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Problem	
  Defini@on	
  

•  Given	
  a	
  bipar@te	
  graph	
  with	
  people	
  as	
  one	
  set	
  	
  
of	
  ver@ces	
  and	
  events	
  as	
  the	
  other	
  set,	
  measure	
  
!e	
  strength	
  between	
  each	
  pair	
  of	
  individuals	
  

•  Assump@on	
  

– AFendance	
  at	
  mutual	
  events	
  	
  
implies	
  an	
  implicit	
  weighted	
  	
  
social	
  network	
  between	
  people	
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Mo@va@on	
  

•  Most	
  real-­‐world	
  networks	
  are	
  2-­‐mode	
  and	
  are	
  
converted	
  to	
  a	
  1-­‐mode	
  (e.g.,	
  AAT)	
  

•  Explicitly	
  declared	
  friendship	
  links	
  can	
  suffer	
  from	
  a	
  
low	
  signal-­‐to-­‐noise	
  ra@o	
  (e.g.,	
  Facebook	
  friends)	
  

•  Challenge:	
  Detect	
  which	
  of	
  links	
  in	
  the	
  1-­‐mode	
  graph	
  
are	
  important	
  

•  Goal:	
  Infer	
  the	
  implicit	
  weighted	
  social	
  network	
  from	
  
people’s	
  par@cipa@on	
  in	
  mutual	
  events	
  

3	
  



Tie	
  Strength	
  

•  A measure of tie strength induces  
– a ranking on all the edges, and 
– a ranking on the set of neighbors for every 

person 

•  Example of a simple tie-strength measure 
– Common neighbor measures the total number 

of common events to a pair of individuals 
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Macbeth	
  

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.
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Decisions,	
  Decisions	
  
•  There	
  are	
  many	
  different	
  measures	
  of	
  @e-­‐strength	
  

1.  Common	
  neighbor	
  
2.  Jaccard	
  index	
  
3.  Max	
  
4.  Linear	
  
5.  Delta	
  
6.  Adamic	
  and	
  Adar	
  
7.  Preferen@al	
  aFachment	
  
8.  Katz	
  measure	
  
9.  Random	
  walk	
  with	
  restarts	
  
10.  Simrank	
  
11.  Propor@onal	
  
12.  …	
  	
  

Which	
  one	
  should	
  
you	
  choose?	
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Outline	
  

•  An	
  axioma@c	
  approach	
  to	
  the	
  problem	
  of	
  inferring	
  
implicit	
  social	
  networks	
  by	
  measuring	
  @e	
  strength	
  

•  A	
  characteriza@on	
  of	
  func@ons	
  that	
  sa@sfy	
  all	
  our	
  
axioms	
  	
  

•  Classifica@on	
  of	
  prior	
  measures	
  according	
  to	
  the	
  
axioms	
  that	
  they	
  sa@sfy	
  	
  

•  Experiments	
  
•  Conclusions	
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Running	
  Example	
  

infer	
  

a	
  

b	
  

c	
  

d	
  

e	
  

P	
  

Q	
  

R	
  

high	
  

low	
  (a,c),	
  (a,d),	
  (a,e),	
  (b,e)	
  

	
  (b,c),	
  (b,d),	
  (c,e),	
  (d,e)	
  

	
  (a,b)	
   	
  (c,d)	
  

Input	
  
People	
  ×	
  Event	
  Bipar@te	
  Graph	
  

Output	
  
Par@al	
  Order	
  of	
  Tie	
  Strength	
  among	
  People	
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Axioms	
  

•  Axiom	
  1:	
  Isomorphism	
  
•  Axiom	
  2:	
  Baseline	
  
•  Axiom	
  3:	
  Frequency	
  
•  Axiom	
  4:	
  In@macy	
  
•  Axiom	
  5:	
  Popularity	
  
•  Axiom	
  6:	
  Condi@onal	
  Independence	
  of	
  People	
  
•  Axiom	
  7:	
  Condi@onal	
  Independence	
  of	
  Events	
  
•  Axiom	
  8:	
  Submodularity	
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Axiom	
  1:	
  Isomorphism	
  

•  Tie	
  strength	
  between	
  u	
  and	
  v	
  is	
  independent	
  of	
  the	
  
labels	
  of	
  u	
  and	
  v	
  

b	
  

c	
   Q	
  

d	
  

e	
  

R	
  

c	
  

e	
  

R	
  

b	
  

d	
  

Q	
  

a	
  

b	
  

c	
  

d	
  

e	
  

P	
  

Q	
  

R	
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Axiom	
  2:	
  Baseline	
  
•  If	
  there	
  are	
  no	
  events,	
  then	
  @e	
  strength	
  between	
  each	
  pair	
  u	
  

and	
  v	
  is	
  0	
  

TS∅(u,	
  v)	
  =	
  0	
  

•  If	
  there	
  are	
  only	
  two	
  people	
  u	
  and	
  v	
  and	
  a	
  single	
  event	
  P	
  that	
  
they	
  aFend,	
  then	
  their	
  @e	
  strength	
  is	
  at	
  most	
  1	
  

TSP(u,	
  v)	
  ≤	
  1	
  

–  Defines	
  an	
  upper-­‐bound	
  for	
  how	
  much	
  @e	
  strength	
  can	
  be	
  
generated	
  from	
  a	
  single	
  event	
  between	
  two	
  people	
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Axiom	
  3:	
  Frequency	
  &	
  Axiom	
  4:	
  In@macy	
  

•  Axiom	
  3	
  (Frequency)	
  
– More	
  events	
  create	
  stronger	
  @es	
  

–  All	
  other	
  things	
  being	
  equal,	
  the	
  more	
  	
  
events	
  common	
  to	
  u	
  and	
  v,	
  the	
  stronger	
  	
  
their	
  @e-­‐strength	
  

•  Axiom	
  4	
  (InCmacy)	
  
–  Smaller	
  events	
  create	
  stronger	
  @es	
  

–  All	
  other	
  things	
  being	
  equal,	
  the	
  fewer	
  invitees	
  there	
  are	
  to	
  
any	
  par@cular	
  event	
  	
  aFended	
  by	
  u	
  and	
  v,	
  the	
  stronger	
  their	
  
@e-­‐strength	
  

a	
  

b	
  

c	
  

d	
  

e	
  

P	
  

Q	
  

R	
  

12	
  



Axiom	
  5:	
  Popularity	
  

•  Larger	
  events	
  create	
  more	
  @es	
  
•  Consider	
  two	
  events	
  P	
  and	
  Q	
  	
  	
  
•  If	
  |Q|	
  >	
  |P|,	
  then	
  the	
  total	
  @e	
  	
  
strength	
  created	
  by	
  Q	
  is	
  more	
  	
  
than	
  that	
  created	
  by	
  P	
  

a	
  

b	
  

c	
  

d	
  

e	
  

P	
  

Q	
  

R	
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Axioms	
  6	
  &	
  7:	
  Condi@onal	
  Independence	
  
of	
  People	
  and	
  of	
  Events	
  	
  

•  Axiom	
  6:	
  CondiConal	
  Independence	
  of	
  People	
  
–  A	
  node	
  u’s	
  @e	
  strength	
  to	
  other	
  people	
  does	
  not	
  depend	
  on	
  
events	
  that	
  u	
  does	
  not	
  aFend	
  

•  Axiom	
  7:	
  CondiConal	
  Independence	
  of	
  Events	
  

–  The	
  increase	
  in	
  @e	
  strength	
  between	
  u	
  and	
  v	
  due	
  to	
  	
  
an	
  event	
  P	
  does	
  not	
  depend	
  on	
  other	
  events,	
  just	
  on	
  	
  
the	
  exis@ng	
  @e	
  strength	
  between	
  u	
  and	
  v	
  

–  TS(G+P)(u,	
  v)	
  =	
  g(TSG(u,	
  v),	
  TSP(u,	
  v))	
  	
