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B Humans are able to correctly recognize and understand objects based on
very few training examples.

[] e.g. images, words.

Training Testing

Flamingo v’

Flamingo v/

Flamingo?

B Vast literature in cognitive science (Tenenbaum et al., 2006; Kemp et al.,
2007), language acquisition (Carey et al., 1978; Xu et al., 2007), and

computer vision (Fink, 2005; Fei-Fei et al., 2006)
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One-shot learning

Introduction and .

overview : B Successful one-shot learning requires the learner to incorporate
Statistical setting strong contextual information into the learning algorithm.

Principal component :

regression : [J Image recognition: Information on object categories.

Weak consist d . :

big datamith s — 2 | m Objects tend to be categorized by shape, color, etc.

Risk approximations and E ; . ; i
Coneietency : [] Word-learning: Common function words are often used in

conjunction with a novel word and referent.

Numerical results

Conclusions and future § m This is a KOBA. Since this, is, and a are function words

directions that often appear with nouns, KOBA is likely the new referent.

B Many recent statistical approaches to one-shot learning are based
on hierarchical Bayesian models.

[] Effective in a variety of examples.
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One-shot learning

Introduction and .

overview : B We propose a simple factor model for one-shot learning with continuous
Statistical setting E outcomes.

Principal component . . ) ) . .

regression : [] Highly idealized, but amenable to theoretical analysis.

Weak consistency and & [] Novel risk approximations for:
big datawithn = 2 °

Risk approximations and > (i) assessing the performance of one-shot learning methods and

consistency : (i) gaining insight into the significance of various parameters for one-shot
Numerical results E Iearning.

Conclusions and future

directions B The methods considered here are variants of principal component
' regression (PCR).

[] One-shot asymptotic regime: Fixed n, large d, strong contextual information.

B See work by Hall, Jung, Marron, and co-authors on “high dimension,
low sample size” data (especially work on PCA and classification).

[J New insights into PCR.
B Classical PCR estimator is generally inconsistent in the one-shot
regime.

B Bias-correction via expansion.
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B Statistical setting.

B Principal component regression.

B Weak consistency and big data with n = 2.
B Risk approximations and consistency.

B Numerical results.

B Conclusions and future directions.
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The model

Introduction and

overview B The observed data consists of (y1,X1), ---, (Yn, X ), Where y; € Ris a
scalar outcome and x; € R is an associated d-dimensional “context”
vector.

Statistical setting

Principal component
regression

B We suppose that y; and x; are related via

Weak consistency and
big datawithn = 2

Risk approximations and § Yi = hze + fi, hz ~ N(Oa 772)7 g’b ~ N(07 02)7
consistency . 2
X; = hi’}/\/gu—FGi, €; ~ N(0,7°1).

Numerical results

Conclusions and future

directions : B NB:

1 A& € Rande; € RY, 1 < 1 < n, are all assumed to be independent.
m h; is a latent factor linking y; and x;.
m & and €; are random noise.

O The unit vector u € R and real numbers 6, € R are non-random.

O 1Itis implicit in our normalization that the “x-signal” || h;yv/du||? =< d is
quite strong.

[ To simplify notation, we lety = (y1, ..., yn) and X = (X1,...,Xn)".
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B Observe that (y;,x;) ~ N(0, V') are jointly normal with

v ( 92772 _|_0.2 97772\/3uT )

ovn2v/du 721 + n2+2duu” (1)

B Goal: Given the data (y, X ), devise prediction rules  : R — R so that
the risk

RV(Q) — EV{Q(Xnew> - ynew}2 — EV{Q(Xnew) — hnew9}2 + 0'2

has the same distribution as (y;, X;) and is independent of (y, X ).

B Ry (y) is a measure of predictive risk, which is completely determined by
¢y and the parameter matrix V7, given in (7).
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One-shot asymptotic regime

Introduction and

overview B We are primarily interested in identifying methods 7/ that perform
Statistical setting well in the one-shot asymptotic regime.

