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Problem Definition

* Given a bipartite graph with people as one set
of vertices and events as the other set, measure
tie strength between each pair of individuals

People Events

* Assumption

| (b P

— Attendance at mutual events |
implies an implicit weighted ‘ a
social network between people | @< :




Motivation

Most real-world networks are 2-mode and are
converted to a 1-mode (e.g., AAT)

Explicitly declared friendship links can suffer from a
low signal-to-noise ratio (e.g., Facebook friends)

Challenge: Detect which of links in the 1-mode graph
are important

Goal: Infer the implicit weighted social network from
people’s participation in mutual events



Tie Strength

* A measure of tie strength induces
— a ranking on all the edges, and

— a ranking on the set of neighbors for every
person

« Example of a simple tie-strength measure

— Common neighbor measures the total number
of common events to a pair of individuals






Decisions, Decisions

* There are many different measures of tie-strength

Lo NOUAeEWDNRE

e N =
N = O

Common neighbor
Jaccard index

Max

Linear

Delta

Adamic and Adar
Preferential attachment
Katz measure

Random walk with restarts
Simrank

Proportional

Which one should
you choose?



Outline

An axiomatic approach to the problem of inferring
implicit social networks by measuring tie strength

A characterization of functions that satisfy all our
axioms

Classification of prior measures according to the
axioms that they satisfy

Experiments

Conclusions
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Input Output
People x Event Bipartite Graph Partial Order of Tie Strength among People
e (a,b) (c,d) | high

Gv infer > (b,c), (b,d), (c,€), (d,e)

(e) (a,c), (a,d), (ae), (b,e) | low




Axioms

Axiom 1: Isomorphism

Axiom 2: Baseline

Axiom 3: Frequency

Axiom 4: Intimacy

Axiom 5: Popularity

Axiom 6: Conditional Independence of People
Axiom 7: Conditional Independence of Events

Axiom 8: Submodularity



Axiom 1: Isomorphism

* Tie strength between u and v is independent of the
abels of uand v




Axiom 2: Baseline

If there are no events, then tie strength between each pair u
andvis O

TSx(u, v) =0

If there are only two people u and v and a single event P that
they attend, then their tie strength is at most 1

TSp(u, v) <1

— Defines an upper-bound for how much tie strength can be
generated from a single event between two people



Axiom 3: Frequency & Axiom 4: Intimacy

* Axiom 3 (Frequency) &

— More events create stronger ties Q P

— All other things being equal, the more
events common to u and v, the stronger Gv Q

their tie-strength @A -

 Axiom 4 (Intimacy)

— Smaller events create stronger ties e

— All other things being equal, the fewer invitees there are to
any particular event attended by u and v, the stronger their
tie-strength



Axiom 5: Popularity

e Larger events create more ties
 Consider two events P and Q

e If |Q]| > |P], then the total tie

strength created by Q is more
than that created by P




Axioms 6 & 7: Conditional Independence
of People and of Events

 Axiom 6: Conditional Independence of People

— A node u’s tie strength to other people does not depend on
events that u does not attend

 Axiom 7: Conditional Independence of Events

— The increase in tie strength between u and v due to
an event P does not depend on other events, just on
the existing tie strength between u and v

_ TS(G+P)(u/ V) = g(TSG(u/ V)) TSP(u/ V))

* where g is some monotonically increasing function



Axiom 8: Submodularity

 The marginal increase in tie strength of u and v
due to an event Q is at most the tie strength
between u and v if Q was their only event

e |f Gisagraph and Q is a single event, then
TS(Geq(l, V)=TSs(u, v) £ TSy(u, v)



Example — Mapping to Axioms

Input

People x Event Bipartite Graph

infer >

Output

Partial order of Tie Strength

(a,b) (c,d)

(b,c), (b,d), (c,e), (d,e)

(a,c), (a,d), (a,e), (b,e)

p Axiom 4 (Intimacy)

hig
& Axiom 3 (Freq)

