Efficiency of Bayesian procedures in some high dimensional problems

Natesh S. Pillai
Dept. of Statistics, Harvard University pillai@fas.harvard.edu

May 16, 2013
DIMACS Workshop

Joint Work: Collaborators

- Anirban Bhattacharya, Debdeep Pati and David Dunson (Duke University and Florida State)
- Christian Robert, Jean-Michel Marin, Judith Rousseau (Paris 9)
- Jun Yin (University of Wisconsin)

Outline

- Goal: Understand Bayesian methods in high dimensions.
- Example 1: Covariance matrix estimation
- Example 2: Bayesian model choice via ABC
- Implications, Frequentist-Bayes connection in high dimensions.

Conversation with Peter E. Huybers

- Motivation: Time variability in covariance patterns: stationarity?
- Instrumental measurements, only for the past $n=150$ years.
- Measurements on $p=2000$ latitude-longitude points.
- Estimate $O\left(p^{2}\right)$ parameters.
- Need judicious modeling.

Covariance Matrix Estimation: Why Shrinkage?

- We observe

$$
y_{1}, \ldots y_{n} \stackrel{\text { i.i.d }}{\sim} N_{p_{n}}\left(0, \Sigma_{0 n}\right)
$$

and set $\mathbf{y}^{(n)}=\left(y_{1}, \ldots, y_{n}\right)$

- For $p_{n}=p$, fixed, the sample covariance estimator

$$
\Sigma^{\text {sample }}=\frac{1}{n} \sum_{i=1}^{n} y_{i} y_{i}^{T}
$$

is consistent for population eigenvalues.

- $\hat{\lambda}_{i}$ are consistent for population eigenvalues:

$$
\sqrt{n}\left(\hat{\lambda}_{i}-\lambda_{i}\right) \Rightarrow \mathrm{N}\left(0, V\left(\lambda_{i}\right)\right)
$$

Covariance Matrix in high dimensions

- Simplest Case: $\Sigma_{0 n}=1$
- Take $p=p_{n}=c n, c \in(0,1)$.
- $\widehat{\lambda}_{1}, \widehat{\lambda}_{p_{n}}$ largest and smallest (non-zero) eigenvalues of

$$
\Sigma^{\text {sample }}=\frac{1}{n} \sum_{i=1}^{n} y_{i} y_{i}^{T}
$$

- Then as $n \rightarrow \infty$ (and thus p_{n} also grows), (Marcenko-Pastur, 1967) almost surely!

$$
\begin{aligned}
& \lim _{n \rightarrow \infty} \widehat{\lambda}_{1}=(1+\sqrt{c})^{2} \\
& \lim _{n \rightarrow \infty} \widehat{\lambda}_{p_{n}}=(1-\sqrt{c})^{2}
\end{aligned}
$$

- MLE is not consistent!

Covariance Matrix in high dimensions

- $\lim _{n \rightarrow \infty} \widehat{\lambda}_{1}=(1+\sqrt{c})^{2}=\lambda_{+}$.
- Confidence Interval:

$$
n^{2 / 3}\left(\widehat{\lambda}_{1}-\lambda_{+}\right) \Rightarrow \mathrm{TW}_{1}
$$

where TW_{1} is the Tracy-Widom law (Johnstone 2000).

- Universality phenomenon: Results go beyond the case of Gaussian (Tao and Vu, 2009; P. and Yin, 2011)

Correlation Matrix

- Johnstone (2001): Correlation Matrices for PCA.

Theorem (P. and Yin, 2012, AoS)

Largest eigenvalue of sample correlation matrices still inconsistent. All of the problems from covariance matrices persist.

Understanding Asymptotics

- 20 century $n \rightarrow \infty$.
- Now: both $p, n \rightarrow \infty$.
- Why should we bother?
- Because the above asymptotics is remarkably accurate for ‘small' n, 'small' p !

