Combining information from different sources: A resampling based approach

S.N. Lahiri

Department of Statistics North Carolina State University

May 17, 2013

< □ > < (四 > < (回 >) < (u = 1) <

- Background
- Examples/Potential applications
- Theoretical Framework
- Combining information
- Uncertainty quantification by the Bootstrap

Introduction/Example - Ozone data

EPA runs computer models to generate hourly ozone estimates (cf. Community Multiscale Air Quality System (CMAQ)) with a resolution of 10mi square.

S.N. Lahiri (NCSU)

DIMACS Talk

Introduction/Example - Ozone data

There also exist a network of ground monitoring stations that also report the O3 levels.

- There are many other examples of spatially indexed datasets that report measurements on an atmospheric variable at different spatial supports.
- Our goal is to combine the information from different sources to come up with a better estimate of the true spatial surface.

- Consider a function m(·) on a **bounded** domain D ⊂ ℝ^d that we want to estimate using data from two different sources.
- Data Source 1:
 - The resolution of Data Source 1 is coarse;
 - It gives only an averaged version of $m(\cdot)$ over a grid upto an additive noise.
- Thus, Data Source 1 corresponds to data generated by Satellite or by computer models at a given level of resolution.

• Data Source 2:

- Data Source 2, on the other hand, gives point-wise measurements on m(·);
- Has an additive noise that is different from the noise variables for Data Source 1.
- Thus, Data Source 2 corresponds to data generated by ground stations or monitoring stations.

Error Structure:

- We suppose that each set of noise variables are correlated.
- Further, the variables from the two sources are possibly cross-correalated.
- But, we do NOT want to impose any specific distributional structure on the error variables or on their joint distributions.

Goals:

- Combine the data from the two sources to estimate the function m(·) at a given resolution (that is finer than that of Source 1);
- Quantify the associated uncertainty .

Theoretical Formulation

- For simplicity, suppose that d = 2 and $\mathcal{D} = [0, 1]^2$.
- Data Source 1:

The underlying random process is given by:

 $Y(\mathbf{i}) = m(\mathbf{i}; \Delta) + \epsilon(\mathbf{i}), \ \mathbf{i} \in \mathbb{Z}^d$

where $m(\mathbf{i}; \Delta) = \Delta^{-d} \int_{\Delta(\mathbf{i}+[0,1]^d)} m(\mathbf{s}) d\mathbf{s}$, $\Delta \in (0, \infty)$, and where $\{\epsilon(\mathbf{i}), \mathbf{i} \in \mathbb{Z}^d\}$ is a zero mean second order stationary process.

• The observed variables are

 $\{Y(\mathbf{i}): \Delta(\mathbf{i} + [0, 1)^d) \cap [0, 1)^d \neq \emptyset\} \equiv \{Y(\mathbf{i}_k): k = 1, \dots, N\}.$

Data Scource 1: Coarse grid data (spacings= Δ)

S.N. Lahiri (NCSU)

DIMACS Talk

May 17, 2013 10 / 33

• Data Source 2:

The underlying random process is given by:

$$Z(\mathbf{s}) = m(\mathbf{s}) + \eta(\mathbf{s}), \ \ \mathbf{s} \in \mathbb{R}^d$$

where $\{\eta(\mathbf{s}), \mathbf{s} \in \mathbb{R}^d\}$ is a zero mean second order stationary process on \mathbb{R}^d .

• The observed variables are

$$\{Z(\mathbf{s}_i): i=1,\ldots,n\}.$$

where $\mathbf{s}_1, \ldots, \mathbf{s}_n$ are generated by iid uniform random vectors over $[0, 1]^d$.

Data Scource 2: Point-support data

May 17, 2013 12 / 33

Theoretical Formulation

• Let $\{\varphi_j : j \ge 1\}$ be an O.N.B. of $L^2[0,1]^d$. and let $m(\cdot) \in L^2[0,1]^d$.

• Then,

$$m(\mathbf{s}) = \sum_{j \ge 1} eta_j arphi_j(\mathbf{s})$$

where
$$\sum_{j\in\mathbb{Z}}eta_j^2<\infty.$$

• We consider a finite approximation

$$m(\mathbf{s}) \approx \sum_{j=1}^{J} \beta_j \varphi_j(\mathbf{s}) \equiv m_J(\mathbf{s}).$$

 Our goal is to combine the data from the two sources to estimate the parameters {β_j : j = 1,..., J}.

