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� Humans are able to correctly recognize and understand objects based on
very few training examples.

� e.g. images, words.

Training

Flamingo X

Flamingo X

−→

Testing

Flamingo?

Flamingo?

Flamingo?

� Vast literature in cognitive science (Tenenbaum et al., 2006; Kemp et al.,
2007), language acquisition (Carey et al., 1978; Xu et al., 2007), and
computer vision (Fink, 2005; Fei-Fei et al., 2006)
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� Successful one-shot learning requires the learner to incorporate

strong contextual information into the learning algorithm.

� Image recognition: Information on object categories.

� Objects tend to be categorized by shape, color, etc.

� Word-learning: Common function words are often used in
conjunction with a novel word and referent.

� This is a KOBA. Since this, is, and a are function words
that often appear with nouns, KOBA is likely the new referent.

� Many recent statistical approaches to one-shot learning are based

on hierarchical Bayesian models.

� Effective in a variety of examples.
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� We propose a simple factor model for one-shot learning with continuous
outcomes.

� Highly idealized, but amenable to theoretical analysis.

� Novel risk approximations for:

(i) assessing the performance of one-shot learning methods and

(ii) gaining insight into the significance of various parameters for one-shot
learning.

� The methods considered here are variants of principal component
regression (PCR).

� One-shot asymptotic regime: Fixed n, large d, strong contextual information.

� See work by Hall, Jung, Marron, and co-authors on “high dimension,
low sample size” data (especially work on PCA and classification).

� New insights into PCR.

� Classical PCR estimator is generally inconsistent in the one-shot
regime.

� Bias-correction via expansion.
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� Statistical setting.

� Principal component regression.

� Weak consistency and big data with n = 2.

� Risk approximations and consistency.

� Numerical results.

� Conclusions and future directions.
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� The observed data consists of (y1,x1), ..., (yn,xn), where yi ∈ R is a
scalar outcome and xi ∈ R

d is an associated d-dimensional “context”
vector.

� We suppose that yi and xi are related via

yi = hiθ + ξi, hi ∼ N(0, η2), ξi ∼ N(0, σ2),

xi = hiγ
√
du+ ǫi, ǫi ∼ N(0, τ2I).

� NB:

� hi, ξi ∈ R and ǫi ∈ R
d, 1 ≤ i ≤ n, are all assumed to be independent.

� hi is a latent factor linking yi and xi.

� ξi and ǫi are random noise.

� The unit vector u ∈ R
d and real numbers θ, γ ∈ R are non-random.

� It is implicit in our normalization that the “x-signal” ||hiγ
√
du||2 ≍ d is

quite strong.

� To simplify notation, we let y = (y1, ..., yn) and X = (x1, ...,xn)
T .
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� Observe that (yi,xi) ∼ N(0, V ) are jointly normal with

V =

(

θ2η2 + σ2 θγη2
√
duT

θγη2
√
du τ2I + η2γ2duuT

)

. (†)

� Goal: Given the data (y, X), devise prediction rules ŷ : Rd → R so that
the risk

RV (ŷ) = EV {ŷ(xnew)− ynew}2 = EV {ŷ(xnew)− hnewθ}2 + σ2

is small, where (ynew,xnew) = (hnewθ + ξnew, hnewγ
√
du+ ǫnew)

has the same distribution as (yi,xi) and is independent of (y, X).

� RV (ŷ) is a measure of predictive risk, which is completely determined by
ŷ and the parameter matrix V , given in (†).
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� We are primarily interested in identifying methods ŷ that perform

well in the one-shot asymptotic regime.

� Key features of the one-shot asymptotic regime:

(i) n is fixed
}

small n, large d
(ii) d → ∞

(iii) σ2 → 0
}

abundant contextual information
(iv) inf η2γ2/τ2 > 0

� NB:

� σ2 is the noise-level for the “y-data.”

� η2γ2/τ2 is the signal-to-noise ratio for the “x-data.”
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� By assumption, the data are multivariate normal. Thus,

EV (yi|xi) = x
T
i β,

where β = θγη2
√
du/(τ2 + η2γ2d).

