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Outline

Outline

@ Goal: Understand Bayesian methods in high dimensions.
@ Example 1: Covariance matrix estimation
@ Example 2: Bayesian model choice via ABC

@ Implications, Frequentist-Bayes connection in high
dimensions.



Example 1

Conversation with Peter E. Huybers

@ Motivation: Time variability in covariance patterns:
stationarity?

@ Instrumental measurements, only for the past n = 150
years.

@ Measurements on p = 2000 latitude-longitude points.
o Estimate O(p?) parameters.
@ Need judicious modeling.



Example 1

Covariance Matrix Estimation: Why Shrinkage?

@ We observe -
Yi,---Yn B an(07 ZOn)

and set y(n) = (.y17' .- >Yn)
@ For p, = p, fixed, the sample covariance estimator

, 1 ¢
Zsample — E Z Vi .y/'T
i=1

is consistent for population eigenvalues.
@ }\; are consistent for population eigenvalues:

vl = x) = N(0, V(\))



Example 1

Covariance Matrix in high dimensions

@ Simplest Case: g, =1/
@ Takep=ph=cn,ce(0,1).
° X1 , Xpn largest and smallest (non-zero) eigenvalues of

1 n
Zsample _ E Z Vi .yiT
i=1

@ Then as n — oo (and thus p, also grows),
(Marcenko-Pastur, 1967) almost surely!

lim Ay = (1 ++/¢)?
n—oo
lim Ap, = (1 —/c)?

n—oo

@ MLE is not consistent!



Example 1

Covariance Matrix in high dimensions

@ limyoo Ay = (1 +/C)2 = Ay
@ Confidence Interval:

n2/3(X1 — )\+) = TW4

where TW is the Tracy-Widom law (Johnstone 2000).

@ Universality phenomenon: Results go beyond the case of
Gaussian (Tao and Vu, 2009; P. and Yin, 2011)



Example 1

Correlation Matrix

@ Johnstone (2001): Correlation Matrices for PCA.
(P. and Yin, 2012, AoS)

Largest eigenvalue of sample correlation matrices still
inconsistent. All of the problems from covariance matrices
persist.




Example 1

Understanding Asymptotics

@ 20 century n — oo.
@ Now: both p,n — co.
@ Why should we bother?

@ Because the above asymptotics is remarkably accurate for
‘small’ n, ‘small’ p!



Example 1

Sample covariance matrix plot, n = 100, p = 25

n=100, p= 25
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Example 1

Sample covariance matrix plot, n = 500, p = 125

n=500, p= 125
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Example 1

Factor Models: Motivation

@ Interest in estimating dependence in high-dim obs. +
prediction and classification from high-dim correlated
markers such as gene expression, SNPs.

@ Center prior on a “sparse” structure, while allowing
uncertainty and flexibility.

@ Latent factor methods (West, 2003; Lucas et al., 2006;
Carvalho et al., 2008).

@ Huge applications (economics, finance, signal
processing..)



Example 1

Gaussian factor models

@ Explain dependence through shared dependence on fewer
latent factors

Yi~N(0,Xpxp), 1<i<n.

@ Focus on the case p = pp > n.
@ Factor models assume the “decomposition”

T =MT + 6%,

@ Ais ap x k matrix, k < n.



Example 1

Gaussian factor models

@ Explain dependence through shared dependence on fewer
latent factors

y/:u+An;+€,‘, EINNP(O,Z), i=1,....n

@ 1 € RP, a vector of means, with . = 0.

@ 7; € RX, latent factors, A a p x k matrix of factor loadings
with kK < p.

@ ¢ are i.i.d with N(0, 52).



Example 1
Factor models for covariance estimation

@ Unstructured ¥ has O(p?) free elements
@ Factor models ¥ = AAT 4 421, .
@ Still O(p) elements to estimate!



Example 1

High-dimensional covariance estimation

@ ‘Frequentist’ solution— MLE doesn’t work.
@ Start with sample covariance matrix:

sample 1 :
i=1

@ Great interest in regularized estimation (Bickel & Levina,
2008a, b; Wu and Pourahmadi, 2010, Cai and Liu, 2011 ...)

@ Estimator which achieves the ‘minimax’ rate:

5 = e q

sample .
Iy 1= >t

@ Unstable; Confidence intervals..



Example 1

Sparse factor modeling

@ A natural bayesian alternative: sparse factor modeling
(West, 2003); also (Lucas et al., 2006; Carvalho et al.,
2008) and many others

@ Allow zeros in loadings through point mass mixture priors:
Aji given point mass priors or shrinkage priors.

@ Prior assigns Aj; = 0 with non-zero probability.

@ Why care about this prior? Bayesian analogue of
thresholding.

@ Assume k to be known (but easy to relax this).



key issues

Important questions

@ Can Bayes methods produce estimators which are
comparable to frequentist estimators?