  
•  where	
  g	
  is	
  some	
  monotonically	
  increasing	
  func@on	
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Axiom	
  8:	
  Submodularity	
  

•  The	
  marginal	
  increase	
  in	
  @e	
  strength	
  of	
  u	
  and	
  v	
  
due	
  to	
  an	
  event	
  Q	
  is	
  at	
  most	
  the	
  @e	
  strength	
  
between	
  u	
  and	
  v	
  if	
  Q	
  was	
  their	
  only	
  event	
  

•  If	
  G	
  is	
  a	
  graph	
  and	
  Q	
  is	
  a	
  single	
  event,	
  then	
  
TS(G+Q)(u,	
  v)−TSG(u,	
  v)	
  ≤	
  TSQ(u,	
  v)	
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Example	
  –	
  Mapping	
  to	
  Axioms	
  

Axiom	
  2	
  (Baseline)	
  &	
  
Axiom	
  6	
  (Cond.	
  Indep.	
  	
  
of	
  Ver!ces)	
  &	
  Axiom	
  7	
  
(Cond.	
  Indep.	
  of	
  Events)	
  

Axiom	
  1	
  
(Isomorphism)	
  

Axiom	
  4	
  (In!macy)	
  	
  
&	
  Axiom	
  3	
  (Freq)	
  

infer	
  

a	
  

b	
  

c	
  

d	
  

e	
  

P	
  

Q	
  

R	
  

high	
  

low	
  (a,c),	
  (a,d),	
  (a,e),	
  (b,e)	
  

	
  (b,c),	
  (b,d),	
  (c,e),	
  (d,e)	
  

	
  (a,b)	
   	
  (c,d)	
  

Input	
  
People	
  ×	
  Event	
  Bipar@te	
  Graph	
  

Output	
  
Par@al	
  order	
  of	
  Tie	
  Strength	
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Observa@ons	
  on	
  the	
  Axioms	
  
•  Our	
  axioms	
  are	
  fairly	
  intui@ve	
  

•  But,	
  several	
  previous	
  measures	
  in	
  the	
  literature	
  break	
  
some	
  of	
  these	
  axioms	
  

•  Sa@sfying	
  all	
  the	
  axioms	
  is	
  not	
  sufficient	
  to	
  uniquely	
  
iden@fy	
  a	
  measure	
  of	
  @e	
  strength	
  	
  

–  One	
  reason:	
  inherent	
  tension	
  between	
  Axiom	
  3	
  
(Frequency)	
  and	
  Axiom	
  4	
  (In@macy)	
  

A1:	
  Isomorphism	
   A2:	
  Baseline	
   A3:	
  Frequency	
   A4:	
  In@macy	
  

A5:	
  Popularity	
   A6:	
  Cond.	
  Indep.	
  of	
  
people	
  

A7:	
  Cond.	
  indep.	
  of	
  
events	
  

A8:	
  Submodularity	
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Inherent	
  Tension	
  Between	
  	
  
Frequency	
  &	
  In@macy	
  

•  Scenario	
  #1	
  (in@mate)	
  
– Mary	
  and	
  Susan	
  go	
  to	
  2	
  par@es,	
  where	
  they	
  are	
  	
  
the	
  only	
  people	
  there.	
  

•  Scenario	
  #2	
  (frequent)	
  
– Mary,	
  Susan,	
  and	
  Jane	
  go	
  to	
  3	
  par@es,	
  where	
  they	
  
are	
  the	
  only	
  people	
  there.	
  

•  In	
  which	
  scenario	
  is	
  Mary’s	
  @e	
  to	
  Susan	
  
stronger?	
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Observa@ons	
  on	
  the	
  Axioms	
  (cont.)	
  

	
  

•  Axioms	
  are	
  equivalent	
  to	
  a	
  natural	
  par@al	
  order	
  on	
  the	
  
strength	
  of	
  @es	
  
–  Per@nent	
  to	
  ranking	
  applica@on	
  

•  Choosing	
  a	
  par@cular	
  @e-­‐strength	
  func@on	
  is	
  equivalent	
  
to	
  choosing	
  a	
  par@cular	
  linear	
  extension	
  of	
  this	
  par@al	
  
order	
  
– Non-­‐obvious	
  decision	
  

A1:	
  Isomorphism	
   A2:	
  Baseline	
   A3:	
  Frequency	
   A4:	
  In@macy	
  

A5:	
  Popularity	
   A6:	
  Cond.	
  Indep.	
  of	
  
people	
  

A7:	
  Cond.	
  indep.	
  of	
  
events	
  

A8:	
  Submodularity	
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Preamble	
  to	
  the	
  Characteriza@on	
  Theorem	
  

•  Let	
  f(n)	
  =	
  total	
  @e	
  strength	
  generated	
  in	
  a	
  single	
  event	
  with	
  n	
  people	
  
•  If	
  there	
  is	
  a	
  single	
  party	
  with	
  n	
  people,	
  the	
  @e	
  strength	
  of	
  each	
  @e	
  is	
  	
  

–  Based	
  on	
  Axiom	
  1	
  (Isomorphism)	
  

•  The	
  total	
  @e	
  strength	
  created	
  at	
  an	
  event	
  P	
  with	
  n	
  people	
  is	
  a	
  monotone	
  
func@on	
  f(n)	
  that	
  is	
  bounded	
  by	
  

–  Based	
  on	
  Axiom	
  2	
  (Baseline)	
  and	
  Axiom	
  4	
  (In@macy)	
  and	
  Axiom	
  5	
  (Popularity)	
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Characterizing	
  Tie	
  Strength	
  
A	
  way	
  to	
  explore	
  the	
  space	
  of	
  valid	
  func!ons	
  for	
  represen!ng	
  
!e	
  strength	
  and	
  find	
  which	
  work	
  given	
  par!cular	
  applica!ons	
  

Theorem.(Given&a&graph&G"="(L"∪"R,"E)"and"two"vertices"u"and"v,&
if& the& tie0strength& function& TS& follows& Axioms& (108),& then& the&
function&has&to&be&of&the&form"

TSG(u,"v)"="g(h(|P1|),"h(|P2|),&…,"h(|Pk|))"
• {Pi}1≤i≤k"are&the&events&common&to&both"u"and"v"
• ℎ &is& a& monotonically& decreasing& function& bounded& by&
1 ≥ ℎ(!) ≥ !

!
!
,&!&≥&2;&ℎ 1 = 1;&ℎ 0 = 0.&

• !&is&a&monotonically&increasing&submodular&function&
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Many	
  Measures	
  	
  
of	
  Tie	
  Strength	
  
1.  Common	
  neighbor	
  
2.  Jaccard	
  index	
  
3.  Max	
  
4.  Linear	
  
5.  Delta	
  
6.  Adamic	
  and	
  Adar	
  
7.  Preferen@al	
  aFachment	
  
8.  Katz	
  measure	
  
9.  Random	
  walk	
  with	
  restarts	
  
10.  Simrank	
  
11.  Propor@onal	
  

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v
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b2�(v) TS(a,b)
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Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
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.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:
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✏
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Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
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=
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TS(u, v, t� 1) if u and v do not attend Pt
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We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a
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, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1
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and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1
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= 1. This
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find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1
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(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.
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Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
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TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|
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is discounted exponentially by the length of path.
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Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.
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1 if u = v
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Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
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Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:
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✏
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Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1
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We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
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and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
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in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1
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(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.
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the number of paths between u and v where each path
is discounted exponentially by the length of path.
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Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.
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(
1 if u = v
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Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
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Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:
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P2�(u)\�(v)

✏

|P | + (1� ✏)
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Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1
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We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
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f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }
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in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.
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in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.
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Random Walk with Restarts. This gives a non-symmetric
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with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
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allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events
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Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
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according which axioms they satisfy. If they satisfy all the
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functions g and h.