Sample covariance matrix plot, $\mathrm{n}=100, \mathrm{p}=25$

$n=100, p=25$

Sample covariance matrix plot, $\mathrm{n}=500, \mathrm{p}=125$

$n=500, p=125$

Factor Models: Motivation

- Interest in estimating dependence in high-dim obs. + prediction and classification from high-dim correlated markers such as gene expression, SNPs.
- Center prior on a "sparse" structure, while allowing uncertainty and flexibility.
- Latent factor methods (West, 2003; Lucas et al., 2006; Carvalho et al., 2008).
- Huge applications (economics, finance, signal processing..)

Gaussian factor models

- Explain dependence through shared dependence on fewer latent factors

$$
y_{i} \sim \mathrm{~N}\left(0, \Sigma_{p \times p}\right), \quad 1 \leq i \leq n .
$$

- Focus on the case $p=p_{n} \gg n$.
- Factor models assume the "decomposition"

$$
\Sigma=\Lambda \Lambda^{T}+\sigma^{2} \mathrm{I}_{p}
$$

- Λ is a $p \times k$ matrix, $k \ll n$.

Gaussian factor models

- Explain dependence through shared dependence on fewer latent factors

$$
y_{i}=\mu+\Lambda \eta_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathrm{~N}_{p}(0, \Sigma), \quad i=1, \ldots, n
$$

- $\mu \in \mathbb{R}^{p}$, a vector of means, with $\mu=0$.
- $\eta_{i} \in \mathbb{R}^{k}$, latent factors, Λ a $p \times k$ matrix of factor loadings with $k \ll p$.
- ϵ_{i} are i.i.d with $\mathrm{N}\left(0, \sigma^{2}\right)$.

Factor models for covariance estimation

- Unstructured Σ has $O\left(p^{2}\right)$ free elements
- Factor models $\Sigma=\Lambda \Lambda^{T}+\sigma^{2} I_{p}$.
- Still $O(p)$ elements to estimate!

High-dimensional covariance estimation

- 'Frequentist' solution- MLE doesn't work.
- Start with sample covariance matrix:

$$
\Sigma^{\text {sample }}=\frac{1}{n} \sum_{i=1}^{n} y_{i} y_{i}^{T}
$$

- Great interest in regularized estimation (Bickel \& Levina, 2008a, b; Wu and Pourahmadi, 2010, Cai and Liu, 2011 ...)
- Estimator which achieves the 'minimax' rate:

$$
\hat{\Sigma}_{i j}=\Sigma_{i j}^{\text {sample }} 1_{\left|\Sigma_{i j}^{\text {sample }}\right|>t_{n}}
$$

- Unstable; Confidence intervals..

Sparse factor modeling

- A natural bayesian alternative: sparse factor modeling (West, 2003); also (Lucas et al., 2006; Carvalho et al., 2008) and many others
- Allow zeros in loadings through point mass mixture priors: $\Lambda_{i j}$ given point mass priors or shrinkage priors.
- Prior assigns $\Lambda_{i j}=0$ with non-zero probability.
- Why care about this prior? Bayesian analogue of thresholding.
- Assume k to be known (but easy to relax this).

Important questions

- Can Bayes methods produce estimators which are comparable to frequentist estimators?
- Can one do computation in reasonable time?
- How to address Statistical efficiency-Computational efficiency trade off?

Our objective

- Bayesian counterpart lacks a theoretical framework in terms of posterior convergence rates.
- A prior $\Pi\left(\Lambda \otimes \sigma^{2}\right)$ induces a prior distribution $\Pi(\Omega)$
- How does the posterior behave assuming data sampled from fixed truth?
- Huge literature on frequentist properties of the posterior distribution

Questions need to be addressed

- Does the posterior measure concentrate around the truth increasingly with sample size?
- What role does the prior play?
- How does the dimensionality affect the rate of contraction?

Preliminaries

- We consider the operator norm $\left(\|\cdot\|_{2}\right)$

$$
\|A\|_{2}=\sup _{x \in \mathcal{S}^{r-1}}\|A x\|_{2}=s_{(1)}
$$

- Largest Eigenvalue of A, for symmetric A.

