One-shot learning and big data with n=2

DIMACS, May 16, 2013 - 1 / 26

Introduction and overview	•
Statistical setting	•
Principal component regression	•
Weak consistency and big data with $n = 2$	

Risk approximations and consistency

Numerical results

Conclusions and future directions

Introduction and overview

One-shot learning

Introduction and	
overview	

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Humans are able to correctly recognize and understand objects based on very few training examples.

 \Box e.g. images, words.

Training

Flamingo √

Flamingo \checkmark

Testing

Flamingo?

Flamingo?

Flamingo?

Vast literature in cognitive science (Tenenbaum et al., 2006; Kemp et al., 2007), language acquisition (Carey et al., 1978; Xu et al., 2007), and computer vision (Fink, 2005; Fei-Fei et al., 2006)

DIMACS, May 16, 2013 - 3 / 26

One-shot learning

Introduction and	
overview	
Statistical setting	•
Principal component	
regression	
Weak consistency and	
big data with $n=2$	
Risk approximations and	
consistency	•
	•
Numerical results	
Conclusions and future	
directions	

Successful one-shot learning requires the learner to incorporate strong contextual information into the learning algorithm.

□ Image recognition: Information on object categories.

- Objects tend to be categorized by shape, color, etc.
- Word-learning: Common function words are often used in conjunction with a novel word and referent.
 - This is a KOBA. Since this, is, and a are function words that often appear with nouns, KOBA is likely the new referent.

Many recent statistical approaches to one-shot learning are based on hierarchical Bayesian models.

□ Effective in a variety of examples.

One-shot learning

Introduction and	
overview	
Statistical setting	
•	
Principal component	
regression	
Weak consistency and	
big data with $n=2$	
•	
Risk approximations and	
consistency	
•	
Numerical results	
Conclusions and future	

directions

- We propose a simple factor model for one-shot learning with continuous outcomes.
 - □ *Highly* idealized, but amenable to theoretical analysis.
 - □ Novel risk approximations for:
 - (i) assessing the performance of one-shot learning methods and
 - (ii) gaining insight into the significance of various parameters for one-shot learning.
- The methods considered here are variants of principal component regression (PCR).
 - \Box One-shot asymptotic regime: Fixed *n*, large *d*, strong contextual information.
 - See work by Hall, Jung, Marron, and co-authors on "high dimension, low sample size" data (especially work on PCA and classification).
 - \Box New insights into PCR.
 - Classical PCR estimator is generally inconsistent in the one-shot regime.
 - Bias-correction via expansion.

DIMACS, May 16, 2013 - 5 / 26

Outline

Introduction and overview Statistical setting Principal component regression Weak consistency and big data with n = 2Risk approximations and consistency Numerical results Conclusions and future

directions

Statistical setting.

- Principal component regression.
- Weak consistency and big data with n = 2.
- Risk approximations and consistency.
- Numerical results.
- Conclusions and future directions.

	Introduction	and
overview	overview	

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Statistical setting

The model

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

The observed data consists of $(y_1, \mathbf{x}_1), ..., (y_n, \mathbf{x}_n)$, where $y_i \in \mathbb{R}$ is a scalar outcome and $\mathbf{x}_i \in \mathbb{R}^d$ is an associated *d*-dimensional "context" vector.

• We suppose that y_i and \mathbf{x}_i are related via

$$y_i = h_i \theta + \xi_i, \qquad h_i \sim N(0, \eta^2), \ \xi_i \sim N(0, \sigma^2),$$

$$\mathbf{x}_i = h_i \gamma \sqrt{d} \mathbf{u} + \boldsymbol{\epsilon}_i, \quad \boldsymbol{\epsilon}_i \sim N(0, \tau^2 I).$$

NB:

 \square $h_i, \xi_i \in \mathbb{R}$ and $\epsilon_i \in \mathbb{R}^d$, $1 \le i \le n$, are all assumed to be independent.

- h_i is a latent factor linking y_i and \mathbf{x}_i .
- ξ_i and ϵ_i are random noise.

] The unit vector $\mathbf{u} \in \mathbb{R}^d$ and real numbers $heta, \gamma \in \mathbb{R}$ are non-random.

It is implicit in our normalization that the "x-signal" $||h_i\gamma\sqrt{d}\mathbf{u}||^2 \simeq d$ is quite strong.

 \Box To simplify notation, we let $\mathbf{y} = (y_1, ..., y_n)$ and $X = (\mathbf{x}_1, ..., \mathbf{x}_n)^T$.