� This suggests studying linear prediction rules of the form

ŷ(x) = x
T β̂

for some estimator β̂ of β.
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� Let l1 ≥ · · · ≥ ln∧d ≥ 0 denote the ordered n largest eigenvalues of
XTX and let û1, ..., ûn∧d denote corresponding eigenvectors with unit
length.

� û1, ..., ûn∧d are the principal components of X .

� Let Uk = (û1 · · · ûk) be the d× k matrix with columns given by
û1, ..., ûk, for 1 ≤ k ≤ n∧ d. In its most basic form, principal component
regression involves regressing y on XUk for some (typically small) k, and
taking β̂ = Uk(U

T
k XTXUk)

−1UT
k XT

y.

� In the problem considered here, Cov(xi) = τ2I + η2γ2duuT has a
single eigenvector larger than τ2 and the corresponding eigenvector is
parallel to β. Thus, it is natural to take k = 1 and consider the principal
component regression (PCR) estimator

β̂pcr =
û
T
1
XT

y

û
T
1
XTXû1

û1 =
1

l1
û
T
1
XT

yû1.
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� As a warm-up for the general n setting, we consider the special

case where n = 2.

� When n = 2, the PCR estimator β̂pcr has an especially simple form

because the largest eigenvalue of XTX and its corresponding
eigenvector are given explicitly by

l1 =
1

2

{

||x1||2 + ||x2||2 +
√

(||x1||2 − ||x2||2)2 + 4(xT
1
x2)2

}

,

û1 ∝ l1 − ||x2||2
x
T
1
x2

x1 + x2.

� Recall that xi = hiγ
√
dui + ǫi. Using the large d approximations

||xi||2 ≈ h2i γ
2d+ τ2d

x
T
1 x2 ≈ h1h2γ

2d

leads to...
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� Large d approximation:

ŷpcr(xnew) = x
T
newβ̂pcr ≈ γ2(h2

1
+ h2

2
)

γ2(h2

1
+ h2

2
) + τ2

hnewθ + epcr,

where epcr = oP (1), as d → ∞ and σ2 → 0.

� Thus,

ŷpcr(xnew)− ynew ≈ − τ2

γ2(h2

1
+ h2

2
) + τ2

hnewθ + epcr − ξnew

→ − τ2

γ2(h2

1
+ h2

2
) + τ2

hnewθ

6= 0,

as d → ∞ and σ2 → 0.

� In other words, ŷpcr is inconsistent in the one-shot regime.
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� To obtain a consistent method, we multiply the PCR estimator β̂pcr by

l1
l1 − l2

≈ γ2(h2

1
+ h2

2
) + τ2

γ2(h2

1
+ h2

2
)

> 1.

The bias-corrected estimator is

β̂bc =
l1

l1 − l2
β̂pcr =

1

l1 − l2
û
T
1
XT

yû1.

� When d is large and σ2 is small,

ŷbc(xnew)− ynew ≈ γ2(h2

1
+ h2

2
) + τ2

γ2(h2

1
+ h2

2
)

epcr + ξnew = oP (1).

� It follows that |ŷbc(xnew)− ynew| → 0 in probability; that is, ŷbc is
weakly consistent.

� On the other hand, RV (ŷbc) = ∞ because EV (h
2

1
+ h2

2
)−1 = ∞.

� To obtain finite risk, we must take n a little bit larger.



Risk approximations and consistency

Introduction and
overview

Statistical setting

Principal component
regression

Weak consistency and
big data with n = 2

Risk approximations and
consistency

Numerical results

Conclusions and future
directions

DIMACS, May 16, 2013 – 18 / 26



Bias-corrected PCR

Introduction and
overview

Statistical setting

Principal component
regression

Weak consistency and
big data with n = 2

Risk approximations and
consistency

Numerical results

Conclusions and future
directions

DIMACS, May 16, 2013 – 19 / 26

� When n = 2, we found that β̂pcr is inconsistent in the one-shot

regime; to remedy this, we introduced the bias-corrected PCR

estimator.

� A similar phenomenon occurs for arbitrary fixed n ≥ 2. For

d ≥ n ≥ 2, define the bias-corrected PCR estimator

β̂bc =
l1

l1 − ln
β̂pcr =

1

l1 − ln
û
T
1 X

T
yû1.

� Note that

||β̂bc|| =
l1

l1 − ln
||β̂pcr|| ≥ ||β̂pcr||.

