
DIMACSWorkshop on

Distance Geometry

Theory and Applications

Proceedings edited by Leo Liberti
CNRS LIX, Ecole Polytechnique, France

liberti@lix.polytechnique.fr

26-29 July 2016 at DIMACS, Rutgers University, NJ



2

Scientific Committee
Amir Ali Ahmadi,Princeton University, USA
Farid Alizadeh, Rutgers University, USA (co-chair)
Marcia Fampa,Universidade Federal do Rio de Janeiro, Brazil
Bill Jackson, QueenMary andWestfield, London, UK

Nathan Krislock,Northern Illinois University, USA

Monique Laurent, CWI, The Netherlands

Leo Liberti, CNRS&Ecole Polytechnique, France (co-chair)
ThérèseMalliavin, CNRS& Institut Pasteur, France

Michel Petitjean,University of Paris 7, France
Nicolas Rojas, Yale University, USA
Amit Singer,Princeton University, USA
Ileana Streinu, Smith College, USA
Henry Wolkowicz,University of Waterloo, Canada

Yinyu Ye, Stanford University, USA

Organization
Farid Alizadeh, Rutgers University, USA
Tami Carpenter,DIMACS, Rutgers University, USA

Linda Casals,DIMACS, Rutgers University, USA

Nicole Clark,DIMACS, Rutgers University, USA

Leo Liberti, CNRS&Ecole Polytechnique, France

Rebecca Wright,DIMACS, Rutgers University, USA

Materials fromtheworkshop are available on theworkshopwebsite (dimacs.rutgers.edu/
Workshops/Distance). We are videotaping the four tutorial presentations, and the videos will
be posted on the website when they are available.

We gratefully acknowledge support from the National Science Foundation through awards
DMS-1623007 and CCF-1144502.



3

T
im

et
ab
le

T
ue

26
Ju
ly

W
ed

27
Ju
ly

“T
ut
or
ia
ld
ay
”