We shall prove this by constructing such a function. We
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let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1
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(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.
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in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
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that both u and v attended.
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with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
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that we end at node v under this process.
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TS(u, v) =

(
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also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events
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Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
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✏
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Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1
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We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
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2�1
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already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1
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(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.
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in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is
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shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Kat53]. It counts

the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)
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Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
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Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)
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Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Kat53]. It counts

the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
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Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Kat53]. It counts

the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

TS(u, v) =
X

P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.
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We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Kat53]. It counts

the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

TS(u, v) =
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P2�(u)\�(v)

1
log(log |P |+ 1)

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.



Non	
  Self-­‐Referen@al	
  Tie	
  Strength	
  Measures	
  

•  Common	
  neighbor	
  
–  The	
  total	
  #	
  of	
  common	
  events	
  that	
  both	
  u	
  and	
  v	
  aFended	
  

•  Jaccard	
  Index	
  
–  Similar	
  to	
  common	
  neighbor	
  
–  Normalizes	
  for	
  how	
  “social”	
  u	
  and	
  v	
  are	
  

•  Adamic	
  and	
  Adar	
  [2003],	
  Delta,	
  and	
  Linear	
  
–  Tie	
  strength	
  increases	
  with	
  the	
  number	
  of	
  events	
  
–  Tie	
  strength	
  is	
  1	
  over	
  a	
  simple	
  func@on	
  of	
  event	
  size	
  

•  Max	
  
–  Tie	
  strength	
  does	
  not	
  increase	
  with	
  the	
  number	
  of	
  events	
  
–  Tie	
  strength	
  is	
  the	
  maximum	
  @e	
  strength	
  from	
  all	
  common	
  events	
  

23	
  



Self-­‐Referen@al	
  Tie-­‐Strength	
  Measures	
  

•  Katz	
  measure	
  [Katz,1953]	
  
–  Tie	
  strength	
  is	
  the	
  number	
  of	
  paths	
  between	
  u	
  and	
  v,	
  where	
  each	
  path	
  is	
  

discounted	
  exponen@ally	
  by	
  the	
  length	
  of	
  the	
  path	
  	
  
•  Random	
  walk	
  with	
  restarts	
  

–  A	
  non-­‐symmetric	
  measure	
  of	
  @e	
  strength	
  
–  Tie	
  strength	
  is	
  the	
  sta@onary	
  probability	
  of	
  a	
  Markov	
  chain	
  process	
  
–  With	
  probability	
  α,	
  jump	
  to	
  a	
  node	
  u;	
  and	
  with	
  probability	
  1-­‐α,	
  jump	
  to	
  a	
  

neighbor	
  of	
  a	
  current	
  node.	
  
•  Simrank	
  [Jeh	
  &	
  Widom,	
  2002]	
  

–  Tie	
  strength	
  is	
  captured	
  by	
  recursively	
  compu@ng	
  the	
  @e	
  strength	
  of	
  
neighbors	
  

•  ProporConal	
  
–  Tie	
  strength	
  increases	
  with	
  #	
  of	
  events	
  
–  People	
  spend	
  @me	
  propor@onal	
  to	
  their	
  @e-­‐strength	
  at	
  a	
  party	
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Measures	
  of	
  Tie-­‐Strength	
  that	
  
Sa@sfy	
  All	
  the	
  Axioms	
  

A1	
   A2	
   A3	
   A4	
   A5	
   A6	
   A7	
   A8	
   g(a1,	
  …,	
  ak)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h(|Pi|)	
  =	
  ai	
  

Common	
  
Neighbors	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   g(a1,	
  …,	
  ak)	
  =Σai	
  

h(n)	
  =	
  1	
  

Delta	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   g(a1,	
  …,	
  ak)	
  =Σai	
  
h(n)	
  =	
  2(n(n-­‐1))-­‐1	
  

Adamic	
  &	
  
Adar	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   g(a1,	
  …,	
  ak)	
  =Σai	
  

h(n)	
  =	
  (log(n))-­‐1	
  

Linear	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   g(a1,	
  …,	
  ak)	
  =Σai	
  
h(n)	
  =	
  n-­‐1	
  

Max	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   g(a1,	
  …,	
  ak)	
  =max{ai}	
  
h(n)	
  =	
  n-­‐1	
  

A1:	
  Isomorphism	
   A2:	
  Baseline	
   A3:	
  Frequency	
   A4:	
  In@macy	
  

A5:	
  Popularity	
   A6:	
  Cond.	
  indep.	
  of	
  P	
   A7:	
  Cond.	
  indep.	
  of	
  E	
   A8:	
  Submodularity	
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Measures	
  of	
  Tie-­‐Strength	
  that	
  	
  
Do	
  Not	
  Sa@sfy	
  All	
  the	
  Axioms	
  

A1	
   A2	
   A3	
   A4	
   A5	
   A6	
   A7	
   A8	
   g(a1,	
  …,	
  ak)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  h(|Pi|)	
  =	
  ai	
  

Jaccard	
  Index	
   ✓	
   ✓	
   ✓	
   ✓	
   ✓	
   ✗	
   ✗	
   ✗	
   ✗	
  

Katz	
  Measure	
   ✓	
   ✗	
   ✓	
   ✓	
   ✓	
   ✓	
   ✗	
   ✗	
   ✗	
  

Preferen@al	
  
AFachment	
   ✓	
   ✓	
   ✗	
   ✓	
   ✓	
   ✓	
   ✗	
   ✗	
   ✗	
  

RWR	
   ✓	
   ✗	
   ✗	
   ✗	
   ✓	
   ✓	
   ✗	
   ✗	
   ✗	
  

Simrank	
   ✓	
   ✗	
   ✗	
   ✗	
   ✗	
   ✗	
   ✗	
   ✗	
   ✗	
  

Propor@onal	
   ✓	
   ✗	
   ✗	
   ✓	
   ✗	
   ✓	
   ✗	
   ✗	
   ✗	
  

A1:	
  Isomorphism	
   A2:	
  Baseline	
   A3:	
  Frequency	
   A4:	
  In@macy	
  

A5:	
  Popularity	
   A6:	
  Cond.	
  indep.	
  of	
  V	
   A7:	
  Cond.	
  indep.	
  of	
  E	
   A8:	
  Submodularity	
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Tie	
  Strength	
  and	
  Orderings	
  
•  Let	
  TS	
  be	
  a	
  func@on	
  that	
  sa@sfies	
  Axioms	
  1-­‐8	
  

	
  
•  TS	
  induces	
  a	
  total	
  order	
  on	
  the	
  edges	
  that	
  is	
  a	
  linear	
  

extension	
  of	
  the	
  par@al	
  order	
  on	
  the	
  node-­‐@e	
  pairs	
  

(1)	
  Isomorphism	
   (2)	
  Baseline	
   (3)	
  Frequency	
   (4)	
  In@macy	
  

(5)	
  Popularity	
   (6)	
  Cond.	
  indep.	
  of	
  P	
   (7)	
  Cond.	
  indep.	
  of	
  E	
   (8)	
  Submodularity	
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•  aaa	
  

Definition 7 (Total Order). Given a set S and a binary
relation O on S, O = (S,O) is called a total order if
and only if it satisfies the following properties (i Total). for
every u, v 2 S, u O v or v O u (ii Anti-Symmetric).
u O v and v O u =) u = v (iii Transitive). u O v
and v O w =) u O w

A total order is also called a linear order.

Consider a measure TS that assigns a measure of tie strength
to each pair of nodes u, v given the events that all nodes
attend in the form of a graph G. Since TS assigns a real
number to each edge and the set of reals is totally ordered,
TS gives a total order on all the edges. In fact, the function
TS actually gives a total ordering of N⇤. In particular, if we
fix a vertex u, then TS induces a total order on the set of
neighbors of u, given by the increasing values of TS on the
corresponding edges.

