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Outline

Goal: Understand Bayesian methods in high dimensions.
Example 1: Covariance matrix estimation
Example 2: Bayesian model choice via ABC
Implications, Frequentist-Bayes connection in high
dimensions.
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Conversation with Peter E. Huybers

Motivation: Time variability in covariance patterns:
stationarity?
Instrumental measurements, only for the past n = 150
years.
Measurements on p = 2000 latitude-longitude points.
Estimate O(p2) parameters.
Need judicious modeling.
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Covariance Matrix Estimation: Why Shrinkage?

We observe
y1, . . . yn

i.i.d∼ Npn (0,Σ0n)

and set y(n) = (y1, . . . , yn)

For pn = p, fixed, the sample covariance estimator

Σsample =
1
n

n∑
i=1

yiyT
i

is consistent for population eigenvalues.
λ̂i are consistent for population eigenvalues:

√
n(λ̂i − λi)⇒ N(0,V (λi))
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Covariance Matrix in high dimensions

Simplest Case: Σ0n = I
Take p = pn = c n, c ∈ (0,1).
λ̂1, λ̂pn largest and smallest (non-zero) eigenvalues of

Σsample =
1
n

n∑
i=1

yiyT
i

Then as n→∞ (and thus pn also grows),
(Marcenko-Pastur, 1967) almost surely!

lim
n→∞

λ̂1 = (1 +
√

c)2

lim
n→∞

λ̂pn = (1−
√

c)2

MLE is not consistent!
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Covariance Matrix in high dimensions

limn→∞ λ̂1 = (1 +
√

c)2 = λ+.
Confidence Interval:

n 2/3(λ̂1 − λ+)⇒ TW1

where TW1 is the Tracy-Widom law (Johnstone 2000).
Universality phenomenon: Results go beyond the case of
Gaussian (Tao and Vu, 2009; P. and Yin, 2011)
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Correlation Matrix

Johnstone (2001): Correlation Matrices for PCA.

Theorem (P. and Yin, 2012, AoS)
Largest eigenvalue of sample correlation matrices still
inconsistent. All of the problems from covariance matrices
persist.
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Understanding Asymptotics

20 century n→∞.
Now: both p,n→∞.
Why should we bother?
Because the above asymptotics is remarkably accurate for
‘small’ n, ‘small’ p!
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Sample covariance matrix plot, n = 100, p = 25

n=100, p= 25
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Sample covariance matrix plot, n = 500, p = 125

n=500, p= 125
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Factor Models: Motivation

Interest in estimating dependence in high-dim obs. +
prediction and classification from high-dim correlated
markers such as gene expression, SNPs.
Center prior on a “sparse” structure, while allowing
uncertainty and flexibility.
Latent factor methods (West, 2003; Lucas et al., 2006;
Carvalho et al., 2008).
Huge applications (economics, finance, signal
processing..)
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Gaussian factor models

Explain dependence through shared dependence on fewer
latent factors

yi ∼ N(0,Σp×p) , 1 ≤ i ≤ n .

Focus on the case p = pn � n.
Factor models assume the “decomposition"

Σ = ΛΛT + σ2Ip

Λ is a p × k matrix, k � n.
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Gaussian factor models

Explain dependence through shared dependence on fewer
latent factors

yi = µ+ Ληi + εi , εi ∼ Np(0,Σ), i = 1, . . . ,n

µ ∈ Rp, a vector of means, with µ = 0.
ηi ∈ Rk , latent factors, Λ a p × k matrix of factor loadings
with k � p.
εi are i.i.d with N(0, σ2).
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Factor models for covariance estimation

Unstructured Σ has O(p2) free elements
Factor models Σ = ΛΛT + σ2Ip .
Still O(p) elements to estimate!
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High-dimensional covariance estimation

‘Frequentist’ solution– MLE doesn’t work.
Start with sample covariance matrix:

Σsample =
1
n

n∑
i=1

yiyT
i .

Great interest in regularized estimation (Bickel & Levina,
2008a, b; Wu and Pourahmadi, 2010, Cai and Liu, 2011 ...)
Estimator which achieves the ‘minimax’ rate:

Σ̂ij = Σsample
ij 1|Σsample

ij |>tn
.