Axiom 1
(Isomorphism)

" Axiom 2 (Baseline) &
low Axiom 6 (Cond. Indep.
of Vertices) & Axiom 7
(Cond. Indep. of Events)
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Observations on the Axioms

e Qur axioms are fairly intuitive

Al: Isomorphism A2: Baseline A3: Frequency A4: Intimacy
A5: Popularity A6: Cond. Indep. of | A7: Cond. indep. of | A8: Submodularity
people events

* But, several previous measures in the literature break
some of these axioms

e Satisfying all the axioms is not sufficient to uniquely
identify a measure of tie strength

— One reason: inherent tension between Axiom 3
(Frequency) and Axiom 4 (Intimacy)



Inherent Tension Between
Frequency & Intimacy

e Scenario #1 (intimate)

— Mary and Susan go to 2 parties, where they are
the only people there.

e Scenario #2 (frequent)

— Mary, Susan, and Jane go to 3 parties, where they
are the only people there.

* |n which scenario is Mary’s tie to Susan
stronger?
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Observations on the Axioms (cont.)

Al: Isomorphism

A2: Baseline

A3: Frequency

A4: Intimacy

A5: Popularity

A6: Cond. Indep. of
people

A7: Cond. indep. of
events

A8: Submodularity

strength of ties

— Pertinent to ranking application

Axioms are equivalent to a natural partial order on the

Choosing a particular tie-strength function is equivalent

to choosing a particular linear extension of this partial

order

— Non-obvious decision




Preamble to the Characterization Theorem

Let f(n) = total tie strength generated in a single event with n people
If there is a single party with n people, the tie strength of each tie is

f(n)
)
— Based on Axiom 1 (Isomorphism)

 The total tie strength created at an event P with n people is a monotone
function f(n) that is bounded by

1< f(n) < (Z)

— Based on Axiom 2 (Baseline) and Axiom 4 (Intimacy) and Axiom 5 (Popularity)



Characterizing Tie Strength

A way to explore the space of valid functions for representing
tie strength and find which work given particular applications

Theorem. Given a graph G = (L U R, E) and two vertices u and v,
if the tie-strength function TS follows Axioms (1-8), then the
function has to be of the form

TSg(u, v) = g(h(|P.|), h(|P,|), ..., h(| Pc]))
e {P} . are the events common to both v and v

*his a monotonically decreasing function bounded by
1>h(n) =+ (n) n=2;h(1) =1; h(0) = 0.

* g is a monotonically increasing submodular function



Many Measures
of Tie Strength

Common neighbor
Jaccard index

Max

Linear

Delta

Adamic and Adar
Preferential attachment

Katz measure

O 00 N O Uk WNhNRE

Random walk with restarts
10. Simrank
11. Proportional

TS(u,v) =|T'(u) NT'(v)]

_ |P(u) NT(v)]
3 = T uT ()]
TS(u,v) = max 1
' per(w)nr(v) | P
1
TS(U,’U) = Z m
Pel'(u)nI'(v)
1
TS(u,v) = Z B
Pel'(u)NI'(v) ( 2 )
TS = L
(U’? U) — Z log |P|
Pel'(u)nI'(v)

T'S(u,v) = [P(u)] - [T'(v)]

TS(u,v) = S Ll
g€ path between wu,v
TS (u, ) 1 ifu=v
u,v) = a, .
Y- Zaer(qr%g)ﬁrp(&))fﬂ 2 otherwise
€ TS(u,v)
TS(u,v) = — 4+ (1 —¢) :
Z | P| Zwef(u) TS (u,w)

Pel'(u)NI'(v)



Non Self-Referential Tie Strength Measures

Common neighbor
— The total # of common events that both u and v attended

Jaccard Index
— Similar to common neighbor

— Normalizes for how “social” u and v are

Adamic and Adar [2003], Delta, and Linear

— Tie strength increases with the number of events

— Tie strength is 1 over a simple function of event size

* Max

— Tie strength does not increase with the number of events

— Tie strength is the maximum tie strength from all common events



Self-Referential Tie-Strength Measures

Katz measure [Katz,1953]

—  Tie strength is the number of paths between u and v, where each path is
discounted exponentially by the length of the path

Random walk with restarts

— A non-symmetric measure of tie strength

—  Tie strength is the stationary probability of a Markov chain process

—  With probability a, jump to a node u; and with probability 1-a, jump to a
neighbor of a current node.