DIMACS, May 16, 2013 - 8 / 26

Predictive risk

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Observe that $(y_i, \mathbf{x}_i) \sim N(0, V)$ are jointly normal with

$$V = \begin{pmatrix} \theta^2 \eta^2 + \sigma^2 & \theta \gamma \eta^2 \sqrt{d} \mathbf{u}^T \\ \theta \gamma \eta^2 \sqrt{d} \mathbf{u} & \tau^2 I + \eta^2 \gamma^2 d \mathbf{u} \mathbf{u}^T \end{pmatrix}.$$
 (†)

Goal: Given the data (\mathbf{y}, X) , devise prediction rules $\hat{y} : \mathbb{R}^d \to \mathbb{R}$ so that the risk

$$R_V(\hat{y}) = E_V \{ \hat{y}(\mathbf{x}_{new}) - y_{new} \}^2 = E_V \{ \hat{y}(\mathbf{x}_{new}) - h_{new}\theta \}^2 + \sigma^2$$

is small, where $(y_{new}, \mathbf{x}_{new}) = (h_{new}\theta + \xi_{new}, h_{new}\gamma\sqrt{d\mathbf{u}} + \epsilon_{new})$ has the same distribution as (y_i, \mathbf{x}_i) and is independent of (\mathbf{y}, X) .

R_V(\hat{y}) is a measure of *predictive risk*, which is completely determined by \hat{y} and the parameter matrix V, given in (†).

One-shot asymptotic regime

Introduction and overview	We all	re primarily interested	in identifying methods \hat{y} that perform
Statistical setting	well ir	n the one-shot asymp	totic regime.
Principal component regression	Key fe	eatures of the one-sho	ot asymptotic regime:
Weak consistency and big data with $n = 2$ Risk approximations and consistency	(i) (ii)	$n ext{ is fixed} \ d o \infty$	bracesmall n , large d
Numerical results Conclusions and future directions	(iii) (i∨)	$\begin{aligned} \sigma^2 &\to 0\\ \inf \eta^2 \gamma^2 / \tau^2 > 0 \end{aligned}$	} abundant contextual information
	■ NB:		
• • • •		σ^2 is the noise-level f	or the " y -data."
0 0 0 0 0		$\eta^2\gamma^2/ au^2$ is the signal	I-to-noise ratio for the " $\mathbf x$ -data."
0 0 0 0			
• • •			
			DIMACS, May 16, 2013 – 7

MACS, May 16, 2013 - 10 / 26

Introduction	and
overview	

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Principal component regression

Linear prediction rules

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

By assumption, the data are multivariate normal. Thus,

$$E_V(y_i|\mathbf{x}_i) = \mathbf{x}_i^T \boldsymbol{\beta},$$

where
$$oldsymbol{eta}= heta\gamma\eta^2\sqrt{d}\mathbf{u}/(au^2+\eta^2\gamma^2d).$$

This suggests studying linear prediction rules of the form

$$\hat{y}(\mathbf{x}) = \mathbf{x}^T \hat{\boldsymbol{\beta}}$$

for some estimator $\hat{\beta}$ of β .

Principal component regression

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Let $l_1 \geq \cdots \geq l_{n \wedge d} \geq 0$ denote the ordered n largest eigenvalues of $X^T X$ and let $\hat{\mathbf{u}}_1, \dots, \hat{\mathbf{u}}_{n \wedge d}$ denote corresponding eigenvectors with unit length.

 \square $\hat{\mathbf{u}}_1, ..., \hat{\mathbf{u}}_{n \wedge d}$ are the principal components of *X*.

Let $U_k = (\hat{\mathbf{u}}_1 \cdots \hat{\mathbf{u}}_k)$ be the $d \times k$ matrix with columns given by $\hat{\mathbf{u}}_1, ..., \hat{\mathbf{u}}_k$, for $1 \le k \le n \land d$. In its most basic form, *principal component* regression involves regressing \mathbf{y} on XU_k for some (typically small) k, and taking $\hat{\boldsymbol{\beta}} = U_k (U_k^T X^T X U_k)^{-1} U_k^T X^T \mathbf{y}$.