T
hu

28
Ju
ly

F
ri
29

Ju
ly

08
00

-0
85
0

b
re
a
k
fa
st
a
n
d

re
gi
st
ra
ti
on

08
50
-0
90

0
W
el
co
m
e

08
15
-0
84

0
b
rk
fa
st
/r
eg
is
tr

08
30
-0
90

0
b
rk
fa
st
/r
eg
is
tr

08
30
-0
90

0
b
rk
fa
st
/r
eg
is
tr

09
00

-0
93
0

F
am

pa
08

40
-1
00

0
Ja
ck
so
n

09
00

-0
93
0

F
aw

zi
09

00
-0
93
0

H
al
l

09
30
-1
00

0
V
ar
vi
ts
io
ti
s

09
30
-1
00

0
Pa
rm

en
te
r

09
30
-1
00

0
K
ho

o
10
00

-1
03
0

p
a
u
se

10
00

-1
03
0

p
a
u
se

10
00

-1
03
0

p
a
u
se

10
00

-1
03
0

p
a
u
se

10
30
-1
11
0

L
ee

10
30
-1
15
0

St
re
in
u

10
30
-1
11
0

G
or
tl
er

10
30
-1
11
0

Si
th
ar
am

11
10
-1
15
0

C
on
ne
lly

11
10
-1
15
0

B
ill
in
ge

11
10
-1
15
0

A
lfa
ki
h

11
50
-1
35
0

lu
n
ch

11
50
-1
40

0
lu
n
ch

11
50
-1
42
0

lu
n
ch

11
50
-1
42
0

lu
n
ch

13
50
-1
40

0
D
IM

A
C
S
W
el
co
m
e

b
y
T
.C
a
rp
en
te
r

13
50
-1
42
0

L
av
or

14
00

-1
43
0

G
on
ça
lv
es

14
00

-1
52
0

W
ol
ko
w
ic
z

14
30
-1
50
0

K
ri
sl
oc
k

14
20

-1
50
0

Jo
rd
an

14
20

-1
50
0

M
an
-C

ho
So

15
00

-1
53
0

M
al
lia
vi
n

15
00

-1
53
0

Si
ng
er

15
00

-1
53
0

T
an
ig
aw

a
15
30
-1
55
0

p
a
u
se

15
20

-1
54
0

p
a
u
se

15
30
-1
55
0

p
a
u
se

15
30
-1
53
5

C
lo
si
n
g

15
50
-1
62
0

K
al
an
ta
ri

15
40

-1
70

0
Pa
rr
ilo

15
50
-1
62
0

O
zy
es
il

16
20

-1
70

0
Sz
w
ar
cfi
te
r

16
20

-1
70

0
V
et
te
rl
i

af
te
r5
pm

re
ce
p
ti
on

a
t

P
a
n
ic
o’
s

10
3
C
h
u
rc
h
S
t.



4

Finding your way around campus

This map points out the five spots that are of interest for DGTA16 (see next page).
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The following sites are shown on the map in the previous page.

• DIMACS is in the CoRE building on the Busch Campus of Rutgers University. Parking
permitswill be available at the registration table on the day of theworkshop. Please park in
lot 64 located between the CoREBuilding and theWerblin Recreation Center. If you are
using aGPS to locate the parking lot, we suggest that you enter 98BrettRoad, Piscataway,
NJ as the address. (The address for theCoREbuildingwill take you to the building’smain
entrance, which does not have parking.) Be mindful: Google Maps does not seem to be
able to locate “DIMACS”; instead, I search for “core building frelinghuysen road”.

• TheNewBrunswick train station: it serves Amtrak andNJ Transit trains on theNorth-
east Corridor (www.njtransit.com/pdf/rail/R0070.pdf). Catch these trains from
Penn Station in NYC or from Newark Airport station. Likely final destinations (from
both Penn and Newark) are Princeton Junction, Hamilton, Trenton. Make sure your
train stops at New Brunswick, and buy a ticket before boarding the train.

• The Panico’s Italian restaurant (favourite choice within DIMACS, apparently — as an
Italian, I take no responsibility!) where they organized the social event on tuesday night.

• The Hyatt Regency and Holiday Inn hotels (both used by attendees): 2.4 miles and 3.8
miles from DIMACS, respectively, so don’t try walking these distances in the july heat
(or storm, whichever happens to be the case). Ask your hotel for shuttle services; call
taxis or ubers, or perhaps rent a bike. See dimacs.rutgers.edu/Workshops/general/
accommodations.html for more information about shuttles.

The Rutgers University campus is quite large. I personally advise using GoogleMaps or, if you
don’t have a data plan in the USA but have a smartphone, download the maps.me app and the
New Jersey offline map.



Distance Geometry Theory and Application
ADIMACSWorkshop

Leo Liberti, CNRS LIX, Ecole Polytechnique, 91128 Palaiseau, France

liberti@lix.polytechnique.fr

Welcome to this workshop, dedicated toDistanceGeometry (DG), hosted (and organized) by
DIMACS. I am most thankful to the extremely efficient DIMACS staff, particularly to Tami
Carpenter, its Associate Director, for her incredible dedication. I am also extremely thankful
to my co-chair, Farid Alizadeh, for securing somemuch-neededNSF funding. This workshop
is the first about DG organized in the USA, but two other workshops about DG have been
organized by Carlile Lavor in Brazil: in 2013 near Manaus and in 2014 in Campinas. There is
no formal “steering committee”, but I am always on the look-out for potential organizers of
future DG workshops. So, if you are interested, please let me know.

A special issue dedicated to this workshop and to DG in general will be published in Discrete
AppliedMathematics (DAM). While there is no firm submission deadline yet, the end of 2016
seems like a good date. I hope most of you will submit papers to this issue.

