Combining information from different sources: A resampling based approach

S.N. Lahiri

Department of Statistics
North Carolina State University

May 17, 2013

Overview

- Background
- Examples/Potential applications
- Theoretical Framework
- Combining information
- Uncertainty quantification by the Bootstrap

Introduction/Example - Ozone data

EPA runs computer models to generate hourly ozone estimates (cf. Community Multiscale Air Quality System (CMAQ)) with a resolution of 10 mi square.

Introduction/Example - Ozone data

There also exist a network of ground monitoring stations that also report the O 3 levels.

Introduction

- There are many other examples of spatially indexed datasets that report measurements on an atmospheric variable at different spatial supports.
- Our goal is to combine the information from different sources to come up with a better estimate of the true spatial surface.

Introduction

- Consider a function $m(\cdot)$ on a bounded domain $\mathcal{D} \subset \mathbb{R}^{d}$ that we want to estimate using data from two different sources.
- Data Source 1:
- The resolution of Data Source 1 is coarse;
- It gives only an averaged version of $m(\cdot)$ over a grid upto an additive noise.
- Thus, Data Source 1 corresponds to data generated by Satellite or by computer models at a given level of resolution.

Introduction

- Data Source 2:
- Data Source 2, on the other hand, gives point-wise measurements on $m(\cdot)$;
- Has an additive noise that is different from the noise variables for Data Source 1.
- Thus, Data Source 2 corresponds to data generated by ground stations or monitoring stations.

Introduction

Error Structure:

- We suppose that each set of noise variables are correlated.
- Further, the variables from the two sources are possibly cross-correalated.
- But, we do NOT want to impose any specific distributional structure on the error variables or on their joint distributions.

Goals:

- Combine the data from the two sources to estimate the function $m(\cdot)$ at a given resolution (that is finer than that of Source 1);
- Quantify the associated uncertainty .

Theoretical Formulation

- For simplicity, suppose that $d=2$ and $\mathcal{D}=[0,1]^{2}$.
- Data Source 1:

The underlying random process is given by:

$$
Y(\mathbf{i})=m(\mathbf{i} ; \Delta)+\epsilon(\mathbf{i}), \quad \mathbf{i} \in \mathbb{Z}^{d}
$$

where $m(\mathbf{i} ; \Delta)=\Delta^{-d} \int_{\Delta\left(\mathbf{i}+[0,1]^{d}\right)} m(\mathbf{s}) d \mathbf{s}, \Delta \in(0, \infty)$, and where $\left\{\epsilon(\mathbf{i}), \quad \mathbf{i} \in \mathbb{Z}^{d}\right\}$ is a zero mean second order stationary process.

- The observed variables are

$$
\left\{Y(\mathbf{i}): \Delta\left(\mathbf{i}+[0,1)^{d}\right) \cap[0,1)^{d} \neq \emptyset\right\} \equiv\left\{Y\left(\mathbf{i}_{k}\right): k=1, \ldots, N\right\}
$$

Data Scource 1: Coarse grid data (spacings $=\Delta$)

Data Source 2: Point-support measurements

- Data Source 2:

The underlying random process is given by:

$$
Z(\mathbf{s})=m(\mathbf{s})+\eta(\mathbf{s}), \quad \mathbf{s} \in \mathbb{R}^{d}
$$

where $\left\{\eta(\mathbf{s}), \quad \mathbf{s} \in \mathbb{R}^{d}\right\}$ is a zero mean second order stationary process on \mathbb{R}^{d}.

- The observed variables are

$$
\left\{Z\left(\mathbf{s}_{i}\right): i=1, \ldots, n\right\} .
$$

where $\mathbf{s}_{1}, \ldots, \mathbf{s}_{n}$ are generated by iid uniform random vectors over $[0,1]^{d}$.