Principal component
regression

B Key features of the one-shot asymptotic regime:

Weak consistency and

i i — ° . . . N

big data with n 2 E (|) n is f|Xed

Risk approximations and § . >Sma” n, Iarge d
consistency : (||) d — 00

Numerical results

Conclusions and future § (III) 0'2 _> 0
directions > .
(v) infn?y?/72 >0

>abundant contextual information

/

B NB:

0 o7 is the noise-level for the “y-data.”

O 77272 / 72 is the signal-to-noise ratio for the “x-data.”
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Linear prediction rules

Introduction and E ; . .

overview : B By assumption, the data are multivariate normal. Thus,
Statistical setting : T

Principal component § EV (y’l, |X7,) — Xi /37

regression .

Weak consistency and § _ 2 2 2.2

big datawithn = 2 ® where /8 T 977’] \/El]./ (T + ny d)

Risk approximations and E ) . . —

consistency : B This suggests studying linear prediction rules of the form
Numerical results : T N

Conclusions and future § :&(X) = X ,3

directions .

for some estimator B of 3.
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M Letly > --- > l,,q > 0denote the ordered n largest eigenvalues of

X7 X and let ui, ..., U, aq denote corresponding eigenvectors with unit
length.

[] 01, ..., 4y g are the principal components of X .

Let Uy = (101y - - - (1) be the d x k matrix with columns given by
ug,...,u, for1 < k <nAd. Inits most basic form, principal component
regression involves regressing y on X U;. for some (typically small) £, and

taking B8 = Up (U X' XU,)"'U X'y,

In the problem considered here, Cov(x;) = 721 + n?*y?duu’l has a
single eigenvector larger than 72 and the corresponding eigenvector is
parallel to 3. Thus, it is natural to take k = 1 and consider the principal
component regression (PCR) estimator

~T T
u; X'y
ul XT X0y

A 1 A
u; = —u{XTyul.

/chr — ll
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PCR with n = 2

Introduction and . ) . .

overview : B As a warm-up for the general n setting, we consider the special
Statistical setting E case where n = 2.

Principal component : . ~ . .

regression : B Whenn = 2, the PCR estimator (3, has an especially simple form

Weak consistency and  ; because the largest eigenvalue of X' X and its corresponding

big data with n = 2 . ] . .
eigenvector are given explicitly by

Risk approximations and §

consistency . 1

. 2 2
Numerical results E ll — 5 {||X1|| —I_ ||X2|| —I_ \/(||X1||2 T ||X2||2)2 +4(X51FX2)2} Y
dCi(r)chtIil;sr,]ichns and future : ) ll o ||X2 | |2

1 u; e X1 + Xo.

B Recall that x; = hw\/auz- + €;. Using the large d approximations

hiv’d+7°d
x1 x5 hihoy?d

Q

]

Q

leads to...
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B Large d approximation:

v*(hi + h3)
v2(hi+ h3) + 72

Yper (Xnew) — Xnew/chr ~ hnewe + Epcr

where e, = op(1),as d — oo and 0% — 0.

B Thus,
,7_2
] cr new/)  Ynew ~ T hnew(g Epcr — Snew
Iper (Xnew) =y ~2(h% ¥ h2) + 72 T eper =&
,7_2

#+ 0,
asd — oo and 02 — 0.

M In other words, ¥,., is inconsistent in the one-shot regime.
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Bias-corrected PCR

Introduction and
overview

To obtain a consistent method, we multiply the PCR estimator ,épcr by

Statistical setting .
. 2(1,2 2 2
Principal component . ll ~ ’y (hl _I_ h2) _I_ T 1
regression § ll L l2 72(h% + h%)
Weak consistency and
big d ithn = 2 . . .
LT : The bias-corrected estimator is
Risk approximations and §
consistency . R ll R 1 T T
Numerical results ’Bbc - l . l /chr — l . l u1 X yul'
. 1 2 1 2
Conclusions and future E
directions . B When d is large and o? is small,

v (hi+h3) +7°
v?(hi + h3)

B It follows that |§pe (Xnew) — Ynew| — 0 in probability; that is, 3. is
weakly consistent.

gbc (Xnew) — Ynew ~ Epcr + fnew — OP(I)'

B On the other hand, Ry (fp.) = oo because Ey (h? + h3)~! = co.
[] To obtain finite risk, we must take n a little bit larger.
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B When n = 2, we found that chr IS inconsistent in the one-shot
regime; to remedy this, we introduced the bias-corrected PCR
estimator.