In Euclid’s original view, geometry was based on points and lines. This view was brought
forward by Descartes, who gave a more quantitative interpretation of points with the Cartesian
plane and its axes. Calculus, mathematical analysis, linear algebra all make use of a concept of
geometry which is based on points (sometimes called vectors). And yet, when Greek farmers
squabbled over the extent of their triangular fields, they had an easier time calculating the side
lengths rather than the coordinates of the vertices. The Alexandria colons circa 50AD seemed
to be the most belligerent, and brought their fights before the wise Heron, who, tired of the
hellish waste of time, devised a formula for computing the area of a triangle using nothing but
the side lengths (forget the “base” and the “height”, which always confused all of the farmers).
Wemight as well ascribe toHeron the official birth of DG, although some would insinuate that
similar methods for estimating the area of triangles were present in Egypt well before 50AD.

A few centuries later, Arthur Cayley took Heron’s formula for triangles in the plane and
generalized it, through a determinant, to simplex volumes in any dimension. Karl Menger,
who worked at the beginning of the 20th century, and was fascinated by the (then) fashionable
axiomatization ofmathematics, picked up on the Cayley determinant and used it to try his own
axiomatization of geometry through distances: so that, now, the Cayley determinant is actually
called “Caley-Menger determinant1”

Menger, who is best known for organizing a popular seminar in Vienna in contrast to the
Vienna Circle, who had become politicized and downright dangerous, apparently only made
a single disciple2 with his work on DG: Leonard Blumenthal. Blumenthal devoted his life to
clarify the work of his advisor, which remained obscure both in the German original and in (his

1This was probablyMenger’s smartest career move.
2Who was also his Ph.D. student— he probably didn’t have much of a choice.



7

own) English translation. So obscure, in fact, that attempts at explaining it are still ongoing.3

Mathematical historians today are puzzled as to why Menger chose an axiomatization of ge-
ometry by distances. An accredited theory ascribes the reason to all of the other axiomatizations
having been already taken by people like Hilbert, Bernays, Tarski (whose productivity between
love affairs must be in the Guinness book of records), or Carnap (who axiomatized absolutely
everything, including his interactions with his baker, who kept selling himmulti-grain when he
clearly wanted baguettes).

While givingM.Sc. level courses at the University of Vienna,Menger welcomed to his class
a student who then became one of the most celebrated mathematicians of all time, Kurt Gödel.
Gödel proved two incredibly deep theorems as a Ph.D. student: his completeness theorem, which
states that any logically valid first-order formula has a formal proof, and his incompleteness theo-
rem, which perversely states that there are true first-order formulæwhich cannot have a proof.4

Evenmore incredibly, Gödel never had a Ph.D. student, nor a co-author, except for a single pa-
per5 on DG, where he gives a devious fixed point argument to show that if four points can be
realized in R3 (but not in R2), then they can also be realized on the surface of a sphere with
geodesic curved sides having the same lengths.

This highly accurate (ehm) historical account did nothing so far to justify a contemporary
interest in DG. So why should we have a workshop on it? Two breakthroughs, both related
to the “Big Data” buzzword, will give us a better motivation. Isaac Schoenberg, the inven-
tor of splines, unearthed in 1935 the relationship between EuclideanDistanceMatrices (EDM)
and positive semidefinite (PSD) matrices. This gave rise to the incredibly successful multidi-
mensional scaling (MDS) technique for visualizing high-dimensional data. Schoenberg’s paper
bears the title Remarks to Maurice Frechet’s Article “Sur La Definition Axiomatique D’Une

Classe D’Espace Distances Vectoriellement Applicable Sur L’Espace De Hilbert”. What is really
remarkable about Schoeberg’s remarks is that no-one even remembers Fréchet’s original paper,
but everyone uses MDS.

The second breakthrough follows a similar pattern: Johnson and Lindenstrauss’ 1984 paper
Extensions of Lipschitz mappings into a Hilbert space focuses on a rather complex theorem con-
cerning infinite dimensional spaces. To prove the theorem, the authors spend a couple of pages
on a surprising lemma, now called the Johnson-Lindenstrauss Lemma (JLL). The JLL states
that, given a set X of n vectors in Rm, you can pre-multiply the vectors by a k × mmatrix T
where each component is sampled from a normal distribution with zero mean and 1

k
variance,

and, provided k isO(ϵ−2 lnn) with some given ϵ ∈ (0, 1), you get:

∀x, y ∈ X (1− ϵ)∥x− y∥2 ≤ ∥Tx− Ty∥2 ≤ (1 + ϵ)∥x− y∥2.