In the problem considered here, $\text{Cov}(\mathbf{x}_i) = \tau^2 I + \eta^2 \gamma^2 d\mathbf{u}\mathbf{u}^T$ has a single eigenvector larger than τ^2 and the corresponding eigenvector is parallel to β . Thus, it is natural to take k = 1 and consider the principal component regression (PCR) estimator

$$\hat{\boldsymbol{\beta}}_{pcr} = \frac{\hat{\mathbf{u}}_1^T X^T \mathbf{y}}{\hat{\mathbf{u}}_1^T X^T X \hat{\mathbf{u}}_1} \hat{\mathbf{u}}_1 = \frac{1}{l_1} \hat{\mathbf{u}}_1^T X^T \mathbf{y} \hat{\mathbf{u}}_1$$

DIMACS, May 16, 2013 – 13 / 26

Introduction	and
overview	

Statistical setting

Principal component regression

Weak consistency and big data with n = 2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Weak consistency and big data with

$$n = 2$$

PCR with n=2

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

As a warm-up for the general n setting, we consider the special case where n = 2.

When n = 2, the PCR estimator $\hat{\beta}_{pcr}$ has an especially simple form because the largest eigenvalue of $X^T X$ and its corresponding eigenvector are given explicitly by

$$l_{1} = \frac{1}{2} \left\{ ||\mathbf{x}_{1}||^{2} + ||\mathbf{x}_{2}||^{2} + \sqrt{(||\mathbf{x}_{1}||^{2} - ||\mathbf{x}_{2}||^{2})^{2} + 4(\mathbf{x}_{1}^{T}\mathbf{x}_{2})^{2}} \right\},$$

$$\hat{\mathbf{u}}_{1} \propto \frac{l_{1} - ||\mathbf{x}_{2}||^{2}}{\mathbf{x}_{1}^{T}\mathbf{x}_{2}} \mathbf{x}_{1} + \mathbf{x}_{2}.$$

Recall that $\mathbf{x}_i = h_i \gamma \sqrt{d} \mathbf{u}_i + \boldsymbol{\epsilon}_i$. Using the large d approximations

$$\begin{aligned} ||\mathbf{x}_i||^2 &\approx h_i^2 \gamma^2 d + \tau^2 d \\ \mathbf{x}_1^T \mathbf{x}_2 &\approx h_1 h_2 \gamma^2 d \end{aligned}$$

leads to...

DIMACS, May 16, 2013 - 15 / 26

Inconsistency and PCR

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Large d approximation:

$$\hat{y}_{pcr}(\mathbf{x}_{new}) = \mathbf{x}_{new}^T \hat{\boldsymbol{\beta}}_{pcr} \approx \frac{\gamma^2 (h_1^2 + h_2^2)}{\gamma^2 (h_1^2 + h_2^2) + \tau^2} h_{new} \theta + e_{pcr},$$

where
$$e_{pcr} = o_P(1)$$
, as $d \to \infty$ and $\sigma^2 \to 0$.

Thus,

$$\hat{y}_{pcr}(\mathbf{x}_{new}) - y_{new} \approx -\frac{\tau^2}{\gamma^2 (h_1^2 + h_2^2) + \tau^2} h_{new} \theta + e_{pcr} - \xi_{new} \\ \rightarrow -\frac{\tau^2}{\gamma^2 (h_1^2 + h_2^2) + \tau^2} h_{new} \theta \\ \neq 0,$$

as $d \to \infty$ and $\sigma^2 \to 0$.

In other words, \hat{y}_{pcr} is *inconsistent* in the one-shot regime.

DIMACS, May 16, 2013 - 16 / 26

Bias-corrected PCR

Introduction and overview

Statistical setting

Principal component regression

```
Weak consistency and big data with n=2
```

```
Risk approximations and consistency
```

Numerical results

```
Conclusions and future directions
```

To obtain a consistent method, we multiply the PCR estimator $\hat{\beta}_{pcr}$ by

$$\frac{l_1}{l_1 - l_2} \approx \frac{\gamma^2 (h_1^2 + h_2^2) + \tau^2}{\gamma^2 (h_1^2 + h_2^2)} > 1.$$

The bias-corrected estimator is

$$\hat{\boldsymbol{\beta}}_{bc} = \frac{l_1}{l_1 - l_2} \hat{\boldsymbol{\beta}}_{pcr} = \frac{1}{l_1 - l_2} \hat{\mathbf{u}}_1^T X^T \mathbf{y} \hat{\mathbf{u}}_1.$$

When d is large and σ^2 is small,

$$\hat{y}_{bc}(\mathbf{x}_{new}) - y_{new} \approx \frac{\gamma^2 (h_1^2 + h_2^2) + \tau^2}{\gamma^2 (h_1^2 + h_2^2)} e_{pcr} + \xi_{new} = o_P(1).$$

- It follows that $|\hat{y}_{bc}(\mathbf{x}_{new}) y_{new}| \to 0$ in probability; that is, \hat{y}_{bc} is weakly consistent.
- On the other hand, $R_V(\hat{y}_{bc}) = \infty$ because $E_V(h_1^2 + h_2^2)^{-1} = \infty$.

