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Overview 

•  Introduction to computer experiments 
– Design issues 
– Modeling issues 

•  Analysis for multifidelity computer 
experiments 

•  Improvements based on variable selection 
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Introduction to computer experiments 
v First computer experiments were conducted 

at Los Alamos National Laboratory to study 
the behavior of nuclear weapons. 

v Computer experiments are becoming 
popular because many physical experiments 
are difficult or impossible to perform.  
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Properties of computer experiments 
•  Computer experiments refer to those experiments that 

are performed in computers using physical models 
and finite element analysis. 

•  Deterministic outputs (no random error) 
Ø  No replicates required 
Ø  Interpolation 

•  Large number of variables 
•  Time-consuming, expensive 
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Experimental design for computer experiments 

•  Latin hypercube design (LHD). 

 

 
 

Ø  McKay, Beckman, Conover (1979).  
Ø  Easy to construct. 
Ø  One-dimensional balance.  
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Computer experiments modeling 
•  Universal kriging     

•  Ordinary kriging 
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GP example 
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Analysis for Mul$fidelity	  Computer	  Experiments	  

•  Mul$fidelity	  computer	  experiments	  
– Physical	  experiments	  and	  computer	  experiments	  
– Computer	  experiments	  with	  different	  accuracy	  

•  An	  example	  in	  electronic	  packaging	  
•  Objec$ve:	  

–  Study	  effect	  of	  ini$al	  PWB	  warpage	  on	  low	  cycle	  fa$gue	  
reliability	  of	  solder	  bumps	  based	  on:	  

•  computer	  experiments:	  Finite	  Element	  Modeling	  (FEM)	  
•  physical	  experiments:	  accelerated	  thermal	  cycling	  test	  

–  How	  to	  calibrate?	  
	  



9	  

Finite Element Modeling 
Purpose:	  To	  Study	  How	  Ini$al	  PWB	  (Printed	  wiring	  board)	  Warpage	  Affects	  

Solder	  Bump	  Fa$gue	  Reliability	  	  	  	  
§  PWB	  warpage	  was	  measured	  at	  eutec$c	  temp.	  and	  used	  as	  ini$al	  
geometric	  input	  to	  FEM	  

Warpage	  Measurement	  of	  Sample	  2	  at	  183°C	  
Max.	  warpage	  across	  PWB	  =	  2158.9	  micron	   Meshed	  PWB	  with	  35×35mm	  PBGA	  
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Study	  of	  How	  PWB	  Warpage	  Affects	  Solder	  Bump	  Fa$gue	  
•  Case	  Studies	  for:	  

–  Sn-‐Pb	  (Tin-‐Lead)	  and	  Sn-‐Ag-‐Cu	  (Lead-‐Free)	  Solder	  Bumps	  on	  
•  Two	  Packages	  (256-‐bump	  27×27-‐mm	  PBGA	  and	  352-‐bump	  35×35-‐mm	  PBGA)	  

–  Each	  package	  placed	  at	  three	  different	  loca$ons:	  

–  PWB	  samples	  can	  have	  different	  ini$al	  warpage	  or	  can	  be	  flat	  
•  PWBA	  warpage	  can	  be	  either	  convex	  or	  concave	  as	  shown	  below:	  

–  Total	  42	  cases	  for	  each	  package	  [including	  2	  types	  of	  solder,	  3	  chip	  loca$ons,	  3	  PWB	  
samples,	  2	  warpage	  shapes,	  and	  ideal	  PWB	  (2	  solder	  types	  plus	  3	  package	  loca$ons)	  
w/o	  warpage]	  

Convex	  Up	  (+)	   Concave	  Up	  (-‐)	  

Loca@on	  1	   Loca@on	  2	   Loca@on	  3	  



11	  

Factors studied in FEM  
•  Factors:	  

fN

maxw

shapew

pd

pl

sm

=	  fa$gue	  life	  es$ma$on	  of	  solder	  bumps	  (cycles) 

maximum initial PWB 
warpage at 25°C (mm) 

2105.3, 3076.6, 3824.0 

warpage shape  +1: Convex up; -1 Concave up 

package dimension  (mm)  27 by 27,  35 by 35 

location of package (mm) Center, 60-30, Outmost 

solder bump material Sn-Pb, Lead-free 



27by27mm Initial Warp
 at 25C -3824 -3076.6 -2105.3 0 2105.3 3076.6 3824

Sn-Pb Center 1356 1523 1737 1981 1755 1556 1393
60-30 1438 1618 1823 2005 1846 1644 1481
Outmost 1477 1652 1861 2034 1884 1691 1518

-3824 -3076.6 -2105.3 0 2105.3 3076.6 3824
Lead-Free Center 1618 1807 2042 2215 2061 1845 1660