Why is this surprising? Well, suppose you want to cluster 100,000 images using the k-means
algorithm, which uses nothing but Euclidean distances. The thumbnail 100×100RGB images

3See [Liberti & Lavor, Six mathematical gems from the history of distance geometry, to appear in ITOR] and
[Bowers & Bowers,AMenger Redux: Embedding metric spaces isometrically, hopefully accepted in the American
Mathematical Monthly].

4Explaining away the apparent contradiction in terms between the completeness and incompleteness theorems
is left as an “easy exercise” for the reader— allowed solution time: approximately 2 years.

5Calling this work a “paper” is overkill — it is more like a one page abstract inMenger’s seminar proceedings.
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are actually vectors in R30,000. Now, if you set an error tolerance at 10%, i.e. ϵ = 0.1, you
could pick k to be around 100 × ln(100, 000) ≈ 1152. So, instead of working with vectors
having thirty thousand components, you could work with vectors having just over a thousand
components. And, since k-means is only a heuristic, who knows whether the 10% error is even
hurting your results? In other words, this is an eminently sellable technique, and I think that
Google, Yahoo!, and Facebook are likely to use it a lot.6 As I said, the JLL follows the same
pattern as Schoenberg’s paper: no-one remembers the actual theorem, but everyone knows the
lemma.

But DG is not just “pure DG”. In fact architecture, statics, and the worry of engineers that
their next bridgemight collapse and theymight be sent to prison or worse, pushed the discipline
towards another direction: what structures are resilient to external forces? I.e. what bar-and-
joint structures are rigid or flexible? Rigid structures will only have finitely many incongruent
realizations in space, whereas flexible structures will flex, and hence have uncountably many.
Maxwell defined “force diagrams” based on rigidity notions, and a graphical algorithm to solve
them. A famous 1766 conjecture of Euler’s stated that all three-dimensional polyhedra must
be rigid. As shown in a wonderful7 proof by Cauchy, Euler was right insofar as one uses the
definition of polyhedron as an intersection of half-spaces. But if one is willing to consider face
incidence lattice based definitions, then a “polyhedron” might also be a nonconvex set. One of
the speakers in this conference, Bob Connelly, the proud inventor8 of a flexible (triangulated)
sphere, has the peculiar distinction of having proved Euler wrong.

Motivationwise, that is not all. With the advent of computers,muchof the number-crunch-
ing that no-one could have ever carried out by hand became possible. Today we can use DG-
based methods for synchronizing clocks (thanks to Amit Singer), for localizing mobile sensors
in wireless networks (thanks to a bunch of people, including Henry Wolkowicz and Nathan
Krislock), for finding the shape of proteins usingNuclearMagneticResonance (NMR) distance
data (thanks to an even larger bunch of people, including Carlile Lavor, Douglas Gonçalves,
ThérèseMalliavin, Simon Billinge, Yuehaw Khoo), and for other applications.9

For more information about DG, I will shamelessly refer you to my own survey10, and also,
more honorably, to the wonderful survey11 written byMartin Vetterli and his co-authors.

6This belief is based on the sound assumption that if I were them, I would use this technique a lot.
7If only very slightly wrong…
8I am going to use the latinmeaning of “inventor”, i.e. “he who finds”, rather than themost commonmeaning

of “constructor of a new idea”.
9Not all DG applications are well represented at this workshop, but not for my lack of trying! But as these DG

workshops keep happening, I am sure we will reach allDG applications out there.
10See [Liberti et al.,Euclidean Distance Geometry and Applications, SIAMReview 56(1):3-69, 2014].
11See [Dokmanic et al.,Euclidean Distance Matrices: Essential theory, algorithms and applications, IEEE Signal

ProcessingMagazine, 1053-5888, 12-30, 2015].
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Abstracts