 \Box To obtain finite risk, we must take n a little bit larger.

DIMACS, May 16, 2013 - 17 / 26

Introduction and	
overview	

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Risk approximations and consistency

Bias-corrected PCR

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

When n = 2, we found that $\hat{\beta}_{pcr}$ is inconsistent in the one-shot regime; to remedy this, we introduced the bias-corrected PCR estimator.

A similar phenomenon occurs for arbitrary fixed $n \ge 2$. For $d \ge n \ge 2$, define the bias-corrected PCR estimator

$$\hat{\boldsymbol{\beta}}_{bc} = \frac{l_1}{l_1 - l_n} \hat{\boldsymbol{\beta}}_{pcr} = \frac{1}{l_1 - l_n} \hat{\mathbf{u}}_1^T X^T \mathbf{y} \hat{\mathbf{u}}_1.$$

Note that

$$||\hat{\boldsymbol{\beta}}_{bc}|| = \frac{l_1}{l_1 - l_n} ||\hat{\boldsymbol{\beta}}_{pcr}|| \ge ||\hat{\boldsymbol{\beta}}_{pcr}||.$$

 $\Box \ \hat{oldsymbol{eta}}_{bc}$ is obtained from $\hat{oldsymbol{eta}}_{pca}$ by *expansion*.

Risk approximations

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

If n = 2, then $R_V(\hat{y}_{bc}) = \infty$.

 \Box Inverse moments of χ^2 random variable.

When n is larger, there are "enough" degrees of freedom and $R_V(\hat{y}_{bc})$ is finite.

Theorem: Suppose that $\eta^2 \gamma^2 / \tau^2 > c$ for some constant c > 0.

(a) If $n \ge 9$ and $d \ge 1$, then

$$R_V(\hat{y}_{pcr}) = \sigma^2 + \theta^2 \eta^2 \left(\frac{\eta^2 \gamma^2 d}{\eta^2 \gamma^2 d + \tau^2}\right)^2 E_V \left\{ (\mathbf{u}^T \hat{\mathbf{u}}_1)^2 - 1 \right\}^2 + (\text{smaller terms}).$$

(b) If $d \ge n \ge 9$, then

$$R_{V}(\hat{y}_{bc}) = \sigma^{2} + \theta^{2} \eta^{2} \left(\frac{\eta^{2} \gamma^{2} d}{\eta^{2} \gamma^{2} d + \tau^{2}}\right)^{2} E_{V} \left\{\frac{l_{1}}{l_{1} - l_{n}} (\mathbf{u}^{T} \hat{\mathbf{u}}_{1})^{2} - 1\right\}^{2} + (\text{smaller terms}).$$

DIMACS, May 16, 2013 - 20 / 26

Risk approximations

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Proposition. Let $W_n \sim \chi_n^2$ be a chi-squared random variable with n degrees of freedom. If $n \ge 9$ is fixed, $d \to \infty$, and $\eta^2 \gamma^2 / \tau^2 > c$ for some constant c > 0, then

$$E_V \left\{ (\mathbf{u}^T \hat{\mathbf{u}}_1)^2 - 1 \right\}^2 \to E \left\{ \frac{\tau^2}{\eta^2 \gamma^2 W_n + \tau^2} \right\}^2, \\ \left\{ \frac{l_1}{l_1 - l_n} (\mathbf{u}^T \hat{\mathbf{u}}_1)^2 - 1 \right\}^2 \to 0.$$

Corollary. If $n \ge 9$ is fixed, then

 E_V

$$R_V(\hat{y}_{pcr}) \rightarrow \theta^2 \eta^2 E \left\{ \frac{\tau^2}{\eta^2 \gamma^2 W_n + \tau^2} \right\}^2,$$

$$R_V(\hat{y}_{bc}) \rightarrow 0$$

in the one-shot regime, where $d \to \infty$, $\sigma^2 \to 0$, and $\inf \eta^2 \gamma^2 / \tau^2 > 0$. In particular, \hat{y}_{pcr} is inconsistent, but \hat{y}_{bc} is consistent.