Estimation on Fine grid

The finite approximation to $m(\cdot)$ may be thought of as a finer resolution approximation with grid spacings $\delta \ll \Delta$:

S.N. Lahiri (NCSU)

Estimation of the β_j 's

• From Data set 1: $\{Y(\mathbf{i}_k): k = 1, \dots, N\}$, we have

$$\hat{\beta}_j^{(1)} = N^{-1} \sum_{k=1}^N Y(\mathbf{i}_k) \varphi_j(\mathbf{i}_k \Delta).$$

• It is easy to check that for Δ small:

$$\begin{split} E\hat{\beta}_{j}^{(1)} &= N^{-1}\sum_{k=1}^{N}m(\mathbf{i}_{k};\Delta)\varphi_{j}(\mathbf{i}_{k}\Delta)\\ &\approx N^{-1}\sum_{k=1}^{N}\Delta^{-d}\int_{(\mathbf{i}_{k}+[0,1]^{d})\Delta}m(\mathbf{s})\varphi_{j}(\mathbf{s})d\mathbf{s}\\ &= \int_{[0,1]^{d}}m(\mathbf{s})\varphi_{j}(\mathbf{s})d\mathbf{s}/[N\Delta^{d}]\approx\beta_{j}. \end{split}$$

Estimation of the β_j 's

• From Data set 2: $\{Z(\mathbf{s}_i) : i = 1, \dots, n\}$, we have

$$\hat{\beta}_j^{(2)} = n^{-1} \sum_{i=1}^n Z(\mathbf{s}_i) \varphi_j(\mathbf{s}_i).$$

• It is easy to check that as $n \to \infty$:

$$E[\hat{\beta}_{j}^{(2)}|\mathcal{S}] = n^{-1} \sum_{i=1}^{n} m(\mathbf{s}_{i})\varphi_{j}(\mathbf{s}_{i})$$
$$\rightarrow \int_{[0,1]^{d}} m(\mathbf{s})\varphi_{j}(\mathbf{s})d\mathbf{s} = \beta_{j} \quad \text{a.s.}$$

where S is the σ -field of the random vectors generating the data locations.

S.N. Lahiri (NCSU)

• The estimator from Data Set $k \in \{1,2\}$ is

$$\hat{m}^{(k)}(\cdot) = \sum_{j=1}^J \hat{eta}_j^{(k)} \varphi_j(\cdot).$$

• We shall consider a combined estimator of $m(\cdot)$ of the form:

$$\hat{m}(\cdot) = a_1 \hat{m}^{(1)}(\cdot) + a_2 \hat{m}^{(2)}(\cdot)$$

where $a_1, a_2 \in \mathbb{R}$ and $a_1 + a_2 = 1$.

- Many choices of $a_1 \in \mathbb{R}$ (with $a_2 = 1 a_1$) is possible.
- Here we seek an **optimal choice** of a_1 that minimizes the MISE:

$$\int E\Big(\hat{m}(\cdot)-m_J(\cdot)\Big)^2.$$

• Evidently, this depends on the joint correlation structure of the error processes from Data sources 1 and 2.

• More precisely, it can be shown that the optimal choice of a_1 is given by

$$a_{1}^{0} = \frac{\sum_{j=1}^{J} E\left\{ [\hat{\beta}_{j}^{(1)} - \hat{\beta}_{j}^{(2)}] [\hat{\beta}_{j}^{(2)} - \beta_{j}] \right\}}{\sum_{j=1}^{J} E[\hat{\beta}_{j}^{(1)} - \hat{\beta}_{j}^{(2)}]^{2}}$$

- Since each β̂_j^(K) is a *linear* function of the observations from Data set k ∈ {1,2}, the numerator and the denominator of the optimal a₁ depends on the joint covariance structure of the processes {ε(i) : i ∈ Z^d} and {η(s) : s ∈ ℝ^d}.
- Note that the φ_j's drop out from the formula for the MISE optimal a⁰₁ due to the ONB property of {φ_j : j ≥ 1}.