@ Can one do computation in reasonable time?

@ How to address Statistical efficiency-Computational
efficiency trade off?



key issues

Our objective

@ Bayesian counterpart lacks a theoretical framework in
terms of posterior convergence rates.

@ A prior N(A ® ¢2) induces a prior distribution ()

@ How does the posterior behave assuming data sampled
from fixed truth?

@ Huge literature on frequentist properties of the posterior
distribution



key issues

Questions need to be addressed

@ Does the posterior measure concentrate around the truth
increasingly with sample size?

@ What role does the prior play?

@ How does the dimensionality affect the rate of contraction?



key issues

Preliminaries

@ We consider the operator norm (|| - ||,)

|All2 = sup [|Ax]l2 = (1)

XeSr—1

@ Largest Eigenvalue of A, for symmetric A.



key issues

@ We observe -
y17° . 'Yn Lfl\.’ an(0>ZOn)
and set Y = (y1,....¥n), Zon = Aoy + 02l xpn

@ Want to find a minimum sequence ¢, — 0 such that
lim P[|IZ — Zonll2 > en | y"] =0

@ Can we find such ¢, even if p, > n?
@ What is the role of the prior?



key issues

Assumptions on truth

“Realistic Assumption:"

(A1) Sparsity: Each column of Ag, has at most s, non-zero
entries, with s, = O(log pn).



key issues
Prior choice & a key result

(PL) LetAj ~ (1 —m)dp + mg(-), = ~ Beta(1,pn +1). g(-) has
Laplace like or heavier tails




key issues

Prior choice & a key result

pior . |
(PL) Let Aj ~ (1 —m)do +mg(-), = ~ Beta(1,pp +1). g(-) has
Laplace like or heavier tails

Theorem (Pati, Bhattacharya, P. and Dunson, 2012)
For the high-dimensional factor model r,, = 1/log’ (pn)/n,

lim P(|Z — Soll > 1 | y™) = 0.




key issues

Implication of the result

@ Rate ¢, = 1/log?(pn)/n.

@ We will get consistency if

7
lim 109" Pn

n—oo n

=0.

@ Ultra-High dimensions, p, = e’



key issues

Important Implication for Asymptotics

@ This rate we get is similar to the minimax rate for similar
problems Cai and Zhou (2011), but not the same!

rn = minimax rate X /log pn

@ The above phenomenon is similar to what happens in
mixture modeling!

@ Ghosal (2001): Bayesian nonparametric modeling doesn’t
match frequentist rates.

@ If true: Serious implications.



key issues

A couple of Implications

@ Minimax theory will tell only half the story.

@ Heuristics based on bayes.

e BIC?

@ Frequentist-Bayes agreement/disagreement?



key issues

Interesting Challenges in Mathematical Statistics

@ Need to have 2 things to show Bayesian methods work
well.

@ Show prior is not too “dogmatic”.
@ Likelihood is able to “separate points".
@ Neymann-Pearson Lemma

@ Separation of points: Traditional Likelihood Ratio doesn’t
work!



key issues

Example : Intuition and Tools from Random Matrix

Theory

@ Intuition from random matrix theory (RMT) - “tall” matrices
properly normalized look like identity matrices.
@ If entries of Ag were drawn i.i.d. N(0, 1), Vershynin (2011)
tells us
vk

1
—ASAg — 1 < C—
Hp oMo — Ikl < 7B

with high probability.



key issues

Computationally easier priors

@ We need to construct prior distribution for a p, x 1 vector A.
@ Conjugate priors — easier to update
@ Many popular ones.

@ Many ‘loss functions’ are prior distributions; thus point
estimates are posterior modes.



key issues

Regularization: Statistical flavor of the decade

@ Estimates of the form
n n
A ; Y 1k
/\_argm/\ln;(Y, A) +0;|/\,] .

@ Gazillion papers; not a SINGLE one constructs confidence
intervals or uncertainty estimation.
@ Two special cases: k = 2: (Ridge regression, James-Stein

type) . .
A _ - A2 2
/\_argm/\ln;(Y, A) +9§]/\,\ .
o k = 1: (LASSO)

—argmmZY A) +GZ|/\|
i=1



key issues
Prior choice & another key result
@ Let the columns A; = LASSO or RIDGE prior.




key issues

Prior choice & another key result

@ Let the columns A; = LASSO or RIDGE prior.

Theorem (Pati, Bhattacharya, P. and Dunson, 2012)

For a large class of models, the above, the convergence rate is
strictly slower than the point mass priors.




key issues

Intuition?