60-30 1709 1905 2144 2248 2167 1946 1751
Outmost 1756 1950 2189 2280 2214 1990 1804

35by35mm -3824 -3076.6 -2105.3 0 2105.3 3076.6 3824
Sn-Pb Center 1429 1620 1838 2098 1865 1656 1482

60-30 1512 1706 1933 2125 1969 1739 1558
Outmost 1549 1751 1975 2161 1998 1786 1599

-3824 -3076.6 -2105.3 0 2105.3 3076.6 3824
Lead-Free Center 1715 1905 2158 2343 2183 1947 1759

60-30 1841 2006 2251 2380 2278 2054 1885
Outmost 1882 2063 2304 2415 2341 2097 1929
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Data from computer experiments 
•  FEM	  data	  	  (84	  runs)	  
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Experimental Study of Solder Bump Fatigue Reliability Affected by Initial 
PWB Warpage 

Objec$ve:	  To	  verify	  and	  correlate	  3-‐D	  finite	  
element	  simula$on	  results.	  

PWB	  with	  35×35	  mm	  PBGA	  at	  Loca$on	  2	  	  

PWB	  with	  35×35	  mm	  PBGA	  at	  Loca$on	  4	  	   Standard	  Thermal	  Cycling	  Profile	  

Accelerated	  Thermal	  Cycling	  Test	  	  	  	  	  
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FEM Simulation vs Experimental Study 
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Analysis for the two types of data 
•  Model	  fidng	  base	  on	  FEM	  and	  experimental	  data:	  	  

–  Step	  1:	  Fit	  kriging	  model	  using	  only	  simula$on	  data	  

–  Step	  2:	  Calibrate	  fieed	  model	  in	  Step	  1	  with	  experimental	  data	  

 	  

 	  

)6.1101()(6.1101)(ˆ 1 INxxN out
T

k −Ψ+= − ϕ

= 2931.9−540wmax +φ(
x)TΨ−1(Nout −1101.6I )

maxw
)(ˆ xN f
where 	  	  	  	  	  	  	  	  	  	  =	  fa$gue	  life	  predic$on	  

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  =	  maximum	  ini$al	  PWB	  warpage	  at	  25°C	  	  

N̂ f (
x) =1830.3−540wmax + N̂k (


x)

where 	  	  	  	  	  	  =	  FEM	  output	  data.	  	  
	  

outN
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Improvement based on variable selection 
•  Universal kriging     

•  Ordinary kriging 
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Problems with GP model 
•  Problems with the ordinary kriging model 
  - The prediction can be poor if there are some strong 

trends. 
  - It is not easy to understand the effects of the factors 

by just looking at the predictor 
  - Predictor not robust to the misspecification in the 

correlation parameters.  
•  It has been noted that the prediction accuracy 

and model efficiency of a GP model can be 
improved by identifying important variables 
(Welch et al. 1992, Cressie 1993, Martin and Simpson 2005, 
Gramacy and Lee 2008, Joseph et al. 2008, Stein 2008, 
Kaufman et al. 2013). 



Drawbacks with existing approaches 
•  Selections are perform based on specific types 

of a model with convenient by questionable 
assumptions.  
Ø A GP model:  
Ø Blind kriging selects important variable based only 

on the mean function of GP models. 
Ø Linkletter et al. (2006) introduced a variable 

selection procedure only for the correlation 
function.   

•  Computationally intensive 

are active in the spatial model presents a challenging variable selection problem. It is more

complicated than the variable selection approaches used for linear models (references Yuan

and Li (????)) due to high dimensional integrations. Therefore, we introduce a carefully

chosen prior with a novel approximation so that the computation is significantly reduced by

connecting to a penalized likelihood approach.

The remainder of the paper......

2 Kriging preliminary

Suppose the input x = (x1, . . . , xp) has p continuous factors and the output response y 2 R

is continuous. Assume the data (yi,xi), i = 1, . . . , n is a realization of a stochastic process.

Then we model

y(x) = µ(x) + Z(x), (2.1)

where µ(w) is a mean function and Z(w) is a Gaussian process with zero mean and covariance

function �(·).