Data Scource 2: Point-support data

Theoretical Formulation

- Let $\left\{\varphi_{j}: j \geq 1\right\}$ be an O.N.B. of $L^{2}[0,1]^{d}$. and let $m(\cdot) \in L^{2}[0,1]^{d}$.
- Then,

$$
m(\mathbf{s})=\sum_{j \geq 1} \beta_{j} \varphi_{j}(\mathbf{s})
$$

where $\sum_{j \in \mathbb{Z}} \beta_{j}^{2}<\infty$.

- We consider a finite approximation

$$
m(\mathbf{s}) \approx \sum_{j=1}^{J} \beta_{j} \varphi_{j}(\mathbf{s}) \equiv m_{J}(\mathbf{s})
$$

- Our goal is to combine the data from the two sources to estimate the parameters $\left\{\beta_{j}: j=1, \ldots, J\right\}$.

Estimation on Fine grid

The finite approximation to $m(\cdot)$ may be thought of as a finer resolution approximation with grid spacings $\delta \ll \Delta$:

Estimation of the β_{j} 's

- From Data set 1: $\left\{Y\left(\mathbf{i}_{k}\right): k=1, \ldots, N\right\}$, we have

$$
\hat{\beta}_{j}^{(1)}=N^{-1} \sum_{k=1}^{N} Y\left(\mathbf{i}_{k}\right) \varphi_{j}\left(\mathbf{i}_{k} \Delta\right) .
$$

- It is easy to check that for Δ small:

$$
\begin{aligned}
E \hat{\beta}_{j}^{(1)} & =N^{-1} \sum_{k=1}^{N} m\left(\mathbf{i}_{k} ; \Delta\right) \varphi_{j}\left(\mathbf{i}_{k} \Delta\right) \\
& \approx N^{-1} \sum_{k=1}^{N} \Delta^{-d} \int_{\left(\mathbf{i}_{k}+[0,1]^{d}\right) \Delta} m(\mathbf{s}) \varphi_{j}(\mathbf{s}) d \mathbf{s} \\
& =\int_{[0,1]^{d}} m(\mathbf{s}) \varphi_{j}(\mathbf{s}) d \mathbf{s} /\left[N \Delta^{d}\right] \approx \beta_{j} .
\end{aligned}
$$

Estimation of the β_{j} 's

- From Data set 2: $\left\{Z\left(\mathbf{s}_{i}\right): i=1, \ldots, n\right\}$, we have

$$
\hat{\beta}_{j}^{(2)}=n^{-1} \sum_{i=1}^{n} Z\left(\mathbf{s}_{i}\right) \varphi_{j}\left(\mathbf{s}_{i}\right)
$$

- It is easy to check that as $n \rightarrow \infty$:

$$
\begin{aligned}
E\left[\hat{\beta}_{j}^{(2)} \mid \mathcal{S}\right] & =n^{-1} \sum_{i=1}^{n} m\left(\mathbf{s}_{i}\right) \varphi_{j}\left(\mathbf{s}_{i}\right) \\
& \rightarrow \int_{[0,1]^{d}} m(\mathbf{s}) \varphi_{j}(\mathbf{s}) d \mathbf{s}=\beta_{j} \quad \text { a.s. }
\end{aligned}
$$

where \mathcal{S} is the σ-field of the random vectors generating the data locations.

Introduction

- The estimator from Data Set $k \in\{1,2\}$ is

$$
\hat{m}^{(k)}(\cdot)=\sum_{j=1}^{J} \hat{\beta}_{j}^{(k)} \varphi_{j}(\cdot)
$$

- We shall consider a combined estimator of $m(\cdot)$ of the form:

$$
\hat{m}(\cdot)=a_{1} \hat{m}^{(1)}(\cdot)+a_{2} \hat{m}^{(2)}(\cdot)
$$

where $a_{1}, a_{2} \in \mathbb{R}$ and $a_{1}+a_{2}=1$.

Combined estimator of $m(\cdot)$

- Many choices of $a_{1} \in \mathbb{R}$ (with $a_{2}=1-a_{1}$) is possible.
- Here we seek an optimal choice of a_{1} that minimizes the MISE:

$$
\int E\left(\hat{m}(\cdot)-m_{J}(\cdot)\right)^{2}
$$

- Evidently, this depends on the joint correlation structure of the error processes from Data sources 1 and 2.

