Design and Analysis for
Multifidelity Computer Experiments

Ying Hung
Department of Statistics and Biostatistics
Rutgers University



Overview

* Introduction to computer experiments
— Design issues
— Modeling issues

* Analysis for multifidelity computer
experiments

* Improvements based on variable selection



Introduction to computer experiments

“*First computer experiments were conducted
at Los Alamos National Laboratory to study
the behavior of nuclear weapons.

*»Computer experiments are becoming
popular because many physical experiments

are difficult or impossible to perform.
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Properties of computer experiments

* Computer experiments refer to those experiments that
are performed 1n computers using physical models
and finite element analysis.

* Deterministic outputs (no random error)

» No replicates required
» Interpolation

* Large number of variables

* Time-consuming, expensive



Experimental design for computer experiments

e Latin hypercube design (LHD).
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» McKay, Beckman, Conover (1979).

» Easy to construct.

> One-dimensional balance.
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Computer experiments modeling
+ Universal kriging Y (x) = p(x) + Z(x),
o p(x) =330 pivi(x),

e /(x): a weak stationary stochastic process with mean 0 and
covariance function 2.

e v,;’s: known functions, p;’s: unknown parameters.

o cov{Y (x+h),Y(x)} = 0%/ (h), where the correlation function
y(h) is a positive semidefinite function with ¢(0) =1 and

¥(=h) =y(h).
* Ordinary kriging

Y(x) = po + Z(x)



RUTGERS

GP example
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Analysis for Multifidelity Computer Experiments

* Multifidelity computer experiments
— Physical experiments and computer experiments
— Computer experiments with different accuracy

* An example in electronic packaging

* Objective:
— Study effect of initial PWB warpage on low cycle fatigue
reliability of solder bumps based on:

e computer experiments: Finite Element Modeling (FEM)
* physical experiments: accelerated thermal cycling test

— How to calibrate?



Finite Element Modeling

Purpose: To Study How Initial PWB (Printed wiring board) Warpage Affects
Solder Bump Fatigue Reliability

= PWB warpage was measured at eutectic temp. and used as initial
geometric input to FEM

Warpage @ 783C
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Study of How PWB Warpage Affects Solder Bump Fatigue

Case Studies for:
— Sn-Pb (Tin-Lead) and Sn-Ag-Cu (Lead-Free) Solder Bumps on

* Two Packages (256-bump 27x27-mm PBGA and 352-bump 35x35-mm PBGA)
— Each package placed at three different locations:

Location 1 Location 2 Location 3

— PWB samples can have different initial warpage or can be flat
* PWBA warpage can be either convex or concave as shown below:

P

Convex Up (+) Concave Up (-)

— Total 42 cases for each package [including 2 types of solder, 3 chip locations, 3 PWB
samples, 2 warpage shapes, and ideal PWB (2 solder types plus 3 package locations)
w/o warpage]
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Factors studied in FEM

Factors:

w maximum initial PWB

warpage at 25°C (mm)

2105.3, 3076.6, 3824.0

Wawpe | Warpage shape

+1: Convex up; -1 Concave up

p package dimension (mm)

27 by 27, 35 by 35

[ location of package (mm)

Center, 60-30, Outmost

m solder bump material

Sn-Pb, Lead-free

f = fatigue life estimation of solder bumps (cycles)
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Data from computer experiments

* FEM data (84 runs)

27by27mm Initial Warp
at 25C -3824 -3076.6  -2105.3 0 21053 3076.6 3824
Sn-Pb Center 1356 1523 1737 1981 1755 1556 1393
60-30 1438 1618 1823 2005 1846 1644 1481
Outmost 1477 1652 1861 2034 1884 1691 1518
-3824 -3076.6  -2105.3 0 21053  3076.6 3824
Lead-Free Center 1618 1807 2042 2215 2061 1845 1660
60-30 1709 1905 2144 2248 2167 1946 1751
Outmost 1756 1950 2189 2280 2214 1990 1804
35by35mm -3824 -3076.6  -2105.3 0 21053 3076.6 3824
Sn-Pb Center 1429 1620 1838 2098 1865 1656 1482
60-30 1512 1706 1933 2125 1969 1739 1558
Outmost 1549 1751 1975 2161 1998 1786 1599
-3824 -3076.6  -2105.3 0 21053  3076.6 3824
Lead-Free Center 1715 1905 2158 2343 2183 1947 1759
60-30 1841 2006 2251 2380 2278 2054 1885
Outmost 1882 2063 2304 2415 2341 2097 1929
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Experimental Study of Solder Bump Fatigue Reliability Affected by Initial

PWB Warpage
Objective: To verify and correlate 3-D finite
element simulation results.