Simrank [Jeh & Widom, 2002]

—  Tie strength is captured by recursively computing the tie strength of
neighbors

Proportional
—  Tie strength increases with # of events
— People spend time proportional to their tie-strength at a party



Measures of Tie-Strength that
Satisfy All the Axioms

Al: Isomorphism

A2: Baseline

A3: Frequency

A4: Intimacy

A5: Popularity

A6: Cond. indep. of P

A7: Cond. indep. of E | A8: Submodularity

Al | A2 | A3 | A4 | A5 | A6 | A7 | A8 | g(ay, ..., ay) h(|P.]) = a
Common gla, ..., a,) =%a;
Neighbors AR AR AR A RS RS RN h(n) =1
gla, ..., a,) =%a;
Delta A A A VA VA VA IR A 4 h(n) = 2(n(n-1))-
Adamic & gla, ..., a,) =%a;
Adar AR AR AR A RS RS RN h(n) = (log(n))*
Linear slvlvlvlvlv]v] |9 a)=2a
h(n) =n?
Max slvlvlvlv]v]v]|v]|9to-al=maxa)
h(n) =n?
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Measures of Tie-Strength that
Do Not Satisfy All the Axioms

Al: Isomorphism

A2: Baseline

A3: Frequency

A4: Intimacy

A5: Popularity

A6: Cond. indep. of V

A7:Cond. indep. of E

A8: Submodularity

Al

A2 | A3 | A4

A5

A6 | A7 | A8 | g(ay, ..., ;) h(|P;]) = a,

Jaccard Index

Katz Measure

Preferential
Attachment

RWR

Simrank

Proportional
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Tie Strength and Orderings

Let 7S be a function that satisfies Axioms 1-8

(1) Isomorphism

(2) Baseline

(3) Frequency (4) Intimacy

(5) Popularity

(6) Cond. indep. of P | (7) Cond. indep. of E | (8) Submodularity

TS induces a total order on the edges that is a linear
extension of the partial order on the node-tie pairs

Input

People x Event Bipartite Graph

O el
@]

Output
Partial order of Tie Strength

(a,b) (c,d) high Axiom 4 (Intimacy)
& Axiom 3 (Freq)

(b,c), (b,d), (c,e), (d,e) Axiom 1

(Isomorphism)

v Axiom 2 (Baseline) &
(a,c), (a,d), (ae), (b,e) low axiom 6 (Cond. Indep.
of Vertices) & Axiom 7
(Cond. Indep. of Events)
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pETALS Tie Strength & Orderings

Theorem 11. Let G = (LU R, E) be a bipartite graph of
users and events. Given two users (u,v) € (L x L), let
(|Pi|)1<i<k € R be the set of events common to users (u,v).
Through this association, the partial order N = (N*, <xr) on

finite sequences of numbers induces a partial order on L X L
which we also call N.

Let T'S be a function that satisfies Axioms (1-8). Then T'S
induces a total order on the edges that is a linear extension
of the partial order N on L x L.