Optimal a_{1}

- More precisely, it can be shown that the optimal choice of a_{1} is given by

$$
a_{1}^{0}=\frac{\sum_{j=1}^{J} E\left\{\left[\hat{\beta}_{j}^{(1)}-\hat{\beta}_{j}^{(2)}\right]\left[\hat{\beta}_{j}^{(2)}-\beta_{j}\right]\right\}}{\sum_{j=1}^{J} E\left[\hat{\beta}_{j}^{(1)}-\hat{\beta}_{j}^{(2)}\right]^{2}}
$$

- Since each $\hat{\beta}_{j}^{(K)}$ is a linear function of the observations from Data set $k \in\{1,2\}$, the numerator and the denominator of the optimal a_{1} depends on the joint covariance structure of the processes $\left\{\epsilon(\mathbf{i}): \mathbf{i} \in \mathbb{Z}^{d}\right\}$ and $\left\{\eta(\mathbf{s}): \mathbf{s} \in \mathbb{R}^{d}\right\}$.
- Note that the φ_{j} 's drop out from the formula for the MISE optimal a_{1}^{0} due to the ONB property of $\left\{\varphi_{j}: j \geq 1\right\}$.

Joint-Correlation structure

We shall suppose that

- $\left\{\epsilon(\mathbf{i}): \mathbf{i} \in \mathbb{Z}^{d}\right\}$ is SOS with covariogram

$$
\sigma(\mathbf{k})=\operatorname{Cov}(\epsilon(\mathbf{i}), \epsilon(\mathbf{i}+\mathbf{k})) \quad \text { for all } \quad \mathbf{i}, \mathbf{k} \in \mathbb{Z}^{d}
$$

- $\left\{\eta(\mathbf{s}): \mathbf{s} \in \mathbb{R}^{d}\right\}$ is SOS with covariogram

$$
\tau(\mathbf{h})=\operatorname{Cov}(\eta(\mathbf{s}), \eta(\mathbf{s}+\mathbf{h})) \quad \text { for all } \quad \mathbf{s}, \mathbf{h} \in \mathbb{R}^{d}
$$

- and the cross-correlation function between the $\epsilon(\cdot)$'s and $\eta(\cdot)$'s is given by

$$
\operatorname{Cov}(\epsilon(\mathbf{i}), \eta(\mathbf{s}))=\gamma(\mathbf{i}-\mathbf{s}) \quad \text { for all } \quad \mathbf{i} \in \mathbb{Z}^{d}, \mathbf{s} \in \mathbb{R}^{d}
$$

for some function $\gamma: \mathbb{R}^{d} \rightarrow \mathbb{R}$.

Joint Correlation Structure

- This formulation is somewhat non-standard, as the two component spatial processes have different supports.
- Example: Consider a zero mean SOS bivariate process $\left\{\left(\eta_{1}(\mathbf{s}), \eta_{2}(\mathbf{s})\right): \mathbf{s} \in \mathbb{R}^{d}\right\}$ with autocovariance matrix $\Sigma(\cdot)=\left(\left(\sigma_{i j}(\cdot)\right)\right)$. Let $\eta(\mathbf{s})=\eta_{1}(\mathbf{s})$ and

$$
\epsilon(\mathbf{i})=\Delta^{-d} \int_{\left[\mathbf{i}+[0,1)^{d}\right] \Delta} \eta_{2}(\mathbf{s}) d \mathbf{s}, \quad \mathbf{i} \in \mathbb{Z}^{d}
$$

- Then, $\operatorname{Cov}(\epsilon(\mathbf{i}), \epsilon(\mathbf{i}+\mathbf{k}))$ depends only on \mathbf{k} for all $\mathbf{i}, \mathbf{k} \in \mathbb{Z}^{\text {d }}$; (given by an integral of $\left.\sigma_{11}(\cdot)\right)$ and
- $\operatorname{Cov}(\epsilon(\mathbf{i}), \eta(\mathbf{s}))$ depends only on $\mathbf{i}-\mathbf{s}$ for all $\mathbf{i} \in \mathbb{Z}^{d}, \mathbf{s} \in \mathbb{R}^{d}$ (given by an integral of $\sigma_{12}(\cdot)$).

