f j , fk  are monotone.

Nonparanormal vs. Forest Density Estimation



34

Software:  “huge” and “flare” are available on CRAN

Scalable nonparametric methods and high dimensional theory go together

Theory: nonparametric modeling with optimal parametric rates

Computing: as scalable as the best parametric implementation

Applications: potential to lead to nontrivial scientific insights

Summary