Unstable; Confidence intervals..
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Sparse factor modeling

A natural bayesian alternative: sparse factor modeling
(West, 2003); also (Lucas et al., 2006; Carvalho et al.,
2008) and many others
Allow zeros in loadings through point mass mixture priors:
Λij given point mass priors or shrinkage priors.
Prior assigns Λij = 0 with non-zero probability.
Why care about this prior? Bayesian analogue of
thresholding.
Assume k to be known (but easy to relax this).
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Important questions

Can Bayes methods produce estimators which are
comparable to frequentist estimators?
Can one do computation in reasonable time?
How to address Statistical efficiency-Computational
efficiency trade off?
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Our objective

Bayesian counterpart lacks a theoretical framework in
terms of posterior convergence rates.
A prior Π(Λ⊗ σ2) induces a prior distribution Π(Ω)

How does the posterior behave assuming data sampled
from fixed truth?
Huge literature on frequentist properties of the posterior
distribution
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Questions need to be addressed

Does the posterior measure concentrate around the truth
increasingly with sample size?
What role does the prior play?
How does the dimensionality affect the rate of contraction?
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Preliminaries

We consider the operator norm (‖ · ‖2)

‖A‖2 = sup
x∈Sr−1

‖Ax‖2 = s(1)

Largest Eigenvalue of A, for symmetric A.
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Setup

We observe
y1, . . . yn

i.i.d∼ Npn (0,Σ0n)

and set y(n) = (y1, . . . , yn), Σ0n = Λ0Λt
0 + σ2Ipn×pn

Want to find a minimum sequence εn → 0 such that

lim
n→∞

P
[
‖Σ− Σ0n‖2 > εn | y(n)

]
= 0

Can we find such εn even if pn � n?
What is the role of the prior?
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Assumptions on truth

“Realistic Assumption:"
(A1) Sparsity: Each column of Λ0n has at most sn non-zero

entries, with sn = O(log pn).
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Prior choice & a key result

Prior
(PL) Let Λij ∼ (1− π)δ0 + πg(·), π ∼ Beta(1,pn + 1). g(·) has

Laplace like or heavier tails

Theorem (Pati, Bhattacharya, P. and Dunson, 2012)

For the high-dimensional factor model rn =
√

log7(pn)/n,

lim
n→∞

P(‖Σ− Σ0‖2 > rn | y(n)) = 0 .
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Implication of the result

Rate εn =
√

log2(pn)/n.

We will get consistency if

lim
n→∞

log7 pn

n
= 0 .

Ultra-High dimensions, pn = en1/7
.
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Important Implication for Asymptotics

This rate we get is similar to the minimax rate for similar
problems Cai and Zhou (2011), but not the same!

rn = minimax rate×
√

log pn

The above phenomenon is similar to what happens in
mixture modeling!
Ghosal (2001): Bayesian nonparametric modeling doesn’t
match frequentist rates.
If true: Serious implications.
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A couple of Implications

Minimax theory will tell only half the story.
Heuristics based on bayes.
BIC?
Frequentist-Bayes agreement/disagreement?
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Interesting Challenges in Mathematical Statistics

Need to have 2 things to show Bayesian methods work
well.
Show prior is not too “dogmatic”.
Likelihood is able to “separate points".
Neymann-Pearson Lemma
Separation of points: Traditional Likelihood Ratio doesn’t
work!
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Example : Intuition and Tools from Random Matrix
Theory

Intuition from random matrix theory (RMT) - “tall” matrices
properly normalized look like identity matrices.
If entries of Λ0 were drawn i.i.d. N(0,1), Vershynin (2011)
tells us

‖1
p

ΛT
0Λ0 − Ik‖2 ≤ C

√
k
√

p

with high probability.



Outline Example 1 key issues Dirichlet-Laplace prior Example 2

Computationally easier priors

We need to construct prior distribution for a pn× 1 vector Λ.
Conjugate priors – easier to update
Many popular ones.
Many ‘loss functions’ are prior distributions; thus point
estimates are posterior modes.
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Regularization: Statistical flavor of the decade

Estimates of the form

Λ̂ = arg min
Λ

n∑
i=1

(Yi − Λi)
2 + θ

n∑
i=1

|Λi |k .

Gazillion papers; not a SINGLE one constructs confidence
intervals or uncertainty estimation.
Two special cases: k = 2: (Ridge regression, James-Stein
type)

Λ̂ = arg min
Λ

n∑
i=1

(Yi − Λi)
2 + θ

n∑
i=1

|Λi |2 .

k = 1: (LASSO)

Λ̂ = arg min
Λ

n∑
i=1

(Yi − Λi)
2 + θ

n∑
i=1

|Λi | .
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Prior choice & another key result

Prior
Let the columns Λi = LASSO or RIDGE prior.

Theorem (Pati, Bhattacharya, P. and Dunson, 2012)
For a large class of models, the above, the convergence rate is
strictly slower than the point mass priors.
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Prior choice & another key result
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Let the columns Λi = LASSO or RIDGE prior.

Theorem (Pati, Bhattacharya, P. and Dunson, 2012)
For a large class of models, the above, the convergence rate is
strictly slower than the point mass priors.
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Intuition?