Estimation of a_{1}^{0}

- Recall that the optimal

$$
a_{1}^{0}=\frac{\sum_{j=1}^{J} E\left\{\left[\hat{\beta}_{j}^{(1)}-\hat{\beta}_{j}^{(2)}\right]\left[\hat{\beta}_{j}^{(2)}-\beta_{j}\right]\right\}}{\sum_{j=1}^{J} E\left[\hat{\beta}_{j}^{(1)}-\hat{\beta}_{j}^{(2)}\right]^{2}}
$$

depends on the population joint covariogram of the error processes that are typically unknown.

- It is possible to derive an asymptotic approximation to a_{1}^{0} that involves only some summary characteristics of these functions (such as $\int \tau(\mathbf{h}) d \mathbf{h}$ and $\sum_{\mathbf{k} \in \mathbb{Z}^{d}} \sigma(\mathbf{k})$), and use plug-in estimates.

Estimation of a_{1}^{0}

- However, the limiting formulae depends on the asymptotic regimes one employs (relative growth rates of n and N, and the strength of dependence).
- The accuracy of these approximations are not very good even for $d=2$ due to edge-effects.
- These issues with the asymptotic approximations suggest that we may want to use a data-based method, such as the spatial block bootstrap/subsampling that more closely mimic the behavior in finite samples.

Estimation of a_{1}^{0}

- Here we shall use a version of the subsampling for estimating a_{1}^{0}.
- The Subsampling method is known to be computationally simpler.
- Further, it has the same level of accuracy as the bootstrap for estimating the variance of a linear function of the data.
- We shall use the bootstrap for uncertainty quantification of the resulting estimator, as it is more accurate for distributional approximation.

A Spatial Block Resampling Scheme

- We now give a brief description of a spatial version of the Moving Block Bootstrap of K"unsch (1989) and Liu and Singh (1992) in the present set up.
- Recall that we have;

$$
\begin{aligned}
\text { Data Set 1: (Coarse grid) } & \left\{Y\left(\mathbf{i}_{k}\right): k=1, \ldots, N\right\} \\
\text { Data Set 2: (Point support) } & \left\{Z\left(\mathbf{s}_{i}\right): i=1, \ldots, n\right\}
\end{aligned}
$$

- For each data set, we also have an estimate of its mean structure.
- First, form the residuals and center them! Denote these by $\left\{\hat{\epsilon}\left(\mathbf{i}_{k}\right): k=1, \ldots, N\right\}$ and $\left\{\hat{\eta}\left(\mathbf{s}_{i}\right): i=1, \ldots, n\right\}$.
- We will resample blocks of $\hat{\epsilon}()$'s and $\hat{\eta}($)'s.

A Spatial Block Resampling Scheme

- Next fix an integer ℓ such that

$$
\begin{equation*}
1 \ll \ell \ll L \tag{0.1}
\end{equation*}
$$

where $L=N^{1 / d}=1 / \Delta$ denotes the number of Δ-intervals along a given co-ordinate.

- Here ℓ determines the size (volume) of the spatial blocks.
- Let $\{\mathcal{B}(\mathbf{k}): \mathbf{k} \in \mathcal{K}\}$ denote the collection of overlapping blocks of volume $\ell^{d} \Delta^{d}$ contained in $[0,1]^{d}$.
- Note that under (0.1), $K=|\mathcal{K}|=$ the total number of overlapping blocks satisfies

$$
K=([L-\ell+1])^{d} \sim N
$$

Overlapping Spatial Blocks

Spatial Bootstrap

- Resample randomly with repalcement from $\left\{\mathcal{B}_{k}: k=1, \ldots, K\right\}$ a sample of size $b \geq 1$.
- This yields resampled error variables for both data source 1 and 2 , which are used to fill up $[0,1]^{d}$.
- For $b=N / \ell^{d}$, there are N-many Data Source 1 error variables $\left\{\epsilon^{*}\left(\mathbf{i}_{k}\right): k=1, \ldots, N\right\}$.
- For Data Source 2, this yields a random number n_{1} of error variables $\left\{\eta^{*}\left(\mathbf{s}_{i}^{*}\right): i=1, \ldots, n_{1}\right\}$.
- It is evident that $n_{1} \sim n$.