Setup

- We observe

$$
y_{1}, \ldots y_{n} \stackrel{\text { i.i.d }}{\sim} N_{p_{n}}\left(0, \Sigma_{0 n}\right)
$$

and set $\mathbf{y}^{(n)}=\left(y_{1}, \ldots, y_{n}\right), \Sigma_{0 n}=\Lambda_{0} \Lambda_{0}^{t}+\sigma^{2} l_{p_{n} \times p_{n}}$

- Want to find a minimum sequence $\epsilon_{n} \rightarrow 0$ such that

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left[\left\|\Sigma-\Sigma_{0 n}\right\|_{2}>\epsilon_{n} \mid \mathbf{y}^{(n)}\right]=0
$$

- Can we find such ϵ_{n} even if $p_{n} \gg n$?
- What is the role of the prior?

Assumptions on truth

"Realistic Assumption:"
(A1) Sparsity: Each column of $\Lambda_{0 n}$ has at most s_{n} non-zero entries, with $s_{n}=O\left(\log p_{n}\right)$.

Prior choice \& a key result

Prior
(PL) Let $\Lambda_{i j} \sim(1-\pi) \delta_{0}+\pi g(\cdot), \pi \sim \operatorname{Beta}\left(1, p_{n}+1\right) . g(\cdot)$ has Laplace like or heavier tails

Theorem (Pati, Bhattacharya, P. and Dunson, 2012)

For the high-dimensional factor model $r_{n}=\sqrt{\log ^{7}\left(p_{n}\right) / n \text {, }}$

Prior choice \& a key result

Prior

(PL) Let $\Lambda_{i j} \sim(1-\pi) \delta_{0}+\pi g(\cdot), \pi \sim \operatorname{Beta}\left(1, p_{n}+1\right) . g(\cdot)$ has Laplace like or heavier tails

Theorem (Pati, Bhattacharya, P. and Dunson, 2012)

For the high-dimensional factor model $r_{n}=\sqrt{\log ^{7}\left(p_{n}\right) / n}$,

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\left\|\Sigma-\Sigma_{0}\right\|_{2}>r_{n} \mid \mathbf{y}^{(n)}\right)=0
$$

Implication of the result

- Rate $\epsilon_{n}=\sqrt{\log ^{2}\left(p_{n}\right) / n}$.
- We will get consistency if

$$
\lim _{n \rightarrow \infty} \frac{\log ^{7} p_{n}}{n}=0
$$

- Ultra-High dimensions, $p_{n}=e^{n^{1 / 7}}$.

Important Implication for Asymptotics

- This rate we get is similar to the minimax rate for similar problems Cai and Zhou (2011), but not the same!
$-$

$$
r_{n}=\operatorname{minimax} \text { rate } \times \sqrt{\log p_{n}}
$$

- The above phenomenon is similar to what happens in mixture modeling!
- Ghosal (2001): Bayesian nonparametric modeling doesn't match frequentist rates.
- If true: Serious implications.

A couple of Implications

- Minimax theory will tell only half the story.
- Heuristics based on bayes.
- BIC?
- Frequentist-Bayes agreement/disagreement?

Interesting Challenges in Mathematical Statistics

- Need to have 2 things to show Bayesian methods work well.
- Show prior is not too "dogmatic".
- Likelihood is able to "separate points".
- Neymann-Pearson Lemma
- Separation of points: Traditional Likelihood Ratio doesn't work!

Example : Intuition and Tools from Random Matrix Theory

- Intuition from random matrix theory (RMT) - "tall" matrices properly normalized look like identity matrices.
- If entries of Λ_{0} were drawn i.i.d. $N(0,1)$, Vershynin (2011) tells us

$$
\left\|\frac{1}{p} \Lambda_{0}^{\mathrm{T}} \Lambda_{0}-\mathrm{I}_{k}\right\|_{2} \leq C \frac{\sqrt{k}}{\sqrt{p}}
$$

with high probability.

Computationally easier priors

- We need to construct prior distribution for a $p_{n} \times 1$ vector Λ.
- Conjugate priors - easier to update
- Many popular ones.
- Many 'loss functions' are prior distributions; thus point estimates are posterior modes.