1. Tue 26 July, 9-9:30

Marcia Fampa, COPPE, Federal University of Rio de Janeiro, Brazil

Modeling the Euclidean Steiner Tree problem

In the Euclidean Steiner Tree Problem, the goal is to find a network of minimum length
interconnecting a set P of given points in the n-dimensional Euclidean space. Such net-
works may be represented by a tree T , where the set of nodes is given by the points in
P , known as terminals, and possibly by additional points, known as Steiner points. The
length of the network is defined as the sum of the Euclidean lengths of the edges inT . We
will present mixed integer nonlinear programming formulations for the problem from
the literature, and discuss the difficulties involved in solving them by branch-and-bound
algorithms. Different techniques to overcome these difficulties are proposed and some
numerical results show their impact on the solution of the problem.

(Joint work with Claudia D’Ambrosio, Jon Lee, Nelson Maculan, Wendel Melo and
Stefan Vigerske.)

2. Tue 26 July, 9:30-10

Antonios Varvitsiotis,NTU Singapore

Graph Cores via Universal Completability

A framework for a graph G = (V,E), denoted G(p), consists of an assignment of real
vectors p = (p1, p2, ..., pn), where n = |V |, to its vertices. A framework G(p) is called
universally completable if for any other frameworkG(q) that satisfies p⊤i pj = q⊤i qj for all
i = j and (i, j) inE there exists an isometry U such that Uqi = pi for all i in V . A graph
is called a core if all its endomorphisms are automorphisms. In this work we identify a
new sufficient condition for showing that a graph is a core in terms of the universal com-
pletability of an appropriate framework for the graph. To use this condition we develop a
method for constructing universally completable frameworks based on the eigenvectors
for the smallest eigenspace of the graph. This allows us to recover the known result that
the Kneser graphKn:r and the q-Kneser graph qKn:r are cores for n ≥ 2r+1. Our proof
is simple and does not rely on the use of an Erdös-Ko-Rado type result as do existing
proofs. Furthermore, we also show that a new family of graphs from the binary Ham-
ming scheme are cores, which was not known before.

(Joint work with Chris Godsil, David Roberson, Brendan Rooney and Robert Šámal.)
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3. Tue 26 July, 10:30-11:10

Jon Lee,University of Michigan, USA

Relaxing kindly and efficiently

Very generously interpreting the conference theme, I will talk about two issues that arise
in the sBB (spatial branch-and-bound) global-optimization algorithm. One has to do
with smoothing functions having limited non-differentiability (for example, p-th roots
which arise in computing distances via p-norms) in a suitable way for sBB. The second
has to do with a way of measuring quality of convex relaxations via volumes and getting
from the mathematical analysis, some actionable algorithmic ideas for sBB.

4. Tue 26 July, 11:10-11:50

Bob Connelly, Cornell University, USA

Global rigidity and universal rigidity of bipartite graphs

A framework, given by a graph together with a configuration of its vertices, is globally
rigid inEuclidean space if every other configuration, with the corresponding edge lengths
the same, is congruent to the original. We will show that for complete bipartite graphs in
d-space, if the configuration is generic and the partitions cannot be separated by quadric
surfaces, then not only is the framework globally rigid in d-space, but it is globally rigid in
all higher dimensions as well, a property called universal rigidity. Using geometric criteria
it is possible to give many concrete examples of bipartite frameworks that are universally
rigid.

(Joint work with Steven Gortler and Louis Theran.)

5. Tue 26 July, 2pm-2:30pm

Douglas Gonçalves, Federal University of Santa Catalina, Brazil

A least-squares approach for the discretizable distance geometry
problem with inexact distances

The discretizable distance geometry problem in dimension K is a particular case of the
distance geometry problem in which there exists a vertex order ensuring that the initial
K vertices form a clique and for the remaining vertices, there are at least K reference
distances to predecessors. We extend a branch-and-prune approach for this problem by
considering noisy distances instead of exact ones. Candidate positions are obtained by the
solution of a least-squares problem related to a reduced distance matrix, and possibly by a
reflection around the affine subspace generated by the references. The feasibility of such
candidates is verified based on a perturbation result for the singular value decomposition
and the discrepancy principle.
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6. Tue 26 July, 2:30pm-3pm