� β̂bc is obtained from β̂pca by expansion.
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� If n = 2, then RV (ŷbc) = ∞.

� Inverse moments of χ2 random variable.

� When n is larger, there are “enough” degrees of freedom and RV (ŷbc) is
finite.

Theorem: Suppose that η2γ2/τ2 > c for some constant c > 0.

(a) If n ≥ 9 and d ≥ 1, then

RV (ŷpcr) = σ2 + θ2η2

(

η2γ2d

η2γ2d+ τ2

)2

EV

{

(uT
û1)

2 − 1
}

2

+(smaller terms).

(b) If d ≥ n ≥ 9, then

RV (ŷbc) = σ2 + θ2η2

(

η2γ2d

η2γ2d+ τ2

)2

EV

{

l1
l1 − ln

(uT
û1)

2 − 1

}

2

+(smaller terms).
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Proposition. Let Wn ∼ χ2

n be a chi-squared random variable with n degrees of
freedom. If n ≥ 9 is fixed, d → ∞, and η2γ2/τ2 > c for some constant c > 0,
then

EV

{

(uT
û1)

2 − 1
}2 → E

{

τ2

η2γ2Wn + τ2

}2

,

EV

{

l1
l1 − ln

(uT
û1)

2 − 1

}2

→ 0.

Corollary. If n ≥ 9 is fixed, then

RV (ŷpcr) → θ2η2E

{

τ2

η2γ2Wn + τ2

}2

,

RV (ŷbc) → 0

in the one-shot regime, where d → ∞, σ2 → 0, and inf η2γ2/τ2 > 0. In
particular, ŷpcr is inconsistent, but ŷbc is consistent.
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� We conducted a simulation study to compare the performance of ŷpcr and
ŷbc.

� We fixed:

� θ = 4, σ2 = 1/10, η2 = 4, γ2 = 1/4, τ2 = 1.

� NB: σ2 = 1/10 is fairly small; η2γ2/τ2 = 1 is reasonably large.

� u = (1, 0, ..., 0) ∈ R
d.

� We simulated 1000 independent datasets with various d, n and computed:

� Empirical prediction error.

� Theoretical prediction error (as given by the leading terms in our risk
approximations).

� Relative error,
∣

∣

∣

∣

(Empirical PE)− (Theoretical PE)

Empirical PE

∣

∣

∣

∣

× 100%.
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d = 500

PCR
Bias-corrected

PCR

n = 2 Empirical PE 17.9710 4.6898
Theoretical PE (Rel. Err.) ? (?) ∞ (∞)

n = 4 Empirical PE 7.0684 1.0616
Theoretical PE (Rel. Err.) ? (?) ? (?)

n = 9 Empirical PE 1.4555 0.3565
Theoretical PE (Rel. Err.) 1.3959 (4.10%) 0.2175 (38.98%)

n = 20 Empirical PE 0.4485 0.2737
Theoretical PE (Rel. Err.) 0.4330 (3.45%) 0.1399 (48.89%)

d = 5000

PCR
Bias-corrected

PCR

n = 2 Empirical PE 18.1134 1.7101
Theoretical PE (Rel. Err.) ? (?) ∞ (∞)

n = 4 Empirical PE 6.0708 0.2378
Theoretical PE (Rel. Err.) ? (?) ? (?)

n = 9 Empirical PE 1.3257 0.1395
Theoretical PE (Rel. Err.) 1.2737 (3.92%) 0.1306 (6.40%)

n = 20 Empirical PE 0.3229 0.1237
Theoretical PE (Rel. Err.) 0.3127 (3.17%) 0.1115 (9.84%)
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Conclusions:

� We’ve proposed a simple factor model and a relevant asymptotic regime for
one-shot learning with continuous outcomes.

� Identified consistent methods.

� Gained new insights into PCR.

� Bias-correction via expansion may lead to improved performance.

Future directions:

� Classification.

� Flexible classification methods based on probit/latent variable models and techniques
discussed here.

� Sparsity.

� Sparsity is a major topic in high-dimensional data analysis. How does sparsity fit into
one-shot learning?

� If u is sparse, then effective one-shot learning may be possible with smaller x-data
signal-to-noise ratio.

� Applications!
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