DIMACS, May 16, 2013 - 21 / 26

Introduction and
overview
Statistical setting
Principal component
regression
Weak consistency and
big data with $n=2$

Risk approximations and consistency

Numerical results

Conclusions and future directions

Numerical results

Numerical results

Introduction and overview

Statistical setting

Principal component regression

Weak consistency and big data with n=2

Risk approximations and consistency

```
Numerical results
```

Conclusions and future directions

We conducted a simulation study to compare the performance of \hat{y}_{pcr} and \hat{y}_{bc} .

We fixed:

We simulated 1000 independent datasets with various d, n and computed:

- □ Empirical prediction error.
- ☐ Theoretical prediction error (as given by the leading terms in our risk approximations).

□ Relative error,

$$\frac{(\text{Empirical PE}) - (\text{Theoretical PE})}{\text{Empirical PE}} \middle| \times 100\%$$

Numerical results

d = 500					
		PC	CR	Bias-c P	orrected PCR
n=2	Empirical PE	17.9710		4.6898	
	Theoretical PE (Rel. Err.)	?	(?)	∞	(∞)
n = 4	Empirical PE	7.0684		1.0616	
	Theoretical PE (Rel. Err.)	?	(?)	?	(?)
n = 9	Empirical PE	1.4555		0.3565	
	Theoretical PE (Rel. Err.)	1.3959	(4.10%)	0.2175	(38.98%)
n = 20	Empirical PE	0.4485		0.2737	
	Theoretical PE (Rel. Err.)	0.4330	(3.45%)	0.1399	(48.89%)
	n = 2 $n = 4$ $n = 9$ $n = 20$	n = 2 Empirical PE Theoretical PE (Rel. Err.) n = 4 Empirical PE Theoretical PE (Rel. Err.) n = 9 Empirical PE Theoretical PE (Rel. Err.) n = 20 Empirical PE Theoretical PE (Rel. Err.)	d = 500 PC $n = 2$ Empirical PE $Theoretical PE (Rel. Err.)$ $n = 4$ Empirical PE $Rel. Err.$ $n = 9$ Empirical PE $Rel. Err.$ $n = 20$ $Rempirical PE Rel. Err. n = 20$	d = 500 PCR $n = 2$ Empirical PE Theoretical PE (Rel. Err.) $n = 4$ Empirical PE (Rel. Err.) $?$ (?) $n = 9$ Empirical PE (Rel. Err.) $?$ (?) $n = 9$ Empirical PE (Rel. Err.) 1.3959 (4.10%) $n = 20$ Empirical PE (Rel. Err.) 0.4330 (3.45%)	d = 500 PCR Bias-one point of the point

•

d = 5000								
		PC	R	Bias-corrected PCR				
n=2	Empirical PE	18.1134		1.7101				
	Theoretical PE (Rel. Err.)	?	(?)	∞	(∞)			
n = 4	Empirical PE	6.0708		0.2378				
	Theoretical PE (Rel. Err.)	?	(?)	?	(?)			
n = 9	Empirical PE	1.3257		0.1395				
	Theoretical PE (Rel. Err.)	1.2737	(3.92%)	0.1306	(6.40%)			
n = 20	Empirical PE	0.3229		0.1237				
	Theoretical PE (Rel. Err.)	0.3127	(3.17%)	0.1115	(9.84%)			

Introduction and
overview
Statistical setting
Principal component
regression

Weak consistency and big data with n=2

Risk approximations and consistency

Numerical results

Conclusions and future directions

Conclusions and future directions

Conclusions and future directions

Introduction	and	
overview		

Conclusions:

Statistical setting

Principal	component
regressio	n

Weak consistency and big data with n=2

Risk approximations and consistency

Num	erical	results
	0110001	1000110

Conclusions and future directions

We've proposed a simple factor model and a relevant asymptotic regime for one-shot learning with continuous outcomes.

Identified consistent methods.

- Gained new insights into PCR.
 - Bias-correction via expansion may lead to improved performance.

Future directions:

- Classification.
 - Flexible classification methods based on probit/latent variable models and techniques discussed here.
- Sparsity.
 - □ Sparsity is a major topic in high-dimensional data analysis. How does sparsity fit into one-shot learning?

If **u** is sparse, then effective one-shot learning may be possible with smaller **x**-data signal-to-noise ratio.

Applications!