4.2.1 The Partial Order on N⇤

Definition 8 (Partial Order). Given a set S and a binary
relation P on S, P = (S,P) is called a partial order if and
only if it satisfies the following properties (i Reflexive). for
every u 2 S, u P u (ii Anti-Symmetric). u P v and v P
u =) u = v (iii Transitive). u P v and v P w =)
u P w

The set S is called a partially ordered set or a poset.

Note the di↵erence from a total order is that in a partial
order not every pair of elements is comparable. We shall
now look at a natural partial order N = (N⇤,N ) on the
set N⇤ of all finite sequences of natural numbers. Recall that
N⇤ = [kNk. We shall think of this sequence as the number
of common events that a pair of users attend.

Definition 9 (Partial order on N⇤). Let a, b 2 N⇤ where
a = (ai)

1iA and b = (bi)
1iB. We say that a �N b if

and only if A � B and ai  bi : 1  i  B. This gives the
partial order N = (N⇤,N ).

The partial order N corresponds to the intuition that more
events and smaller events create stronger ties. In fact, we
claim that this is exactly the partial order implied by the
Axioms (1-8). Theorem 11 formalizes this intuition along
with giving the proof. What we would really like is a total
ordering. Can we go from the partial ordering given by the
Axioms (1-8) to a total order on N⇤? Theorem 11 also
suggest ways in which we can do this.

4.2.2 Partial Orderings and Linear Extensions
In this section, we connect the definitions of partial order
and the functions of tie strength that we are studying. First
we start with a definition.

Definition 10 (Linear Extension). L = (S,L) is called the
linear extension of a given partial order P = (S,P) if and
only if L is a total order and L is consistent with the ordering
defined by P, that is, for all u, v 2 S, u P v =) u L v.

We are now ready to state the main theorem which char-
acterizes functions that satisfy Axioms (1-8) in terms of a

partial ordering on N⇤. Fix nodes u and v and let P
1

, . . . , Pn

be all the events that both u and v attend. Consider the
sequence of numbers (|Pi|)

1ik that give the number of
people in each of these events. Without loss of general-
ity assume that these are sorted in ascending order. Hence
|Pi|  |Pi+1

|. We associate this sorted sequence of numbers
with the tie (u, v). The partial order N induces a partial
order on the set of pairs via this mapping. We also call
this partial order N . Fixing any particular measure of tie
strength, gives a mapping of N⇤ to R and hence implies fix-
ing a particular linear extension of N , and fixing a linear
extension of N involves making non-obvious decisions be-
tween elements of the partial order. We formalize this in
the next theorem.

Theorem 11. Let G = (L [ R,E) be a bipartite graph of
users and events. Given two users (u, v) 2 (L ⇥ L), let
(|Pi|)

1ik 2 R be the set of events common to users (u, v).
Through this association, the partial order N = (N⇤,N ) on
finite sequences of numbers induces a partial order on L⇥L
which we also call N .

Let TS be a function that satisfies Axioms (1-8). Then TS
induces a total order on the edges that is a linear extension
of the partial order N on L⇥ L.

Conversely, for every linear extension L of the partial order
N , we can find a function TS that induces L on L⇥ L and
that satisfies Axioms (1-8).

Proof. TS : L⇥L ! R. Hence, it gives a total order on the
set of pairs of user. We want to show that if TS satisfies
Axioms (1-8), then the total order is a linear extension of
N . The characterization in Theorem 6 states that given a
pair of vertices (u, v) 2 (L ⇥ L), TS(u, v) is characterized
by the number of users in events common to u and v and
can be expressed as TSG(u, v) = g(h(|Pi|))

1ik where g
is a monotone submodular function and h is a monotone
decreasing function. Since TS : L ⇥ L ! R, it induces a
total order on all pairs of users. We now show that this is
a consistent with the partial order N . Consider two pairs
(u

1

, v
1

), (u
2

, v
2

) with party profiles a = (a
1

, . . . , aA) and b =
(b

1

, . . . , bB).

Suppose a �N b. We want to show that TS(u
1

, v
1

) �
TS(u

2

, v
2

). a �N b implies that A � B and that ai 
bi : 81  i  B.

TS(u
1

, v
1

)

= g(h(a
1

), . . . , h(aA))

� g(h(a
1

), . . . , h(aB)) (Since g is monotone and A � B)

� g(h(b
1

), . . . , h(bB)) (Since g is monotone and

h(ai) � h(bi) since ai  bi)

= TS(u
2

, v
2

)

This proves the first part of the theorem.

For the converse, we are given an total ordering L = (N⇤,L
) that is an extension of the partial order N . We want to
prove that there exists a tie strength function TS : L⇥L !
R that satisfies Axioms (1-6) and that induces L on L⇥ L.
We shall prove this by constructing such a function. We
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Data	
  Sets	
  

Graphs	
   #	
  of	
  People	
   #	
  of	
  Events	
  

Southern	
  Women	
   18	
   14	
  

The	
  Tempest	
   19	
   34	
  

A	
  Comedy	
  of	
  Errors	
   19	
   40	
  

Macbeth	
   38	
   67	
  

Reality	
  Mining	
  Bluetooth	
   104	
   326,248	
  

Enron	
  Emails	
   32,471	
   371,321	
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Degree	
  Distribu@ons	
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Completeness	
  of	
  Axioms	
  1-­‐8	
  
(Number	
  of	
  Ties	
  Not	
  Resolved	
  by	
  the	
  Par@al	
  Order)	
  

	
  
	
  
	
  
•  %	
  of	
  @e-­‐pairs	
  where	
  different	
  @e-­‐strength	
  func@ons	
  can	
  differ	
  

–  Smaller	
  is	
  beFer	
  
–  Generally,	
  percentages	
  are	
  small	
  
–  Large	
  real-­‐world	
  networks	
  have	
  more	
  unresolved	
  @es	
  

Dataset	
   Tie	
  Pairs	
   Incomparable	
  Pairs	
  (%)	
  
Southern	
  Women	
   11,628	
   683	
  (5.87)	
  
The	
  Tempest	
   14,535	
   275	
  (1.89)	
  

A	
  Comedy	
  of	
  Errors	
   14,535	
   726	
  (4.99)	
  
Macbeth	
   246,753	
   584	
  (0.23)	
  

Reality	
  Mining	
   13,794,378	
   1,764,546	
  (12.79)	
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Take-­‐away	
  point	
  #1	
  	
  
%	
  of	
  Ce	
  pairs	
  on	
  which	
  different	
  
Ce	
  strength	
  funcCons	
  can	
  differ	
  
is	
  small.*	
  	
  

*	
  This	
  is	
  for	
  ranking	
  applica@on	
  and	
  @e	
  strength	
  func@ons	
  sa@sfying	
  the	
  axioms.	
  



Two	
  Tie-­‐Strength	
  Func@ons	
  that	
  	
  
Do	
  Not	
  Sa@sfy	
  the	
  Axioms	
  

•  Jaccard	
  Index	
  
–  Normalizes	
  for	
  how	
  “social”	
  u	
  and	
  v	
  are	
  

	
  
	
  
•  Temporal	
  ProporConal	
  

–  Increases	
  with	
  number	
  of	
  events	
  
–  People	
  spend	
  @me	
  propor@onal	
  to	
  their	
  @e-­‐strength	
  in	
  a	
  party	
  
–  Events	
  are	
  ordered	
  by	
  @me	
  

For the converse, we are given an total ordering L = (N⇤,L
) that is an extension of the partial order N . We want to
prove that there exists a tie strength function TS : L⇥L !
R that satisfies Axioms (1-6) and that induces L on L⇥ L.
We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 2 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [Karzanov and Khachiyan, 1991]. We leave
the analysis of the analytical properties and its viability as
a strength function in real world applications as an open
research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of tie-strength measures discussed
in previous literature. We review the most popular of them
here and classify them according to the axioms they satisfy.
In this section, for an event P , we denote by |P | the number
of people in the event P . The size of P ’s neighborhood is
represented by |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index, which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta. Tie strength increases with the number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [Adamic
and Adar, 2003].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Katz, 1953]. It

counts the number of paths between u and v, where
each path is discounted exponentially by the length of
path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce three new measures of tie strength.
In a sense, g =

P
is at one extreme of the range of functions

allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
TS is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. This is similar to Proportional,
but with a temporal aspect. TS is not a fixed point,
but starts with a default value and is changed accord-
ing to the following equation, where the events are
ordered by time.