PWB with 35x35 mm PBGA at Location 4
13

ri‘"_(

— ) e .

Accelerated Thermal Cycling Test

150

126°C

l __.( _________ 1

100

ACVANY

n
o

Temperature (C)
|
o

&
3]

-100 -

One Cycle ]

Time (seconds)

Standard Thermal Cycling Profile




FEM Simulation vs Experimental Study
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Analysis for the two ty ypes of data

* Model fitting base on FEM and experimental data:
— Step 1: Fit kriging model using only simulation data

N, (%) =1101.6 +@(X)" W (N, —1101.6])

out

where N _=FEM output data.

our

— Step 2: Calibrate fitted model in Step 1 with experimental data
N, (¥)=1830.3-540w_ +N, (%)
=2931.9-540w__+¢(x)' W' (N _ -1101.61)

whereN (x) = fatigue life prediction
W = maximum initial PWB warpage at 25°C

max
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Calibration Base on Experimental Data

Experimental Data — Kriging Prediction
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300
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Improvement based on variable selection
* Universal kriging Y (x) = p(x) + Z(x),
o (%) =700 pivi(x),

e /(x): a weak stationary stochastic process with mean 0 and
covariance function 2.

e v,;’s: known functions, p;’s: unknown parameters.

o cov{Y (x+h),Y(x)} = 0%/ (h), where the correlation function
y(h) is a positive semidefinite function with ¢(0) =1 and

¥(=h) =y(h).
* Ordinary kriging
Y(x) = po + Z(x)
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Problems with GP model
* Problems with the ordinary kriging model

- The prediction can be poor if there are some strong
trends.

- It 1s not easy to understand the effects of the factors
by just looking at the predictor

- Predictor not robust to the misspecification in the
correlation parameters.

* It has been noted that the prediction accuracy
and model efficiency of a GP model can be

improved by 1dentifying important variables
(Welch et al. 1992, Cressie 1993, Martin and Simpson 2005,
Gramacy and Lee 2008, Joseph et al. 2008, Stein 2008,
Kaufman et al. 2013).



Drawbacks with existing approaches

* Selections are perform based on specific types
of a model with convenient by questionable
assumptions. ,

»>A GP mode y(@) = u@) + 2(), n(x) =) B = fz)B,

> Blind kriging selects important variable based only
on the mean function of GP models.

» Linkletter et al. (2006) introduced a variable
selection procedure only for the correlation

function.
* Computationally intensive



Bayesian variable selection for kriging

* A unified approach that can perform variable selection in
a general GP model 1s attractive but nontrivial. Because
the mean function and the correlation structure are not
independent. The same variable can appear in either one
part or both parts of the model to contribute the effect(s).

* Idea: Using a hierarchical Bayes formulation to connect
different effects of the same variables 1n kriging models.

* Introduce a latent variable into kriging model to indicate
if a particular variable 1s active or not. For those active
variables, they can have effect in the mean function and/
or in the correlation function.



Bayesian variable selection for kriging

e kriging model:
y(x) = p(x) + Z(x Zﬁkxk =

* Define a bmary vector y = (yl yp) Such a
vector 1s used to indicate 1f a partlcular
variable 1s active or not.

e Priors: 7(Bklvk) = (1 —v%)d(0) + v DE(0, 73),
m(Ok|ve) = (1 —7)0(0) + v Exp(Ar),
P(v) oc g1 = )P,
0% o (o2) 7/ Lexp(—1/(202)).



Bayesian variable selection for kriging

* This approach 1s flexible but obtaining the posterior
can be computationally difficult because it involves

high-dimensional integration.
* With some mild assumptions, we can approximate the

posterior by :
P(vly) = C(y)(Vo?w)V x exp (—2 %113 L,(B, 9)) -
(y - F’Yﬁ’y)/q)_l(H)(y o F’Y/B’Y) + P1 Zke’y Wk‘ + P2 Zke’)’ 91{:

0'2

Ly(8,8) = log | ®(6)] +

* The approximation leads to a double penalized
likelihood estimation problem

* Estimation: Coordinate descent algorithm



Summary

* [llustrates how to analyze multifidelity
Computer Experiments using a real example.

* Analysis of computer experiments mainly
based on GP models, in particular, ordinary
kriging model.

* Proposed a Bayesian variable selection
framework to improve prediction accuracy and
model efficiency.



Dinner is ready!
Thank you!