Nathan Krislock,Northern Illinois University, USA

Facial reduction for Euclidean distance matrix problems

A powerful approach to solving problems involving Euclidean distancematrices (EDMs)
is to represent the EDM using a semidefinite matrix. Due to the nature of these prob-
lems, the resulting semidefinite programming problem is typically not strictly feasible.
In this talk we discuss how to take advantage of this lack of strict feasibility by using facial
reduction to obtain smaller equivalent problems. This approach has proven very success-
ful for solving large-scale Euclidean distance matrix problems having little to no noise in
the given incomplete distancemeasurements. We will present recent results on the use of
facial reduction for solving noisy Euclidean distance matrix problems.

7. Tue 26 July, 3pm-3:30pm

ThérèseMalliavin, CNRS& Institut Pasteur, France

The intervalBranch-and-PrunealgorithmfortheMolecularDis-
tanceGeometry Problem: towards an application to real-life pro-
tein structure determination by NMR

The interval branch-and-prune (iBP) approach has been proposed ([1-6]) as a method for
allowing a global optimisation of molecular structure with distance restraints. A recur-
sive implementation of this algorithm [9] has allowed the application of this approach
to small structures of proteins in alpha-bundles. Here, we are going to present the re-
sults obtained on a set of protein structures with sizes from 24 to 120 residues, displaying
various secondary structures and topologies. The results obtainedwith various sets of dis-
tance restraints, including exact values and intervals of values, will be presented, in order
to experimentally evaluate the complexity of the algorithm on real-life cases of protein
structure determination. This experimental evaluation will be related to the theoretical
estimation previously obtained in [8]. The effect of several acceleration procedures will
be used in order to allow a complete exploration of the tree describing the solutions of
Molecular Distance Geometry Problem instances. The consequences of the availability
of such an approach for the field of structural biology will be discussed [7].

[1] Lavor C., Liberti L., Mucherino A., On the solution of molecular distance geometry
problemswith interval data, in Proceedings of the InternationalWorkshop onCom-
putational Proteomics (Int. Conf. on Bioinformatics and Biomedicine), IEEE,
Hong-Kong, 77-82, 2010.

[2] Liberti L., Lavor C., Maculan N., A branch-and-prune algorithm for the molecu-

lar distance geometry problem, International Transactions in Operational Research,
15:1–17, 2008.

[3] Lavor C., Liberti L., Maculan N., Mucherino A., The discretizable molecular dis-
tance geometry problem, ComputationalOptimization andApplications (2012) 52:115–
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146.

[4] Lavor C., Liberti L., Mucherino A.,The interval Branch-and-Prune algorithm for

theDiscretizableMolecularDistance GeometryProblemwith inexact distances, Jour-
nal of Global Optimization, 56:855-871, 2013.

[5] Lavor C., Alves R., Figueiredo W., Petraglia A., Maculan N., Clifford Algebra and

the Discretizable Molecular Distance Geometry Problem, Advances in Applied Clif-
ford Algebras 25 (2015), 925–942.

[6] Mucherino A., Lavor C., Malliavin T., Liberti L., Nilges M., Maculan N., Influ-
ence of Pruning Devices on the Solution of Molecular Distance Geometry Problems,
in Pardalos, P. and Rebennack, S. (eds.), Experimental Algorithms (ISCO), LNCS
6630:206-217, 2011.

[7] Malliavin T.E., Mucherino A., Nilges M., Distance geometry in structural biology:

new perspectives, in A. Mucherino et al. (eds.), Distance Geometry: Theory, Meth-
ods and Applications, Springer, 2013.

[8] LibertiL., LavorC.,MucherinoA.,TheDiscretizableMolecularDistanceGeometry

Problem Seems Easier onProteins, in A.Mucherino et al. (eds.), Distance Geometry:
Theory, Methods and Applications, Springer, 2013.