TS(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

For the converse, we are given an total ordering L = (N⇤,L
) that is an extension of the partial order N . We want to
prove that there exists a tie strength function TS : L⇥L !
R that satisfies Axioms (1-6) and that induces L on L⇥ L.
We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 2 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [Karzanov and Khachiyan, 1991]. We leave
the analysis of the analytical properties and its viability as
a strength function in real world applications as an open
research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of tie-strength measures discussed
in previous literature. We review the most popular of them
here and classify them according to the axioms they satisfy.
In this section, for an event P , we denote by |P | the number
of people in the event P . The size of P ’s neighborhood is
represented by |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|

Jaccard Index. A more refined measure of tie strength is
given by the Jaccard Index, which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta. Tie strength increases with the number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [Adamic
and Adar, 2003].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events.

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferential attachment.

TS(u, v) = |�(u)| · |�(v)|
Katz Measure. This was introduced in [Katz, 1953]. It

counts the number of paths between u and v, where
each path is discounted exponentially by the length of
path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce three new measures of tie strength.
In a sense, g =

P
is at one extreme of the range of functions

allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
TS is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. This is similar to Proportional,
but with a temporal aspect. TS is not a fixed point,
but starts with a default value and is changed accord-
ing to the following equation, where the events are
ordered by time.

TS(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise
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Soundness	
  of	
  Axioms	
  1-­‐8	
  
(Number	
  of	
  Conflicts	
  Between	
  the	
  Par@al	
  Order	
  and	
  
Tie-­‐Strength	
  Func@ons	
  Not	
  Sa@sfying	
  the	
  Axioms)	
  

	
  
•  %	
  of	
  @e-­‐pairs	
  in	
  conflict	
  with	
  the	
  par@al	
  order	
  	
  

– Smaller	
  is	
  beFer	
  
– Generally,	
  percentages	
  are	
  small	
  	
  
– They	
  decrease	
  as	
  the	
  dataset	
  increases	
  

Dataset	
   Tie	
  Pairs	
   Jaccard	
  (%)	
   Temporal	
  (%)	
  
Southern	
  Women	
   11,628	
   1,441	
  (12.39)	
   665	
  (5.72)	
  
The	
  Tempest	
   14,535	
   488	
  (3.35)	
   261	
  (1.79)	
  

A	
  Comedy	
  of	
  Errors	
   14,535	
   1,114	
  (7.76)	
   381	
  (2.62)	
  
Macbeth	
   246,753	
   2,638	
  (1.06)	
   978	
  (0.39)	
  

Reality	
  Mining	
   13,794,378	
   290,934	
  (0.02)	
   112,546	
  (0.01)	
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More	
  on	
  Soundness	
  
•  QuesCon	
  1:	
  

Are	
  the	
  number	
  of	
  conflicts,	
  between	
  the	
  par@al	
  order	
  and	
  	
  
@e-­‐strength	
  func@ons	
  not	
  sa@sfying	
  the	
  axioms,	
  small	
  because	
  
most	
  of	
  the	
  @e-­‐strengths	
  are	
  zeros	
  (sparsity	
  of	
  real	
  graph)?	
  

•  Answer:	
  
•  This	
  is	
  parCally	
  true.	
  
•  For	
  some	
  pairs,	
  the	
  @e-­‐strength	
  being	
  set	
  to	
  zero	
  is	
  caused	
  by	
  

the	
  axioms.	
  	
  
•  It	
  may	
  or	
  may	
  not	
  be	
  true	
  that	
  all	
  these	
  pairs	
  have	
  @e-­‐strength	
  

zero	
  in	
  the	
  actual	
  func@on	
  used.	
  	
  
–  For	
  example,	
  this	
  won’t	
  be	
  true	
  for	
  some	
  self-­‐referen@al	
  

func@ons	
  like	
  Simrank,	
  Random	
  Walk	
  with	
  Restart,	
  etc.	
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Even	
  More	
  on	
  Soundness	
  
•  QuesCon	
  2:	
  How	
  do	
  the	
  conflict	
  numbers	
  change	
  if	
  we	
  only	
  looked	
  

at	
  @e	
  pairs	
  that	
  have	
  nonzero	
  @e-­‐strengths?	
  
•  Answer:	
  The	
  percentages	
  go	
  up	
  but	
  not	
  by	
  much.	
  

36	
  

Dataset	
  	
   Tie	
  Pairs	
   Tie	
  Pairs	
  	
  
(excluding	
  TS=0)	
   Jaccard	
   Temporal	
  

Southern	
  Women	
   11,628	
   11,537	
   1,441	
   665	
  

The	
  Tempest	
   14,535	
   10,257	
   488	
   261	
  

A	
  Comedy	
  of	
  Errors	
   14,535	
   11,685	
   1,114	
   381	
  

Macbeth	
   246,753	
   74,175	
   2,638	
   978	
  

Reality	
  Mining	
   13,794,378	
   12,819,272	
  	
   290,934	
   112,546	
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Take-­‐away	
  point	
  #2	
  
%	
  of	
  conflicts	
  between	
  our	
  axioms	
  
and	
  Ce-­‐strength	
  funcCons	
  not	
  
saCsfying	
  our	
  axioms	
  is	
  small.*	
  

*	
  This	
  is	
  for	
  ranking	
  applica@on.	
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Take-­‐away	
  point	
  #1	
  	
  
%	
  of	
  @e	
  pairs	
  on	
  which	
  
different	
  @e-­‐strength	
  
func@ons	
  can	
  differ	
  is	
  
small.	
  	
  
	
  

Take-­‐away	
  point	
  #2	
  
%	
  of	
  conflicts	
  between	
  
our	
  axioms	
  and	
  @e-­‐
strength	
  func@ons	
  not	
  
sa@sfying	
  our	
  axioms	
  is	
  
small.	
  

Take-­‐away	
  point	
  #3	
  	
  
If	
  your	
  applicaCon	
  is	
  ranking,	
  just	
  pick	
  
the	
  most	
  computaConally	
  efficient	
  Ce-­‐
strength	
  measure	
  (e.g.	
  common	
  
neighbor).	
  



Tie	
  Strength	
  Measures	
  Used	
  in	
  	
  
Rank	
  Correla@on	
  Experiments	
  

Tie	
  Strength	
  Measure	
   Formula	
  

Common	
  Neighbor	
  

Max	
  

Linear	
  

Delta	
  

Adamic-­‐Adar	
  

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are
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the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
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the number of paths between u and v where each path
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q2 path between u,v
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Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
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a2�(u)
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b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a
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, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is
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with probability ↵ to a node u and with probability
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Simrank. This captures the similarity between two nodes u
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also satisfy the axioms and are potentially interesting. In
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allowed by Theorem 6 and that is the default function used.
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We start with a measure that uses this.
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=
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at every point the sets over which we take the maximum of
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exist. Define TS(a) = 1
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In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.
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TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.
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Observations on Axioms 
•  Satisfying all the axioms is not sufficient to uniquely identify a measure of tie 

strength (because of tension between frequency and intimacy). 

•  Axioms are equivalent to a natural partial order on the strength of ties. 

•  Pertinent to ranking application 

•  Choosing a particular tie-strength function is equivalent to choosing a particular 
linear extension of this partial order. 