The mean function µ(x) can be modeled in a general form as

µ(x) =
pX

k=1

�kxk = f(x)0�, (2.2)

where � = (�1, . . . , �p) is a vector. Denote the ith input xi = (xi1, . . . , xip)0. For the

covariance function �(·) in the Gaussian process Z(x), a common choice of � is based on

the kernel function such as Gaussian kernel. Given two points xi and xj, we model their

covariance as

�(Z(xi), Z(xj)) = �

2 exp

 
�

pX

k=1

✓k|xik � xjk|2
!
. (2.3)

Note that the parameters in the above model are �,✓, and �

2. We consider a hierarchical

prior structure for these parameters as follows. Let us define a binary vector � = (�1, . . . , �p)0

where �i 2 {0, 1}. Such a vector is used to indicate a candidate model which includes ith

factor xi if �i = 1. For convenience, denote by �

�

,✓

�

the corresponding quantities �,✓

under �.
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Bayesian variable selection for kriging 
•  A unified approach that can perform variable selection in 

a general GP model is attractive but nontrivial. Because 
the mean function and the correlation structure are not 
independent. The same variable can appear in either one 
part or both parts of the model to contribute the effect(s). 

•  Idea: Using a hierarchical Bayes formulation to connect 
different effects of the same variables in kriging models.  

•  Introduce a latent variable into kriging model to indicate 
if a particular variable is active or not. For those active 
variables, they can have effect in the mean function and/
or in the correlation function. 



Bayesian variable selection for kriging 
•  kriging model: 
 
•  Define a binary vector γ = (γ1,…,γp)’. Such a 

vector is used to indicate if a particular 
variable is active or not.  

•  Priors:  
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3 Variable selection in kriging with Hierarchical Priors

The novelty of this approach is to apply a latent variable to connect the two di↵erent e↵ects

of the same variable in a kriging model. The latent variable �k for the kth variable is as-

sumed to be 1 or 0 indicating the variable is active or not. Conditional on the latent variable,

prior distributions for the mean function parameters (for simplicity we first consider linear

e↵ects ????) �k and the correlation parameters ✓k are specified by mixture distributions

denoted by ⇡(�k|�k) and ⇡(✓k|�k). Using this hierarchical Bayes formulation, latent variable,

these two e↵ects of the same variable are well associated with each other and the conditional

distributions can be assumed to be independent. This Bayesian framework provides a new

perspective on selecting important variables in kriging models. Such a flexible approach is

conceptually attractive, but it posts challenges in computation, especially when the dimen-

sion goes high. This is not surprising, given a similar di�culty experienced in linear models

(George and McCulloch, 1993; George and Foster 2000). Di↵erent from linear models, incor-

porating the Bayesian approach dramatically increases the computational di�culty because

of the high dimensional integration for the Gaussian process.

Now we set the priors for � and ✓. Straightforwardly, we like to set �k = 0 if �k = 0. If

�k = 1, we apply the double exponential distribution for �k. Specifically, the prior of �k is

⇡(�k|�k) = (1� �k)�(0) + �kDE(0, ⌧k), (3.1)

where DE(0, ⌧k) has a density function (1/2)⌧k exp(�⌧k|�k|). The double-exponential (DE)

prior can accommodate large coe�cients because of its heavier tail property. With the same

spirit, we set the prior of ✓i to be

⇡(✓k|�k) = (1� �k)�(0) + �kExp(�k), (3.2)

where Exp(�k) is an exponential distribution with density function �k exp(��k�k). For the

prior of �k, a commonly used prior is Bernoulli distribution Bern(q) which �k takes the value

1 with probability q. By assuming the independence among factors, the prior of � can be

written as

P (�) / q

|� |(1� q)p�|� |
, (3.3)
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where |�| =
Pp

k=1 �k. Finally, the prior for �

2 can follow a inverse �-squared distribution

Inv-�2(⌫0), i.e.,

�

2 / (�2)�⌫0/2�1 exp(�1/(2�2)). (3.4)

Assume the hyperparameters ⌧k = ⌧ and �k = � for all k. With the above formulation,

we can write the joint distribution P (�,✓,�, �2) as

P (�,✓,�, �2) / exp

 
�1

2

h
n log �2 + log |�(✓)|+

(y � F

�

�

�

)0��1(✓)(y � F

�

�

�

)

�

2

i!

⇥
pY

k=1

[
⌧

2
exp(�⌧ |�k|)]�k ⇥

pY

k=1

[� exp(��|✓k|)]�k ⇥ q

|� |(1� q)p�|� | ⇥ (�2)�⌫0/2�1 exp(�1/(2�2))

/ exp

 
�1

2

h
log |�(✓)|+

(y � F

�

�

�

)0��1(✓)(y � F

�

�

�

) + ⌧�

2
P

k2� |�k|+ ��

2
P

k2� ✓k

�

2

i!

⇥ (�2)�(n+⌫0)/2�1 exp(�1/(2�2))⇥ (
q

1� q

⌧�)|� |
.

Denote ⇢1 = ⌧�

2
, ⇢2 = ��

2, and w = q
1�q⌧�. If we ignore �

2 by assuming a non-informative

prior, then we can write

P (�,✓,�) / exp

✓
�1

2
L⇢(�,✓)

◆
w

|� |
, (3.5)

where L⇢(�,✓) is defined as

L⇢(�,✓) = log |�(✓)|+
(y � F

�

�

�

)0��1(✓)(y � F

�

�

�

) + ⇢1

P
k2� |�k|+ ⇢2

P
k2� ✓k

�

2
.