Joint-Correlation structure

We shall suppose that

• $\{\epsilon(\mathbf{i}) : \mathbf{i} \in \mathbb{Z}^d\}$ is SOS with covariogram

 $\sigma(\mathbf{k}) = \operatorname{Cov}(\epsilon(\mathbf{i}), \epsilon(\mathbf{i} + \mathbf{k})) \text{ for all } \mathbf{i}, \mathbf{k} \in \mathbb{Z}^d;$

• $\{\eta(\mathbf{s}) : \mathbf{s} \in \mathbb{R}^d\}$ is SOS with covariogram $\tau(\mathbf{h}) = \operatorname{Cov}(\eta(\mathbf{s}), \eta(\mathbf{s} + \mathbf{h}))$ for all $\mathbf{s}, \mathbf{h} \in \mathbb{R}^d$;

• and the cross-correlation function between the $\epsilon(\cdot){\rm 's}$ and $\eta(\cdot){\rm 's}$ is given by

 $\mathsf{Cov}(\epsilon(\mathbf{i}), \eta(\mathbf{s})) = \gamma(\mathbf{i} - \mathbf{s}) \text{ for all } \mathbf{i} \in \mathbb{Z}^d, \mathbf{s} \in \mathbb{R}^d;$

for some function $\gamma : \mathbb{R}^d \to \mathbb{R}$.

Joint Correlation Structure

- This formulation is somewhat non-standard, as the two component spatial processes have different supports.
- **Example:** Consider a zero mean SOS bivariate process $\{(\eta_1(\mathbf{s}), \eta_2(\mathbf{s})) : \mathbf{s} \in \mathbb{R}^d\}$ with autocovariance matrix $\Sigma(\cdot) = ((\sigma_{ij}(\cdot)))$. Let $\eta(\mathbf{s}) = \eta_1(\mathbf{s})$ and

$$\epsilon(\mathbf{i}) = \Delta^{-d} \int_{[\mathbf{i}+[0,1)^d]\Delta} \eta_2(\mathbf{s}) d\mathbf{s}, \ \mathbf{i} \in \mathbb{Z}^d.$$

• Then, $Cov(\epsilon(\mathbf{i}), \epsilon(\mathbf{i} + \mathbf{k}))$ depends only on \mathbf{k} for all $\mathbf{i}, \mathbf{k} \in \mathbb{Z}^d$; (given by an integral of $\sigma_{11}(\cdot)$) and

Cov(ε(i), η(s)) depends only on i − s for all i ∈ Z^d, s ∈ ℝ^d
 (given by an integral of σ₁₂(·)).

Estimation of a_1^0

• Recall that the optimal

$$a_{1}^{0} = \frac{\sum_{j=1}^{J} E\left\{ [\hat{\beta}_{j}^{(1)} - \hat{\beta}_{j}^{(2)}] [\hat{\beta}_{j}^{(2)} - \beta_{j}] \right\}}{\sum_{j=1}^{J} E[\hat{\beta}_{j}^{(1)} - \hat{\beta}_{j}^{(2)}]^{2}}$$

depends on the population joint covariogram of the error processes that are typically **unknown**.

 It is possible to derive an asymptotic approximation to a₁⁰ that involves only some summary characteristics of these functions (such as ∫ τ(h)dh and ∑_{k∈Z^d} σ(k)), and use plug-in estimates.

- However, the limiting formulae depends on the asymptotic regimes one employs (relative growth rates of *n* and *N*, and the strength of dependence).
- The accuracy of these approximations are not very good even for d = 2 due to edge-effects.
- These issues with the asymptotic approximations suggest that we may want to use a data-based method, such as the spatial block bootstrap/subsampling that more closely mimic the behavior in finite samples.

- Here we shall use a version of the subsampling for estimating a_1^0 .
- The Subsampling method is known to be computationally simpler.
- Further, it has the same level of accuracy as the bootstrap for estimating the variance of a *linear* function of the data.
- We shall use the bootstrap for uncertainty quantification of the resulting estimator, as it is more accurate for distributional approximation.

A Spatial Block Resampling Scheme

- We now give a brief description of a spatial version of the Moving Block Bootstrap of K[']unsch (1989) and Liu and Singh (1992) in the present set up.
- Recall that we have;

Data Set 1: (Coarse grid) Data Set 2: (Point support)

 $\{Y(\mathbf{i}_k): k = 1, \dots, N\}$ $\{Z(\mathbf{s}_i): i = 1, \dots, n\}$

- For each data set, we also have an estimate of its mean structure.
- First, form the residuals and center them! Denote these by $\{\hat{\epsilon}(\mathbf{i}_k) : k = 1, ..., N\}$ and $\{\hat{\eta}(\mathbf{s}_i) : i = 1, ..., n\}$.
- We will resample blocks of $\hat{\epsilon}()$'s and $\hat{\eta}()$'s.