 

Characterizing Tie Strength 
Theorem. Given a graph G = (L ∪ R, E) and two vertices u and v, if the tie 
strength function TS follows Axioms (1-8), then the function has to be of the form 

TSG(u,v) = g(h(|P1|), h(|P2|), …, h(|Pk|)) 

•  {Pi}1≤i≤k are the events common to both u and v 

•  h is a monotonically decreasing function: h(0)= 0, h(1) = 1, and for n ≥ 2,  
h(n) ∈ [ 2 ⁄ n(n−1), 1] 

•  g is a monotonically increasing submodular function 
 

Measures of Tie-Strength & the Axioms they Satisfy 

� Current affiliation: Google  

Tempest 

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

Macbeth 

Axiom 2 (Baseline) & 
Axiom 6 (Cond. Indep.  
of Vertices) & Axiom 7 

(Cond. Indep. of Events) 

Axiom 1 
(Isomorphism) 

Axiom 4 (Intimacy)  
& Axiom 3 (Frequency) 

infer 

a 

b 

c 

d 

e 

P 

Q 

R 

high 

low (a,c), (a,d), (a,e), (b,e) 

 (b,c), (b,d), (c,e), (d,e) 

 (a,b)  (c,d) 

Input 
People × Event Bipartite Graph 

Output 
Partial order of Tie Strength among People 

Our Axioms 
1.  Isomorphism: Tie strength between u and v does not depend on the labels 

of u and v. 

2.  Baseline: (a) If there are no events, then tie strength between every pair u 
and v is 0.  (b) If there are only two people u and v and a single event P 
which they attend, then their tie strength is 1. 

3.  Frequency: More events create stronger ties. 

4.  Intimacy: Smaller events create stronger ties. 

5.  Popularity: Larger events create more ties. 

6.  Conditional independence of (people) vertices: A node u’s tie strength to 
other people does not depend on events that u does not attend. 

7.  Conditional independence of events: The increase in tie strength between 
u and v due to an event P does not depend on other events, just on the 
existing tie strength between u and v. 

8.  Submodularity: The marginal increase in tie strength of u and v due to an 
event Q is at most the tie strength between u and v if Q was their only event. 

Problem Definition 
•  Given a set of people and a set of events attended by them, measure tie 

strength between each pair of persons. 

•  Assumption: Attendance at mutual events implies an implicit weighted social 
network between people.  

Motivation 
•  Explicitly declared friendship links can suffer from a low signal-to-noise ratio 

(e.g., Facebook friends). 

•  Challenge: Detect which of these links are important. 

•  Goal: Infer the implicit weighted social network from people’s participation in 
mutual events. 

Which one 
should you 

choose? 
An axiomatic 
approach will 
sort this out.  

Tie Strength 
•  A measure of tie strength induces  

•  a ranking on the edges, and 

•  a ranking on the set of neighbors for every person. 

•  There are many different measures of tie-strength. 

•  Common neighbor 

•  Jaccard index 

•  Max 

•  Linear 

•  Delta 

•  Adamic and Adar 

 

 
•  Preferential attachment 

•  Katz measure 

•  Random walk with restarts 

•  Simrank 

•  Proportional 

•  …  

A1 A2 A3 A4 A5 A6 A7 A8 g(a1, …, ak)          h(|Pi|) = ai 

Jaccard 
Index ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 

Katz 
Measure ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 

Preferential 
Attachment ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 

RWR ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ 

Simrank ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Proportional ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ 

A1 A2 A3 A4 A5 A6 A7 A8 g(a1, …, ak)          h(|Pi|) = ai 

Common 
Neighbors ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 

h(n) = 1 

Delta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 
h(n) = 2(n(n-1))-1 

Adamic & 
Adar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 

h(n) = (log(n))-1 

Linear ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 
h(n) = n-1 

Max ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =max{ai} 
h(n) = n-1 

Graphs # of People # of Events 
Southern Women 18 14 
The Tempest 19 34 
A Comedy of Errors 19 40 
Macbeth 38 67 
Reality Mining Bluetooth 104 326,248 
Enron Emails 32,471 371,321 

Dataset Tie Pairs Incomparable Pairs (%) 
Southern Women 11,628 683 (5.87) 

The Tempest 14,535 275 (1.89) 
A Comedy of Errors 14,535 726 (4.99) 

Macbeth 246,753 584 (0.23) 
Reality Mining 13,794,378 1,764,546 (12.79) 

Dataset Tie Pairs Jaccard (%) Temporal (%) 
Southern Women 11,628 1,441 (12.39) 665 (5.72) 

The Tempest 14,535 488 (3.35) 261 (1.79) 
A Comedy of Errors 14,535 1,114 (7.76) 381 (2.62) 

Macbeth 246,753 2,638 (1.06) 978 (0.39) 
Reality Mining 13,794,378 290,934 (0.02) 112,546 (0.01) 

Soundness of Our Axioms 
(% Conflicts Between the Partial Order & Tie-

Strength Functions that Do Not Satisfy Our Axioms 

Completeness of Our Axioms 
(% Ties Not Resolved by the Partial Order) 

Kendall τ Correlation Coefficient  

Take-away point #1:  
% of tie pairs on which 
different tie strength 
functions can differ is 
small. 
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Take-away point #2:  
% of conflicts between 
our axioms and tie-
strength functions not 
satisfying our axioms  
is small. 

!0.2%

0%

0.2%

0.4%

0.6%

0.8%

1%

Comedy% Macbeth% Tempest% Reality% Enron% S.%Women%

Ke
nd

al
l'T
au

'C
or
re
la
-o

n'

Datasets'

(AA,%D)% (AA,%Lin)% (D,%Lin)%

!0.2%

0%

0.2%

0.4%

0.6%

0.8%

1%

Comedy% Macbeth% Tempest% Reality% Enron% S.%Women%

Ke
nd

al
l'T
au

'C
or
re
la
-o

n'

Datasets'

(CN,%Max)%

!0.2%

0%

0.2%

0.4%

0.6%

0.8%

1%

Comedy% Macbeth% Tempest% Reality% Enron% S.%Women%

Ke
nd

al
l'T
au

'C
or
re
la
-o

n'

Datasets'

(AA,%CN)% (CN,%D)% (CN,%Lin)%

!0.2%

0%

0.2%

0.4%

0.6%

0.8%

1%

Comedy% Macbeth% Tempest% Reality% Enron% S.%Women%

Ke
nd

al
l'T
au

'C
or
re
la
-o

n'

Datasets'

(AA,%Max)% (D,%Max)% (Lin,%Max)%

Take-away point #3: 
Kendall τ correlations  
on rankings produced 
by tie-strength 
functions (that satisfy 
our axioms) highlight 
three groups: (1) 
{Adamic-Adar, Delta, 
Linear}, (2) {Common 
Neighbor}, and (3) 
{Max}. 

Take-away point #4: Axiomatic approaches to various measures on networks (such as 
tie-strength measures in this study) enable us to systematically study existing measures 
and characterize functions that satisfy our axioms. 
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Observations on Axioms 
•  Satisfying all the axioms is not sufficient to uniquely identify a measure of tie 

strength (because of tension between frequency and intimacy). 

•  Axioms are equivalent to a natural partial order on the strength of ties. 

•  Pertinent to ranking application 

•  Choosing a particular tie-strength function is equivalent to choosing a particular 
linear extension of this partial order. 

 

Characterizing Tie Strength 
Theorem. Given a graph G = (L ∪ R, E) and two vertices u and v, if the tie 
strength function TS follows Axioms (1-8), then the function has to be of the form 

TSG(u,v) = g(h(|P1|), h(|P2|), …, h(|Pk|)) 

•  {Pi}1≤i≤k are the events common to both u and v 

•  h is a monotonically decreasing function: h(0)= 0, h(1) = 1, and for n ≥ 2,  
h(n) ∈ [ 2 ⁄ n(n−1), 1] 

•  g is a monotonically increasing submodular function 
 

Measures of Tie-Strength & the Axioms they Satisfy 

� Current affiliation: Google  

Tempest 

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.