Regularization: Statistical flavor of the decade

- Estimates of the form

$$
\hat{\Lambda}=\arg \min _{\Lambda} \sum_{i=1}^{n}\left(Y_{i}-\Lambda_{i}\right)^{2}+\theta \sum_{i=1}^{n}\left|\Lambda_{i}\right|^{k}
$$

- Gazillion papers; not a SINGLE one constructs confidence intervals or uncertainty estimation.
- Two special cases: $k=2$: (Ridge regression, James-Stein type)

$$
\hat{\Lambda}=\arg \min _{\Lambda} \sum_{i=1}^{n}\left(Y_{i}-\Lambda_{i}\right)^{2}+\theta \sum_{i=1}^{n}\left|\Lambda_{i}\right|^{2}
$$

- $k=1$: (LASSO)

$$
\hat{\Lambda}=\arg \min _{\Lambda} \sum_{i=1}^{n}\left(Y_{i}-\Lambda_{i}\right)^{2}+\theta \sum_{i=1}^{n}\left|\Lambda_{i}\right|
$$

Prior choice \& another key result

Prior

- Let the columns $\wedge_{i}=$ LASSO or RIDGE prior.

Theorem (Pati, Bhattacharya, P. and Dunson, 2012)

For a large class of models, the above, the convergence rate is strictly slower than the point mass priors.

Prior choice \& another key result

Prior

- Let the columns $\Lambda_{i}=$ LASSO or RIDGE prior.

Theorem (Pati, Bhattacharya, P. and Dunson, 2012)
For a large class of models, the above, the convergence rate is strictly slower than the point mass priors.

Intuition?

- Independence!
- Stein phenomenon.

Dirichlet Laplace prior \& properties

- We propose a simple dependent modification leading to optimal concentration \& efficient computation

$$
\Lambda_{j} \sim \operatorname{DE}\left(\phi_{j} \tau\right), \quad \phi=\left(\phi_{1}, \ldots, \phi_{p}\right)^{\mathrm{T}} \in \mathcal{S}^{p-1}, \quad \tau>0
$$

- DE = Double exponential
- Constraining ϕ to the simplex crucial - allows for dependence
- We let $\phi \sim \operatorname{Diri}(\alpha, \ldots, \alpha)-\alpha<1$ favors small \# dominant values with remaining ≈ 0
- Computation easy! Take advantage of Conjugacy

Dirichlet-Laplace prior - motivation

Theorem (Pati, Bhattacharya, P. and Dunson, 2013)
The Dirichlet-Laplace priors produce convergence rates identical to that of the point mass priors.

ABC algorithm

- ABC: Approximate Bayes Computation.
- Rubin(1984)
- Generate $\theta^{*} \sim \pi$
- Generate pseudo-data $Y_{\text {pseudo }}$ from $f_{\theta^{*}}$.
- Accept θ^{*} as posterior, if

$$
Y_{\text {pseudo }}=Y_{\text {obs }}
$$

- Repeat.

ABC algorithm

- Exactly matching the observed data - Impossible, even in 1 dimension!
- Key Idea: Approximately match.
- Choose a distance d, and tolerance ϵ.
- Accept θ^{*} if

$$
d\left(Y_{\text {pseudo }}, Y_{\text {obs }}\right)<\epsilon
$$

- For a given d, accuracy of the procedure can be improved by choosing ϵ smaller and smaller and smaller...

ABC algorithm: Twist

- In real examples, it is still expensive/impossible to compute $d\left(Y_{\text {pseudo }}, Y_{\text {obs }}\right)$.
- Twist: Use some function η of the data: called the "summary statistic" and accept if

$$
d\left(\eta\left(Y_{\text {pseudo }}\right), \eta\left(Y_{\mathrm{obs}}\right)\right)<\epsilon
$$

- Why no sufficient statistics?
- Recall the Pitman-Koopman-Darmois theorem, for exponential families.
- Dimension of the sufficient statistic necessarily increases with the sample size!

ABC algorithm

- The above version, re-discovered in population genetics (Tavare et.al, 1997).
- Literally 100's of papers!
- How to choose d and ϵ ?
- Fearnhead and Prangle, 2012, JRSS-B discussion.