Independence!
Stein phenomenon.
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Dirichlet Laplace prior & properties

We propose a simple dependent modification leading to
optimal concentration & efficient computation

Λj ∼ DE(φjτ), φ = (φ1, . . . , φp)T ∈ Sp−1, τ > 0

DE = Double exponential
Constraining φ to the simplex crucial - allows for
dependence
We let φ ∼ Diri(α, . . . , α) - α < 1 favors small # dominant
values with remaining ≈ 0
Computation easy! Take advantage of Conjugacy
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Dirichlet-Laplace prior - motivation

Theorem (Pati, Bhattacharya, P. and Dunson, 2013)
The Dirichlet-Laplace priors produce convergence rates
identical to that of the point mass priors.
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ABC algorithm

ABC: Approximate Bayes Computation.
Rubin(1984)
Generate θ∗ ∼ π
Generate pseudo-data Ypseudo from fθ∗ .
Accept θ∗ as posterior, if

Ypseudo = Yobs .

Repeat.
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ABC algorithm

Exactly matching the observed data - Impossible, even in 1
dimension!
Key Idea: Approximately match.
Choose a distance d , and tolerance ε.
Accept θ∗ if

d(Ypseudo,Yobs) < ε .

For a given d , accuracy of the procedure can be improved
by choosing ε smaller and smaller and smaller...
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ABC algorithm: Twist

In real examples, it is still expensive/impossible to compute
d(Ypseudo,Yobs).
Twist: Use some function η of the data: called the
“summary statistic" and accept if

d
(
η(Ypseudo), η(Yobs)

)
< ε .

Why no sufficient statistics?
Recall the Pitman-Koopman-Darmois theorem, for
exponential families.
Dimension of the sufficient statistic necessarily increases
with the sample size!
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ABC algorithm

The above version, re-discovered in population genetics
(Tavare et.al, 1997).
Literally 100’s of papers!
How to choose d and ε?
Fearnhead and Prangle, 2012, JRSS-B discussion.
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ABC algorithm for Model Selection

Compare 2 models: compute the Bayes factors.
Bayes Factor ∝ Ratio of Marginal Likelihoods.
Jeffreys’ interpretation, as strength of evidence.
Easy to perform, using the ABC algorithm!
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ABC algorithm for Model Selection

Choose Model 1 or 2 according to the prior.
Given the model, generate (θ∗,Ypseudo) from the prior
distribution of the corresponding model.
Accept θ∗, and the Model, if

d(Ypseudo,Yobs) < ε .

Estimate for Bayes Factor = # of timesModel 1 is accepted
# of timesModel 2 is accepted
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ABC algorithm for Model Selection using η

The above algorithm = Recipe for Disaster!
High Profile papers!
Miller, N. et al, (2005) Science.
Multiple transatlantic introductions of the Western corn
rootworm.
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Lots of popular software

Donoho (2002).
DIY-ABC
ABCToolbox
PopABC
ABC-SysBio
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Result

Theorem (Robert, Jean-Marie, Jean-Michel, P., 2011, PNAS)
Bayes Model selection based on a summary statistic η can be
INCONSISTENT.
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ABC algorithm for Model Selection using η

“Popular beliefs" in the field.
Accuracy can be increased with choosing ε very small:
thus increase in computing power leads to more accurate
results.
If gives reasonable answers for parameter estimation, no
reason why it should go wrong for model selection!
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ABC algorithm for Model Selection

What goes wrong for model selection?
Marginal likelihood based on η(Y ) :=

∫
Θ f (η(Y )|θ)π(θ)dθ.

BF(η(Y )) := Bayes Factor based on the single observation
η(Y ).
Sufficiency vs. Ancilliarity!
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Example

A statistic can be sufficient for two models, but cannot be
“sufficient" across the models.
Ancilliarity......?
Suppose, we observe Y = (y1, y2, · · · , yn) integer valued
data.
Two competing models: Poisson(λ) vs. Geometric(p).
Statistic η(Y ) =

∑n
i=1 yi .
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Example

Almost surely, as the sample size goes to infinity, the
Bayes Factor based on η converges to

θ−1
0 (θ0 + 1)2e−θ0 ,

where θ0 = E(yi) > 0.
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Ilustration

∑
yi vs. BF plot.
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Another Example

Consider two models:
Model 1: N(θ1,1), Model 2: Laplace(θ2,

1√
2

)

Ȳ
Median(Y)
Sample variance
mad(Y) = Median(|Y - Median(Y)|)
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Conclusions

Shrinkage priors = serious business in high dimensions.
Innocent looking priors may look “dogmatic".
Frequentist-Bayes agreement may not hold, implications?
Ad-hoc methods often don’t work, but opportunity for
statistical theory.
Lots of open problems, virtually nothing is known!
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Remarks

Thank you!


	Outline
	Example 1
	key issues
	Dirichlet-Laplace prior
	Example 2