[9] Cassioli A., Bardiaux B., Bouvier G.,Mucherino A., Alves R., Liberti L., NilgesM.,
Lavor C. andMalliavin T.,An algorithm to enumerate all possible protein conforma-

tions verifying a set of distance constraints, BMC Bioinformatics 28:16-23, 2015.

(Joint work withM.Machat, B. Bardiaux, A. Cassioli, C. Lavor, L. Liberti.)

8. Tue 26 July, 3:50pm-4:20pm

Bahman Kalantari, Comp. Sci. Dept., Rutgers University, USA

TheTriangleAlgorithm: AnAlgorithmicSeparationTheoremand
its Application

First, we introduce the Triangle Algorithm, a fully polynomial time approximation sche-
me (FPTAS) for the convex hull membership problem (CHMP). CHMP is testing if the
convex hull of a finite set of points in the Euclidean space contains a distinguished point,
a fundamental problem in LP, statistics, machine learning and computational geometry.
The validity of the algorithm relies on a geometric duality, called distance duality. Next,
we describe a generalization of the Triangle Algorithm, the distance duality and corre-
sponding computational complexities for testing if two arbitrary compact convex subsets
K and K’ intersect. It computes p inK and p’ inK’, where either the Euclidean distance
d(p, p’) is arbitrarily small, or the orthogonal bisecting hyperplane to the line segment
p p’ separatesK fromK’. If desired, it computes the optimal supporting hyperplanes. It
thus applies to the support vector machine (SVM) problem. Having tested the Triangle
Algorithm on reasonably large size instances of CHMP, LP, and SVM, it is competitive
with the Frank-Wolfe method, the simplex method, and the sequential minimal opti-
mization algorithm (SMO). In fact in an unorthodox application of the Triangle Algo-
rithm in solving a linear system, it outperforms such iterativemethods as SOR andAOR.
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It also finds applications in solving relaxations of NP-hard problems. In summary, the
Triangle Algorithm is a robust algorithm that finds applications in diverse problems in
optimization, CS and numerical analysis.

9. Tue 26 July, 4:20pm-5:00pm
Jayme Szwarcfiter, Federal University of Rio de Janeiro, Brazil

On graph convexities related to paths and distances

A graph convexity is a pair (G, C), where G is a finite graph with vertex V (G) and C a
family of subsets of V (G) satisfying ∅, V (G) ∈ C and being closed under intersections.
The sets C ∈ C are called convex sets. The most common graph convexities are those
whose convex sets are defined through special paths of the graph. Among them the most
prominent are the geodesic convexity, where C is closed under taking shortest paths, the
monophonic convexity, where C is closed under induced paths and the P3 convexity, whose
convex sets are closed under pairs of common neighbors. We examine some common
parameters of graph convexities, as the geodetic number, convexity number, hull number,
Helly number, Carathéodory number, Radon number and rank. In particular, we describe
complexity results related to the computation of these parameters.

10. Wed 27 July, 8:40-10:00

Bill Jackson, QueenMary University of London, UK

Rigidity and Global Rigidity of Frameworks (tutorial)

The study of the rigidity of frameworks has its origins in the work of Euler, Cauchy and
Maxwell. There was a flurry of activity in the 1970’s prompted by Laman’s characteri-
sation of rigid generic bar-joint frameworks in the plane and Connelly’s counterexample
to Euler’s original conjecture on rigid polyhedra in 3-space. This activity has increased
since then and it is now an exciting and thriving research area. I will give an introduc-
tion to rigidity theory, concentrating on results and problems for bar-joint frameworks
but also describing how these have been extended to other types of frameworks and the
matrix completion problem.