@ Independence!
@ Stein phenomenon.



key issues

Dirichlet Laplace prior & properties

@ We propose a simple dependent modification leading to
optimal concentration & efficient computation

/\/ ~ DE(¢jT)7 ¢ = (¢1 PRI 7¢P)T € SP*1’ 7>0

@ DE = Double exponential

@ Constraining ¢ to the simplex crucial - allows for
dependence

@ We let ¢ ~ Diri(cy,...,a) - a < 1 favors small # dominant
values with remaining ~ 0

@ Computation easy! Take advantage of Conjugacy



Dirichlet-Laplace prior

Dirichlet-Laplace prior - motivation

Theorem (Pati, Bhattacharya, P. and Dunson, 2013)

The Dirichlet-Laplace priors produce convergence rates
identical to that of the point mass priors.




Example 2

ABC algorithm

@ ABC: Approximate Bayes Computation.
@ Rubin(1984)

@ Generate 0" ~ 7

@ Generate pseudo-data Ypscudo from fy-.
@ Accept 0* as posterior, if

Ypseudo = Tobs -

@ Repeat.



Example 2

ABC algorithm

@ Exactly matching the observed data - Impossible, even in 1
dimension!

@ Key ldea: Approximately match.
@ Choose a distance d, and tolerance e.
@ Accept 0% if

d( Ypseudm Yobs) < €.

@ For a given d, accuracy of the procedure can be improved
by choosing e smaller and smaller and smaler...



Example 2

ABC algorithm: Twist

@ In real examples, it is still expensive/impossible to compute
d( Ypseudo» Yobs)-

@ Twist: Use some function n of the data: called the
“summary statistic" and accept if

d(n(ypseudo)ﬂ?( Yobs)) <E€.

@ Why no sufficient statistics?

@ Recall the Pitman-Koopman-Darmois theorem, for
exponential families.

@ Dimension of the sufficient statistic necessarily increases
with the sample size!



Example 2

ABC algorithm

@ The above version, re-discovered in population genetics
(Tavare et.al, 1997).

@ Literally 100’s of papers!
@ How to choose d and €?
@ Fearnhead and Prangle, 2012, JRSS-B discussion.



Example 2

ABC algorithm for Model Selection

@ Compare 2 models: compute the Bayes factors.
@ Bayes Factor « Ratio of Marginal Likelihoods.
@ Jeffreys’ interpretation, as strength of evidence.
@ Easy to perform, using the ABC algorithm!



Example 2

ABC algorithm for Model Selection

@ Choose Model 1 or 2 according to the prior.

@ Given the model, generate (6*, Ypseudo) from the prior
distribution of the corresponding model.

@ Accept 0%, and the Model, if

a( Ypseudm Yobs) < €.

# of timesModel 1 is accepted

@ Estimate for Bayes Factor = U of fimesModel 2 Is accepled




Example 2

ABC algorithm for Model Selection using n

@ The above algorithm = Recipe for Disaster!
@ High Profile papers!
@ Miller, N. et al, (2005) Science.

@ Multiple transatlantic introductions of the Western corn
rootworm.



Lots of popular software

@ Donoho (2002).
e DIY-ABC

@ ABCToolbox

@ PopABC

@ ABC-SysBio



Example 2

Result

Theorem (Robert, Jean-Marie, Jean-Michel, P., 2011, PNAS)

Bayes Model selection based on a summary statistic n can be
INCONSISTENT.




Example 2

ABC algorithm for Model Selection using n

@ “Popular beliefs" in the field.

@ Accuracy can be increased with choosing ¢ very small:
thus increase in computing power leads to more accurate
results.

@ If gives reasonable answers for parameter estimation, no
reason why it should go wrong for model selection!



ABC algorithm for Model Selection

@ What goes wrong for model selection?

@ Marginal likelihood based on n(Y) := [ f(n(Y)|0)x(6)d6.
@ BF(n(Y)) := Bayes Factor based on the smgle observation
n(Y).

@ Sufficiency vs. Ancilliarity!



Example 2

Example

@ A statistic can be sufficient for two models, but cannot be
“sufficient" across the models.

@ Ancilliarity......?7

@ Suppose, we observe Y = (¥4, Y2, -+, ¥n) integer valued
data.

@ Two competing models: Poisson(\) vs. Geometric(p).
@ Statistic n(Y) = >"_, yi.



Example 2

Example

@ Almost surely, as the sample size goes to infinity, the
Bayes Factor based on »n converges to

051 (00 + 1)2e %,

where 6y = E(y;) > 0.



Example 2

llustration
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>y vs. BF plot.



Example 2
Another Example

Consider two models:

Model 1: N(64, 1), Model 2: Laplace(
Y

Median(Y)

Sample variance

mad(Y) = Median(|]Y - Median(Y)|)

B, %)



Example 2

Conclusions

@ Shrinkage priors = serious business in high dimensions.
@ Innocent looking priors may look “dogmatic”.
@ Frequentist-Bayes agreement may not hold, implications?

@ Ad-hoc methods often don’t work, but opportunity for
statistical theory.

@ Lots of open problems, virtually nothing is known!



Example 2
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Remarks

Thank you!
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