Macbeth 

Axiom 2 (Baseline) & 
Axiom 6 (Cond. Indep.  
of Vertices) & Axiom 7 

(Cond. Indep. of Events) 

Axiom 1 
(Isomorphism) 

Axiom 4 (Intimacy)  
& Axiom 3 (Frequency) 

infer 

a 

b 

c 

d 

e 

P 

Q 

R 

high 

low (a,c), (a,d), (a,e), (b,e) 

 (b,c), (b,d), (c,e), (d,e) 

 (a,b)  (c,d) 

Input 
People × Event Bipartite Graph 

Output 
Partial order of Tie Strength among People 

Our Axioms 
1.  Isomorphism: Tie strength between u and v does not depend on the labels 

of u and v. 

2.  Baseline: (a) If there are no events, then tie strength between every pair u 
and v is 0.  (b) If there are only two people u and v and a single event P 
which they attend, then their tie strength is 1. 

3.  Frequency: More events create stronger ties. 

4.  Intimacy: Smaller events create stronger ties. 

5.  Popularity: Larger events create more ties. 

6.  Conditional independence of (people) vertices: A node u’s tie strength to 
other people does not depend on events that u does not attend. 

7.  Conditional independence of events: The increase in tie strength between 
u and v due to an event P does not depend on other events, just on the 
existing tie strength between u and v. 

8.  Submodularity: The marginal increase in tie strength of u and v due to an 
event Q is at most the tie strength between u and v if Q was their only event. 

Problem Definition 
•  Given a set of people and a set of events attended by them, measure tie 

strength between each pair of persons. 

•  Assumption: Attendance at mutual events implies an implicit weighted social 
network between people.  

Motivation 
•  Explicitly declared friendship links can suffer from a low signal-to-noise ratio 

(e.g., Facebook friends). 

•  Challenge: Detect which of these links are important. 

•  Goal: Infer the implicit weighted social network from people’s participation in 
mutual events. 

Which one 
should you 

choose? 
An axiomatic 
approach will 
sort this out.  

Tie Strength 
•  A measure of tie strength induces  

•  a ranking on the edges, and 

•  a ranking on the set of neighbors for every person. 

•  There are many different measures of tie-strength. 

•  Common neighbor 

•  Jaccard index 

•  Max 

•  Linear 

•  Delta 

•  Adamic and Adar 

 

 
•  Preferential attachment 

•  Katz measure 

•  Random walk with restarts 

•  Simrank 

•  Proportional 

•  …  

A1 A2 A3 A4 A5 A6 A7 A8 g(a1, …, ak)          h(|Pi|) = ai 

Jaccard 
Index ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ 

Katz 
Measure ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ 

Preferential 
Attachment ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✗ 

RWR ✓ ✗ ✗ ✗ ✓ ✓ ✗ ✗ ✗ 

Simrank ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ 

Proportional ✓ ✗ ✗ ✓ ✗ ✓ ✗ ✗ ✗ 

A1 A2 A3 A4 A5 A6 A7 A8 g(a1, …, ak)          h(|Pi|) = ai 

Common 
Neighbors ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 

h(n) = 1 

Delta ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 
h(n) = 2(n(n-1))-1 

Adamic & 
Adar ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 

h(n) = (log(n))-1 

Linear ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =Σai 
h(n) = n-1 

Max ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ g(a1, …, ak) =max{ai} 
h(n) = n-1 

Graphs # of People # of Events 
Southern Women 18 14 
The Tempest 19 34 
A Comedy of Errors 19 40 
Macbeth 38 67 
Reality Mining Bluetooth 104 326,248 
Enron Emails 32,471 371,321 

Dataset Tie Pairs Incomparable Pairs (%) 
Southern Women 11,628 683 (5.87) 

The Tempest 14,535 275 (1.89) 
A Comedy of Errors 14,535 726 (4.99) 

Macbeth 246,753 584 (0.23) 
Reality Mining 13,794,378 1,764,546 (12.79) 

Dataset Tie Pairs Jaccard (%) Temporal (%) 
Southern Women 11,628 1,441 (12.39) 665 (5.72) 

The Tempest 14,535 488 (3.35) 261 (1.79) 
A Comedy of Errors 14,535 1,114 (7.76) 381 (2.62) 

Macbeth 246,753 2,638 (1.06) 978 (0.39) 
Reality Mining 13,794,378 290,934 (0.02) 112,546 (0.01) 

Soundness of Our Axioms 
(% Conflicts Between the Partial Order & Tie-

Strength Functions that Do Not Satisfy Our Axioms 

Completeness of Our Axioms 
(% Ties Not Resolved by the Partial Order) 

Kendall τ Correlation Coefficient  

Take-away point #1:  
% of tie pairs on which 
different tie strength 
functions can differ is 
small. 
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Take-away point #2:  
% of conflicts between 
our axioms and tie-
strength functions not 
satisfying our axioms  
is small. 
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Take-away point #3: 
Kendall τ correlations  
on rankings produced 
by tie-strength 
functions (that satisfy 
our axioms) highlight 
three groups: (1) 
{Adamic-Adar, Delta, 
Linear}, (2) {Common 
Neighbor}, and (3) 
{Max}. 

Take-away point #4: Axiomatic approaches to various measures on networks (such as 
tie-strength measures in this study) enable us to systematically study existing measures 
and characterize functions that satisfy our axioms. 
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Scalability	
  Issue	
  

•  	
  	
  
•  Enron	
  has	
  32,471	
  
•  #	
  of	
  @e	
  pairs	
  in	
  Enron	
  ≈	
  138	
  quadrillion	
  

•  Ignore	
  zero	
  @e-­‐strengths	
  

at the same time. We obtain the strengths between characters
from three Shakespearean plays using the tie-strength mea-
sure Linear. Note that the inference is only based on people
occupying the stage at the same time and not on any seman-
tic analysis of the text. Figure 2 shows the inferred weighted
social network for The Tempest. For brevity, we have omit-
ted the networks for Macbeth and A Comedy of Errors. The
inferred weights (i.e., tie strengths) are consistent with the
stories. For example, the highest tie strengths are between
Ariel and Prospero in The Tempest. We also observed that the
highest tie strengths were between Macbeth and Lady Mac-
beth in the play Macbeth and between Dromio of Syracuse
and Antipholus of Syracuse in A Comedy of Errors. This ex-
periment demonstrates that using only event information can
capture the underlying tie strength between individuals.

Completeness of the Axioms
In Section “Axioms of Tie Strength,” we discussed axioms
governing tie strength and characterized the axioms in terms
of a partial order in Theorem 11. We shall now conduct an
experiment to determine the completeness of our set of ax-
ioms. Given a dataset, we measure completeness in terms of
the number of tie-pairs that are ranked by the partial order.
This will give us an empirical measure of how many tie-pairs
are unresolved by a tie-strength function that satisfies Axioms
1 through 8.

We use Theorem 11 to conduct this experiment. For differ-
ent datasets, we consider all possible rankings that satisfy our
axioms by generating the partial order between all ties im-
plied by Theorem 11.4 We then calculate the percentage of
ties that are comparable under this partial order. A high per-
centage will indicate that most ties are actually resolved by
our axioms for real world datasets.

Each measure of tie strength gives a total order on the ties;
and, hence resolves all the comparisons between pairs of ties.
The number of tie-pairs which are left incomparable in the
partial order gives a notion of the how much room the axioms
leave open for different tie-strength functions to differ from
each other.

Table 3 shows the percentage of all ties that are not resolved
by the partial order (i.e., the percentage of the ties for which
the partial order cannot tells us if one tie is greater or if they
are equal); so a lower percentage is better. We observe that
the partial order defined by our axioms does indeed resolve
a very high percentage of the ties. Also, we see that our ax-
ioms resolve more ties in the scripted cleaner world of Shake-
spearean plays than in the real-world Reality Mining dataset.