3.1 Empirical Bayes

From the viewpoint of empirical Bayes, our interest is to get the posterior marginal likelihood

of �, which is

P (�|y) = C(y)w|� |
Z Z

exp

✓
�1

2
L⇢(�,✓)

◆
d�

�

d✓

�

. (3.6)

The major di�culty for the posterior is the high-dimensional integration in (3.6). To

overcome this drawback, we focus on a subset of models with highest posterior probability,

which can be well approximated. (Remark : such an idea has a similar spirit as the MAP,

maximizing-a-posterior).
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•  This approach is flexible but obtaining the posterior 
can be computationally difficult because it involves 
high-dimensional integration.  

•  With some mild assumptions, we can approximate the 
posterior by  

•  The approximation leads to a double penalized 
likelihood estimation problem 

•  Estimation: Coordinate descent algorithm  

Based on the definition of u and v, we can known that h(u,v) is minimized at u⇤ = 0 and

v

⇤ = 0.

Definition 1. A model � is called a regular model if and only if all coe�cients of �⇤
�

is

nonzero.

Note that the double integrals in (??) can be written as

P (�|y) = C(y)w|� | exp
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2
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⇥
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�◆Z
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✓
� 1

2�2
f(u,v)

◆
dudv.

For regular models, f(u,v) is di↵erential and

@

2
f(u,v)

@u

2
= 2F 0��1(✓⇤ + v)F .

Then we can apply the Laplace approximation at u = u

⇤ for the integral with respect to u.

That is,
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.

Therefore, we can obtain

P (�|y) = C(y)(
p
�

2
w)|� | exp

✓
�1

2
L⇢(�

⇤
,✓

⇤)

◆
⇥

Z
exp

⇣
� 1
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⇥
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⇤⌘
dv.

Recall that ⌦ = ��1(✓⇤)@�(✓
⇤
)

@✓
v��1(✓⇤), which is a linear function of v.

(More detailed will be filled in).

For the case with a relatively large sample size n, we can approximate P (�|y) as

P (�|y) ⇡ C(y)(
p
�

2
w)|� | ⇥ exp

 
�1

2
min
�,✓

L⇢(�,✓)

!
. (3.11)
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where |�| =
Pp

k=1 �k. Finally, the prior for �

2 can follow a inverse �-squared distribution

Inv-�2(⌫0), i.e.,

�

2 / (�2)�⌫0/2�1 exp(�1/(2�2)). (3.4)

Assume the hyperparameters ⌧k = ⌧ and �k = � for all k. With the above formulation,

we can write the joint distribution P (�,✓,�, �2) as

P (�,✓,�, �2) / exp
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2

h
n log �2 + log |�(✓)|+
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�
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/ exp
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�

�

�

) + ⌧�

2
P
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2
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�

2

i!

⇥ (�2)�(n+⌫0)/2�1 exp(�1/(2�2))⇥ (
q

1� q

⌧�)|� |
.

Denote ⇢1 = ⌧�

2
, ⇢2 = ��

2, and w = q
1�q⌧�. If we ignore �

2 by assuming a non-informative

prior, then we can write

P (�,✓,�) / exp

✓
�1

2
L⇢(�,✓)

◆
w

|� |
, (3.5)

where L⇢(�,✓) is defined as

L⇢(�,✓) = log |�(✓)|+
(y � F

�

�

�

)0��1(✓)(y � F

�

�

�

) + ⇢1

P
k2� |�k|+ ⇢2

P
k2� ✓k

�

2
.

3.1 Empirical Bayes

From the viewpoint of empirical Bayes, our interest is to get the posterior marginal likelihood

of �, which is

P (�|y) = C(y)w|� |
Z Z

exp

✓
�1

2
L⇢(�,✓)

◆
d�

�

d✓

�

. (3.6)

The major di�culty for the posterior is the high-dimensional integration in (??). To

overcome this drawback, we focus on a subset of models with highest posterior probability,

which can be well approximated. (Remark : such an idea has a similar spirit as the MAP,

maximizing-a-posterior).

4

Bayesian variable selection for kriging 



Summary 
•  Illustrates how to analyze multifidelity 

Computer Experiments using a real example. 
•  Analysis of computer experiments mainly 

based on GP models, in particular, ordinary 
kriging model.  

•  Proposed a Bayesian variable selection 
framework to improve prediction accuracy and 
model efficiency. 



Dinner	  is	  ready!	  
Thank	  you!	  