B A similar phenomenon occurs for arbitrary fixed n > 2. For
d > n > 2, define the bias-corrected PCR estimator

1
al Xy,

/Bbc—ll_l chrzm

B Note that

||/3bc|| — ||/3pcr|| > ||/8pcr||

[] Bbc IS obtained from cha by expansion.
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B Ifn =2, then Ry ({p.) = oc.

[ Inverse moments of X2 random variable.

B When n is larger, there are “enough” degrees of freedom and Rv(g)bc) IS
finite.

Theorem: Suppose that n?y? /72 > ¢ for some constant ¢ > 0.

(@ Ifn >9andd > 1, then

2_2
N B 2 2 2 n-y°d
RV(ypcr) — g +0 n (7’]272d+7—2

+ (smaller terms).

) b forar 1)

(b) Ifd > n > 9, then

+ (smaller terms).
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Proposition. Let W, ~ x% be a chi-squared random variable with n degrees of
freedom. If n > 9 is fixed, d — oo, and *y? /72 > ¢ for some constant ¢ > 0,
then

2 2
T ~ 2 2 T
EV{(u u) —1} — E{ﬁ272Wn+7'2} :

L — 1,

l 2
EV{ : (uTﬁ1)2—1} )

Corollary. If n > 9 is fixed, then

2 2
Rv (per) — 0°0°E 7 ,
V(?Jp ) Ui {772’)/2Wn 4 72 }

RV (ch) — 0

in the one-shot regime, where d — 0o, 02 — 0, and inf n*~4? /72 > 0. In
particular, ¥, is inconsistent, but ¥ is consistent.
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B We conducted a simulation study to compare the performance of ¢,., and
gbc-
B We fixed:
0 60=4,0>=1/10,7°> =4,y =1/4, 7> = 1.
m NB:o? = 1/10 is fairly small; 77272/72 = 1 is reasonably large.

0 u=(1,0,...,0) € R%

B We simulated 1000 independent datasets with various d, n and computed:

[J Empirical prediction error.

[] Theoretical prediction error (as given by the leading terms in our risk
approximations).

[ ] Relative error,

(Empirical PE) — (Theoretical PE)
Empirical PE

x 100%.
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d = 500
PCR Bias-corrected
PCR

n =2 Empirical PE 17.9710 4.6898

Theoretical PE (Rel. Err.) ? (?) o0 (o0)
n=4 Empirical PE 7.0684 1.0616

Theoretical PE (Rel. Err.) ? (?) ? (?)
n=9 Empirical PE 1.4555 0.3565

Theoretical PE (Rel. Err.) | 1.3959  (4.10%) | 0.2175  (38.98%)
n = 20  Empirical PE 0.4485 0.2737

Theoretical PE (Rel. Err.) 0.4330 (3.45%) | 0.1399  (48.89%)

d = 5000
PCR Bias-corrected
PCR

n =2 Empirical PE 18.1134 1.7101

Theoretical PE (Rel. Err.) ? (?) o0 (00)
n=4 Empirical PE 6.0708 0.2378

Theoretical PE (Rel. Err.) ? (?) ? (?)
n=9 Empirical PE 1.3257 0.1395

Theoretical PE (Rel. Err.) 1.2737 (3.92%) 0.1306 (6.40%)
n = 20  Empirical PE 0.3229 0.1237

Theoretical PE (Rel. Err.) 0.3127 (3.17%) 0.1115 (9.84%)
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Conclusions:

B We've proposed a simple factor model and a relevant asymptotic regime for
one-shot learning with continuous outcomes.

[] Identified consistent methods.
[] Gained new insights into PCR.

B Bias-correction via expansion may lead to improved performance.
Future directions:
B Classification.

[J Flexible classification methods based on probit/latent variable models and techniques
discussed here.

B Sparsity.

[] Sparsity is a major topic in high-dimensional data analysis. How does sparsity fit into
one-shot learning?

[] If uis sparse, then effective one-shot learning may be possible with smaller x-data
signal-to-noise ratio.

B Applications!
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