Conversely, for every linear extension L of the partial order
N, we can find a function T'S that induces £ on L X L and
that satisfies Axioms (1-8).
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Data Sets

Graphs # of People # of Events
Southern Women 18 14
The Tempest 19 34
A Comedy of Errors 19 40
Macbeth 38 67
Reality Mining Bluetooth 104 326,248
Enron Emails 32,471 371,321
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Completeness of Axioms 1-8
(Number of Ties Not Resolved by the Partial Order)

Dataset Tie Pairs Incomparable Pairs (%)
Southern Women 11,628 683 (5.87)
The Tempest 14,535 275 (1.89)
A Comedy of Errors 14,535 726 (4.99)
Macbeth 246,753 584 (0.23)
Reality Mining 13,794,378 1,764,546 (12.79)

* % of tie-pairs where different tie-strength functions can differ

— Smaller is better

— Generally, percentages are small

— Large real-world networks have more unresolved ties

# of tie pairs = ((g))




Take-away point #1
% of tie pairs on which different
tie strength functions can differ
is small.*

* This is for ranking application and tie strength functions satisfying the axioms.



Two Tie-Strength Functions that
Do Not Satisfy the Axioms

 Jaccard Index

— Normalizes for how “social” u and v are
T'(u) N T'(v)]

TS(u,v) =
4 0) = 1 F ) UT(v)]

e Temporal Proportional
— Increases with number of events
— People spend time proportional to their tie-strength in a party
— Events are ordered by time

TS(u,v,t)
TS(u,v,t —1) if u and v do not attend P;
— 1 TS(u,v,t—1) .
erp+ (1 —¢€) Scp, TSCuw i 1) otherwise



Soundness of Axioms 1-8

(Number of Conflicts Between the Partial Order and
Tie-Strength Functions Not Satisfying the Axioms)

Dataset Tie Pairs Jaccard (%) Temporal (%)
Southern Women 11,628 1,441 (12.39) 665 (5.72)
The Tempest 14,535 488 (3.35) 261 (1.79)
A Comedy of Errors 14,535 1,114 (7.76) 381 (2.62)
Macbeth 246,753 2,638 (1.06) 978 (0.39)
Reality Mining 13,794,378 290,934 (0.02) 112,546 (0.01)

* % of tie-pairs in conflict with the partia
— Smaller is better
— Generally, percentages are small

order

— They decrease as the dataset increases




More on Soundness

e Question 1:

Are the number of conflicts, between the partial order and
tie-strength functions not satisfying the axioms, small because
most of the tie-strengths are zeros (sparsity of real graph)?

e Answer:

This is partially true.

For some pairs, the tie-strength being set to zero is caused by
the axioms.

It may or may not be true that all these pairs have tie-strength
zero in the actual function used.

— For example, this won’t be true for some self-referential
functions like Simrank, Random Walk with Restart, etc.



Even More on Soundness

Question 2: How do the conflict numbers change if we only looked

at tie pairs that have nonzero tie-strengths?

Answer: The percentages go up but not by much.

Dataset Tie Pairs (exc-lrtiilil:\agi':s=0) Jaccard | Temporal
Southern Women 11,628 11,537 1,441 665
The Tempest 14,535 10,257 488 261
A Comedy of Errors| 14,535 11,685 1,114 381
Macbeth 246,753 74,175 2,638 978
Reality Mining 13,794,378 12,819,272 290,934 | 112,546
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Even More on Soundness

14%

12%

10%

8%

6%

4%

2%

0%

B % Conflict with Jaccard

B % Conflict with Jaccard

(excluding TS=0)

Southern The A Macbeth Reality
Women Tempest Comedy Mining
of Errors

7%

6%

5%

4%

3%

2%

1%

0%

B % Conflict with Temporal

B % Conflict with Temporal
(excluding TS=0)

Southern  The A Macbeth Reality
Women Tempest Comedy Mining
of Errors
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Take-away point #2
% of conflicts between our axioms
and tie-strength functions not
satisfying our axioms is small.*

* This is for ranking application.



Take-away point #1 Take-away point #2

% of tie pairs on which % of conflicts between

different tie-strength our axioms and tie-

functions can differ is strength functions not

small. satisfying our axioms is
small.

Take-away point #3
If your application is ranking, just pick
the most computationally efficient tie-
strength measure (e.g. common
neighbor).