Spatial Bootstrap \& Subsampling

- Next use the model eqautions to define the "bootstrap observations"

$$
\begin{aligned}
Y^{*}\left(\mathbf{i}_{k}\right) & =\hat{m}^{(1)}\left(\mathbf{i}_{k} ; \Delta\right)+\epsilon^{*}\left(\mathbf{i}_{k}\right), \quad k=1, \ldots, N \\
Z^{*}\left(\mathbf{s}_{i}^{*}\right) & =\hat{m}^{(2)}\left(\mathbf{s}_{i}^{*}\right)+\eta^{*}\left(\mathbf{s}_{i}^{*}\right), \quad i=1, \ldots, n_{1}
\end{aligned}
$$

- The reconstruction step is referred to as the residual bootstrap (Efron (1979), Freedman (1981)).
- For $b=1$, one gets spatial subsampling.
- Note that for $b=1$, the corresponding bootstrap moments (e.g., the variances/covariances) can be evaluated without any resampling.

The combined estimator

- Recall that

$$
a_{1}^{0}=\frac{\sum_{j=1}^{J} E\left\{\left[\hat{\beta}_{j}^{(1)}-\hat{\beta}_{j}^{(2)}\right]\left[\hat{\beta}_{j}^{(2)}-\beta_{j}\right]\right\}}{\sum_{j=1}^{J} E\left[\hat{\beta}_{j}^{(1)}-\hat{\beta}_{j}^{(2)}\right]^{2}}
$$

- We use the spatial subsampling to estimate a_{1}^{0}; Call this \hat{a}_{1}^{0}.
- Then define the combined estimator of $m(\cdot)$:

$$
\hat{m}^{0}(\cdot)=\hat{a}_{1}^{0} \hat{m}^{(1)}(\cdot)+\left[1-\hat{a}_{1}^{0}\right] \hat{m}^{(2)}(\cdot)
$$

Uncertainty quantification

- We can estimate the MISE of our combined estimator by using spatial bootstrap!
- Specifically, let $m^{(1) *}(\cdot)$ be the bootstrap version of $\hat{m}^{(1)}(\cdot)$ that is obtained by replacing $\left\{Y\left(\mathbf{i}_{k}\right): k=1, \ldots, N\right\}$ with the Bootstrap data set 1: $\left\{Y^{*}\left(\mathbf{i}_{k}\right): k=1, \ldots, N\right\}$.
- Similarly, define $m^{(2) *}(\cdot)$ and $a_{1}^{0 *}$, the bootstrap versions of $\hat{m}^{(2)}(\cdot)$ and $\hat{a}_{1}^{0 *}$.
- Let $m^{0 *}(\cdot)=a_{1}^{0 *} m^{(1) *}(\cdot)+\left[1-a_{1}^{0 *}\right] m^{(2) *}(\cdot)$.
- Then, the Bootstrap estimator of the MISE of $\hat{m}^{0}(\cdot)$ is given by

$$
\widehat{\mathrm{MISE}}=\int E_{*}\left(m^{0 *}(\cdot)-\hat{m}^{0}(\cdot)\right)^{2}
$$

Consistency

Theorem

Suppose that $\Delta=o(1), N=O(n), \ell^{-1}+\ell / L=o(1)$ and that the error random fields satisfy certain moment and weak dependence conditions. Then,

$$
\widehat{M I S E} / M I S E \rightarrow_{p} 1
$$

Thank You!!!