Soundness of the Axioms
In the previous section, we looked at tie-strength functions
that satisfy the measures of tie-strength, and measured the
percentage of ties that were actually resolved by the axioms.
In this section, we consider the issue of soundness. To empir-
ically measure soundness, we look at measures of tie-strength
4The total number of tie pairs is

�(n2)
2

�
, where n = # people vertices.

This means that for Enron Emails, the total number of tie pairs is
�(324712 )

2

�
= 138, 952, 356, 623, 361, 270.

Dataset Tie Pairs Incomparable Pairs (%)
Southern Women 11,628 683 (5.87)
The Tempest 14,535 275 (1.89)
A Comedy of Errors 14,535 726 (4.99)
Macbeth 246,753 584 (0.24)
Reality Mining 13,794,378 1,764,546 (12.79)

Table 3. Number of ties not resolved by the partial order. The last col-
umn shows the percentage of tie pairs on which different tie-strength
functions can differ.

that have been used previously in literature, and find how
much they violate the axioms. To measure this, we use two
implications of Theorem 11. First, our axioms are equiva-
lent to the partial order on ties. Second, our axioms identify
functions that do not obey the partial order. So, we use the
proportion of tie-pairs in which the tie-strength order violates
the partial order predicted by the axioms. We look at two tie-
strength functions that do not obey the axioms: Jaccard Index
and Temporal Proportional. Table 4 shows the number of tie-
pairs that are actually in conflict. This experiment informs
us about how far away a measure is from the axioms. We
observe that for these datasets, Temporal Proportional agrees
with the partial order more than the Jaccard Index. We also
note that as the size of the dataset increases, the percentage of
conflicts decreases.

Dataset Tie Pairs Jaccard (%) Temporal(%)
S. Women 11,628 1,441 (12.39) 665 (5.72)
Tempest 14,535 488 (3.36) 261 (1.80)
Comedy 14,535 1,114 (7.66) 381 (2.62)
Macbeth 246,753 2,638 (1.07) 978 (0.40)
Reality 13,794,378 290,934 (2.11) 112,546 (0.82)

Table 4. Number of conflicts between the partial order and tie-strength
functions: Jaccard Index and Temporal Proportional. The second and
third columns show the percentage of tie-pairs in conflict with the partial
order.

Measuring Correlation among Tie-Strength Functions
We want to measure how close different tie-strength functions
are to each other. To do this, we calculate the correlation be-
tween the rankings generated by these functions. Figure 3
shows Kendall ⌧ correlation coefficient for our datasets. We
find that, depending on the data set, different measures of tie
strength are correlated. For instance, in the “clean” world
of Shakespearean plays Common Neighbor is the least cor-
related measure; while in the “messy” real world data from
Reality Mining and Enron emails, Max is the least correlated
measure. Moreover, we observe that Common Neighbor and
Max are mostly uncorrelated (�0.2 6 ⌧ 6 0.2); and that
Adamic-Adar, Delta, and Linear are highly positively corre-
lated (⌧ > 0.6) no matter the dataset.

CONCLUSIONS
We presented an axiomatic approach to the problem of infer-
ring implicit social networks by measuring tie strength from
bipartite person⇥event graphs. We characterized functions
that satisfy all axioms and demonstrated a range of measures
that satisfy this characterization. We showed that in ranking
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We shall prove this by constructing such a function. We
shall define a function f : N⇤ ! Q and define TSG(u, v) =
f(a

1

, . . . , ak), where ai = |Pi|, the number of users that
attend event Pi in G.

Define f(n) = 1

n�1

and f(�) = 0. Hence, TS�(u, v) =

f(�) = 0 and TS{u,v}(u, v) = f(2) = 1

2�1

= 1. This
shows that TS satisfies Axiom 1 (Baseline). Also, define
f(1, 1, . . . , 1| {z }

n

) = n. Since N⇤ is countable, consider elements

in some order. If for the current element a under considera-
tion, there exists an element b such that a =N b and we have
already defined TS(b), then define TS(a) = TS(b). Else,
find let aglb = argmaxe {TS(e) is defined and a �N e} and
let alub = argmine {TS(e) is defined and a N e}. Since,
at every point the sets over which we take the maximum of
minimum are finite, both aglb and alub are well defined and
exist. Define TS(a) = 1

2

(TS(aglb) + TS(alub)).

In this abstract framework, an intuitively appealing linear
extension is the random linear extension of the partial order
under consideration. There are polynomial time algorithms
to calculate this [KK91]. We leave the analysis of the ana-
lytical properties and its viability as a strength function in
real world applications as an open research question.

In the next section, we turn our attention to actual measures
of tie strength. We see some popular measures that have
been proposed before as well as some new ones.

5. MEASURES OF TIE STRENGTH
There have been plenty of measures of tie strength discussed
in previous literature. We review these and classify them
according to the axioms they satisfy. In this section, for an
event P , we denote by |P | the number of people in the event
P that is the size of the neighborhood |�(P )|.

Common Neighbors. This is the simplest measure of tie
strength, given by the total number of common events
that both u and v attended.

TS(u, v) = |�(u) \ �(v)|
Jaccard Index. A more refined measure of tie strength is

given by the Jaccard Index which gives importance to
events that normalizes for how “social” u and v are

TS(u, v) =
|�(u) \ �(v)|
|�(u) [ �(v)|

Delta.

TS(u, v) =
X

P2�(u)\�(v)

1
�|P |

2

�

Adamic and Adar. This measure was introduced in [AA03].

TS(u, v) =
X

P2�(u)\�(v)

1
log |P |

Linear. Tie strength increases with number of events

TS(u, v) =
X

P2�(u)\�(v)

1
|P |

Preferrential attachment.

TS(u, v) = |�(u)| · |�(v)|

Katz Measure. This was introduced in [Kat53]. It counts
the number of paths between u and v where each path
is discounted exponentially by the length of path.

TS(u, v) =
X

q2 path between u,v

��|q|

Random Walk with Restarts. This gives a non-symmetric
measure of tie strength . For a node u, we either jump
with probability ↵ to a node u and with probability
1 � ↵ to a neighbor of the current node. The tie
strength between u and v is the stationary probability
that we end at node v under this process.

Simrank. This captures the similarity between two nodes u
and v by recursively computing the similarity of their
neighbors.

TS(u, v) =

(
1 if u = v

� ·
P

a2�(u)
P

b2�(v) TS(a,b)

|�(u)|·|�(v)| otherwise

Now, we shall introduce new measures of tie strength that
also satisfy the axioms and are potentially interesting. In
a sense, g = + is at one extreme of the range of functions
allowed by Theorem 6 and that is the default function used.
g = max is at the other extreme of the range of functions.
We start with a measure that uses this.

Max. Tie strength does not increases with number of events

TS(u, v) = max
P2�(u)\�(v)

1
|P |

.

Proportional. Tie strength increases with number of events.
People spend time proportional to their TS in a party.
S is the fixed point of this set of equations:

TS(u, v) =
X

P2�(u)\�(v)

✏

|P | + (1� ✏)
TS(u, v)P

w2�(u) TS(u,w)

Temporal Proportional. Like the previous, but with the
temporal aspect. S is not a fixed point, but starts
with a default value and is changed according to this
equation, where the events are ordered by time.

S(u, v, t)

=

(
TS(u, v, t� 1) if u and v do not attend Pt

✏ 1

|Pt| + (1� ✏) TS(u,v,t�1)P
w2Pt

TS(u,w,t�1)

otherwise

We give a classification of all these functions in Table 1,
according which axioms they satisfy. If they satisfy all the
axioms, then we use Theorem 6 to find the characterizing
functions g and h.
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