Tie Strength Measures Used in
Rank Correlation Experiments

Tie Strength Measure

Formula

Common Neighbor

TS(u,v) =|T'(u) NT'(v)]

1

Max TS(u,v) = Perla?%(r(v) |P|
Linear 8t e) = Per(%;wr(v) !%I
Delta TS5 (u,v) = PEF(%F@) (u;)

Adamic-Adar TS = 2, ﬁ

PED (u)NL(v)
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Kendall T Coefficient

* |tis a measure of rank correlation
— The similarity of the orderings of the data when

ranked by each of the quantities

- (# of concordant pairs) - (# of discordant pairs)

tn(n-1)



Adamic-Adar, Delta, & Linear produce

TS rankings that are highly correlated

-#-(AA, D) —*(AA, Lin) -®=(D, Lin)

1
c 0.8
o
=
L) 0.6 A1|A2| A3 | A4 | A5| A6 | A7 | A8 | g(ay, ..., ay) h(IP)) = a,
e : Common slvlslslrlslvl v g(ay, ..., ay) =Za
B Neighbors h(n) =1
g(a,, ..., a) =Za
g 0.4 Delta NN iy = sty
Adamic & g9(a,, ..., a) =Za
- Adar LT e = Gogloy
= 0.2 Linear vlvlviv|iviviv|v zgigz“h’_ﬁk):za
© ) -
5 Max sl s sy ggz;,z..r.;ﬁk) =max{a}
4
0
Comedy Macbeth  Tempest Reality
-0.2

Datasets

Enron

S. Women
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Common Neighbor & Max produce TS
rankings that are mostly uncorrelated

==(CN, Max)
1 Al|A2 | A3 A4 | A5 | A6 | A7 A8 |ga, ...a)  h(P|)=a
Common g(ay, ..., a) =Za;
Neighbors | Y |7 |7 17171717 | |hn=1
0.8 Delta lvlviviviv|iv]|v gﬁz;ﬂ(ﬁ(ﬁ::ﬁ)’";
Adamic & g(ay, ..., a,) =Za;
0.6 Adar NN hin) = (ogln)y
Linear lvlvlvliv]v]v]v |98 a)=2s
h(n)=n
g(ay, ..., a,) =max{a}
04 Max AN Ty =

0.2

Kendall Tau Correlation

Tempest

Comedy

Datasets

Enron

S. Women
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Take-away point #4
Kendall Tt correlations on rankings
produced by tie-strength functions
(that satisfy our axioms) highlight
three groups: (1) {Adamic-Adar,
Delta, Linear}, (2) {Common
Neighbor}, and (3) {Max]}.




Scalability Issue

# of tie pairs = ((g))

Enron has 32,471

# of tie pairs in Enron = 138 quadrillion

32471

((27)) = 138,952, 356, 623, 361, 270

2

lgnore zero tie-strengths



Related Work

* Strength of ties
— Spread of information in social networks [Granovetter, 1973]
— Use external information to learn strength of tie
* [Gilbert & Karahalios, 2009], [Kahanda & Neville, 2009]
* Very few axiomatic work approaches to graph measures
— PageRank axiomatization [Altman & Tennenholtz, 2005]
— Information theoretic measure of similarity [Lin, 1998]
* Assumes probability distribution over events
* Link prediction
— [Adamic & Adar, 2003]
— [Liben-Nowell & Kleinberg, 2003]
— [Sarkar, Chakrabarti, Moore, 2010 & 2011]



Conclusions

Presented an axiomatic approach to the problem of
inferring implicit social networks by measuring tie
strength

Characterized functions that satisfy all the axioms

Classified prior measures according to the axioms that
they satisfy

Demonstrated coverage of axioms, conflict with axioms,
and correlation among tie-strength measures

In ranking applications, the axioms are equivalent to a
natural partial order



Take-away point #5
Axiomatic approaches to various
measures on networks (such as tie-
strength measures in this study)
enable us to systematically study
existing measures and characterize
functions that satisfy our axioms.




Thank You!

Details @ http://eliassi.org/papers/qupte-webscil2.pdf
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