ABC algorithm for Model Selection

- Compare 2 models: compute the Bayes factors.
- Bayes Factor \propto Ratio of Marginal Likelihoods.
- Jeffreys' interpretation, as strength of evidence.
- Easy to perform, using the ABC algorithm!

ABC algorithm for Model Selection

- Choose Model 1 or 2 according to the prior.
- Given the model, generate ($\theta^{*}, Y_{\text {pseudo }}$) from the prior distribution of the corresponding model.
- Accept θ^{*}, and the Model, if

$$
d\left(Y_{\text {pseudo }}, Y_{\text {obs }}\right)<\epsilon
$$

- Estimate for Bayes Factor $=\frac{\# \text { of timesModel } 1 \text { is accepted }}{\# \text { of timesModel } 2 \text { is accepted }}$

ABC algorithm for Model Selection using η

- The above algorithm = Recipe for Disaster!
- High Profile papers!
- Miller, N. et al, (2005) Science.
- Multiple transatlantic introductions of the Western corn rootworm.

Lots of popular software

- Donoho (2002).
- DIY-ABC
- ABCToolbox
- PopABC
- ABC-SysBio

Result

Theorem (Robert, Jean-Marie, Jean-Michel, P., 2011, PNAS)
Bayes Model selection based on a summary statistic η can be INCONSISTENT.

ABC algorithm for Model Selection using η

- "Popular beliefs" in the field.
- Accuracy can be increased with choosing ϵ very small: thus increase in computing power leads to more accurate results.
- If gives reasonable answers for parameter estimation, no reason why it should go wrong for model selection!

ABC algorithm for Model Selection

- What goes wrong for model selection?
- Marginal likelihood based on $\eta(Y):=\int_{\Theta} f(\eta(Y) \mid \theta) \pi(\theta) d \theta$.
- $\operatorname{BF}(\eta(Y)):=$ Bayes Factor based on the single observation $\eta(Y)$.
- Sufficiency vs. Ancilliarity!

Example

- A statistic can be sufficient for two models, but cannot be "sufficient" across the models.
- Ancilliarity......?
- Suppose, we observe $Y=\left(y_{1}, y_{2}, \cdots, y_{n}\right)$ integer valued data.
- Two competing models: Poisson (λ) vs. Geometric (p).
- Statistic $\eta(Y)=\sum_{i=1}^{n} y_{i}$.

Example

- Almost surely, as the sample size goes to infinity, the Bayes Factor based on η converges to

$$
\theta_{0}^{-1}\left(\theta_{0}+1\right)^{2} e^{-\theta_{0}}
$$

where $\theta_{0}=\mathbb{E}\left(y_{i}\right)>0$.

Ilustration

$\sum y_{i}$ vs. BF plot.

Another Example

- Consider two models:
- Model 1: $\mathrm{N}\left(\theta_{1}, 1\right)$, Model 2: Laplace $\left(\theta_{2}, \frac{1}{\sqrt{2}}\right)$
- \bar{Y}
- Median(Y)
- Sample variance
- $\operatorname{mad}(\mathrm{Y})=\operatorname{Median}(|\mathrm{Y}-\operatorname{Median}(\mathrm{Y})|)$

Conclusions

- Shrinkage priors = serious business in high dimensions.
- Innocent looking priors may look "dogmatic".
- Frequentist-Bayes agreement may not hold, implications?
- Ad-hoc methods often don't work, but opportunity for statistical theory.
- Lots of open problems, virtually nothing is known!

References

- Universality of Correlation matrices (P., Yin, J., 2012), Annals of Statistics.
- Lack for confidence in ABC model selection, (Robert, Jean-Marie, Jean-Michel, P., 2011), PNAS.
- Bayesian Shrinkage, (Pati, Bhattacharya, P., Dunson, 2012) (2012)
- Bayesian high dimensional covariance estimation using factor models (Pati, Bhattacharya, P., Dunson, 2012)
- Universality of Covariance matrices (P., Yin, J., 2013), Annals of Applied Probability

Remarks

Thank you!