A Spatial Block Resampling Scheme

• Next fix an integer ℓ such that

$$1 \ll \ell \ll L, \tag{0.1}$$

where $L = N^{1/d} = 1/\Delta$ denotes the number of Δ -intervals along a given co-ordinate.

• Here ℓ determines the size (volume) of the spatial blocks.

- Let {B(k) : k ∈ K} denote the collection of overlapping blocks of volume ℓ^dΔ^d contained in [0, 1]^d.
- Note that under (0.1), $K = |\mathcal{K}| =$ the total number of overlapping blocks satisfies

$$K = ([L - \ell + 1])^d \sim N.$$

Overlapping Spatial Blocks

S.N. Lahiri (NCSU)

DIMACS Talk

May 17, 2013 27 / 33

Image: A matrix and a matrix

3

- Resample randomly with repalcement from {B_k : k = 1,..., K} a sample of size b ≥ 1.
- This yields resampled error variables for both data source 1 and 2, which are used to fill up $[0, 1]^d$.
- For $b = N/\ell^d$, there are N-many Data Source 1 error variables $\{\epsilon^*(\mathbf{i}_k) : k = 1, \dots, N\}.$
- For Data Source 2, this yields a random number n₁ of error variables {η*(s_i^{*}) : i = 1,..., n₁}.
- It is evident that $n_1 \sim n$.

Spatial Bootstrap & Subsampling

• Next use the model eqautions to define the "bootstrap observations"

$$\begin{array}{lll} Y^{*}(\mathbf{i}_{k}) & = & \hat{m}^{(1)}(\mathbf{i}_{k};\Delta) + \epsilon^{*}(\mathbf{i}_{k}), \ k = 1, \dots, N \\ Z^{*}(\mathbf{s}_{i}^{*}) & = & \hat{m}^{(2)}(\mathbf{s}_{i}^{*}) + \eta^{*}(\mathbf{s}_{i}^{*}), \ i = 1, \dots, n_{1} \end{array}$$

- The reconstruction step is referred to as **the residual bootstrap** (Efron (1979), Freedman (1981)).
- For b = 1, one gets spatial subsampling.
- Note that for b = 1, the corresponding bootstrap moments (e.g., the variances/covariances) can be evaluated without any resampling.

The combined estimator

Recall that

$$a_{1}^{0} = \frac{\sum_{j=1}^{J} E\left\{ [\hat{\beta}_{j}^{(1)} - \hat{\beta}_{j}^{(2)}] [\hat{\beta}_{j}^{(2)} - \beta_{j}] \right\}}{\sum_{j=1}^{J} E[\hat{\beta}_{j}^{(1)} - \hat{\beta}_{j}^{(2)}]^{2}}$$

We use the spatial subsampling to estimate a₁⁰; Call this â₁⁰.
Then define the **combined estimator** of m(·):

$$\hat{m}^0(\cdot) = \hat{a}_1^0 \hat{m}^{(1)}(\cdot) + [1 - \hat{a}_1^0] \hat{m}^{(2)}(\cdot).$$

Uncertainty quantification

- We can estimate the MISE of our combined estimator by using spatial bootstrap!
- Specifically, let m^{(1)*}(·) be the bootstrap version of m̂⁽¹⁾(·) that is obtained by replacing {Y(i_k) : k = 1,...,N} with the Bootstrap data set 1: {Y*(i_k) : k = 1,...,N}.
- Similarly, define $m^{(2)*}(\cdot)$ and a_1^{0*} , the bootstrap versions of $\hat{m}^{(2)}(\cdot)$ and \hat{a}_1^{0*} .
- Let $m^{0*}(\cdot) = a_1^{0*}m^{(1)*}(\cdot) + [1-a_1^{0*}]m^{(2)*}(\cdot).$
- Then, the Bootstrap estimator of the MISE of $\hat{m}^0(\cdot)$ is given by

$$\widehat{\mathsf{MISE}} = \int E_* \Big(m^{0*}(\cdot) - \hat{m}^0(\cdot) \Big)^2.$$

Theorem

Suppose that $\Delta = o(1)$, N = O(n), $\ell^{-1} + \ell/L = o(1)$ and that the error random fields satisfy certain moment and weak dependence conditions. Then,

 $\widehat{MISE}/MISE \rightarrow_p 1.$

Thank You!!!

1

(日) (日) (日) (日)