11. Wed 27 July, 10:30-11:50

Ileana Streinu, Smith College, USA

Periodic Rigidity: a Survey (tutorial)

A periodic bar-and-joint framework is an abstraction of atom-and-bond crystal struc-
tures. Following a general introduction to the deformation theory of this type of frame-
works (introduced in 2010 by Ciprian Borcea and the speaker), I will survey results on
Maxwell-type characterizations, the connection to rigidity theory for finite frameworks
as well as applications to expansive and auxetic periodic structures.
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12. Wed 27 July, 2pm-3:20pm

Henry Wolkowicz,University of Waterloo, Canada

Facial Reduction in Cone Optimization with Applications toMa-
trix Completions

Slater’s condition – existence of a “strictly feasible solution” – is at the heart of convex
optimization. It is enough to look at the basics: without strict feasibility, first-order op-
timality conditions may be meaningless, the dual problem may yield little information
about the primal, and small changes in the data may render the problem infeasible. In
consequence, many off-the-shelf numerical methods can perform poorly; primal-dual
interior point methods, in particular. New optimization modelling techniques and con-
vex relaxations for hard nonconvex problems have shown that the loss of strict feasibility
is a much more pronounced phenomenon than has previously been realized. Such new
developments suggest a reappraisal. In this talk we describe the various reasons for the
loss of strict feasibility, whether due to poor modelling choices or (more interestingly)
rich underlying structure, and describe ways to cope with it.

In particular, we look at three different views: (i) from the ground set of the application;
(ii) from the lifted space of semidefinite matrices in the relaxation; (iii) from the image
space of the relaxation.

We consider applications to Euclidean matrix completions for sensor network localiza-
tion and molecular conformation problems.

(Joint work with Dmitriy Drusvyatskiy.)

13. Wed 27 July, 3:40pm-5pm

Pablo Parrilo,MIT, USA

Graph structure in polynomial systems: Chordal networks

The sparsity structure of a system of polynomial equations or an optimization problem
can be naturally described by a graph summarizing the interactions among the decision
variables. It is natural to wonder whether the structure of this graph might help in com-
putational algebraic geometry tasks (e.g., in solving the system). In this lecture we will
provide a gentle introduction to this area, focused on the key notions of chordality and
treewidth, which are of great importance in related areas such as numerical linear algebra,
database theory, constraint satisfaction, and graphical models. In particular, we will dis-
cuss “chordal networks”, a novel representation of structured polynomial systems that
provides a computationally convenient decomposition of a polynomial ideal into simpler
(triangular) polynomial sets, while maintaining its underlying graphical structure. As we
will illustrate through examples from different application domains, algorithms based on
chordal networks can significantly outperform existing techniques.

(Joint work with Diego Cifuentes.)
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14. Thu 28 July, 9-9:30

Hamza Fawzi,MIT, USA

Positive Semidefinite Rank

Let M be a p × q matrix with nonnegative entries. The positive semidefinite rank (psd
rank) ofM is the smallest integer k for which there exist positive semidefinite matrices
Ai, Bj of size k × k such thatMij = trace(Ai Bj). The psd rank plays an important role
in semidefinite optimization in the context of semidefinite representation of polytopes.
In this talk I will describe this connection and will outline some of the main properties
and open questions concerning the psd rank.

(Joint work with João Gouveia, Pablo Parrilo, Richard Robinson, James Saunderson,
Rekha Thomas.)

15. Thu 28 July, 9:30-10

Frank Permenter,MIT, USA

Dimension Reduction For SDPs Via Jordan Algebras

We propose a new method for simplifying semidefinite programs inspired by symmetry
reduction. Specifically, we show if a projection satisfies certain invariance conditions,
restricting to its range yields an equivalent primal-dual pair over a lower-dimensional
symmetric cone—namely, the cone-of-squares of a Jordan subalgebra of symmetric ma-
trices. We then give a simple algorithm for minimizing the rank of this projection and
hence the dimension of this cone. Finally, we explore connections with *-algebra-based
reduction methods, which, along with symmetry reduction, can be seen as special cases
of our method.

16. Thu 28 July, 10:30-11:10

Steven Gortler,Harvard University, USA

Affine rigidity and Conics at Infinity

We prove that if a framework of a graph is neighborhood affine rigid in d-dimensions
(or has the stronger property of having an equilibrium stress matrix of rank n − d − 1)
then its edge directions lie on a conic at infinity if and only if the framework is ruled on
a single quadric. This strengthens and also simplifies a related result by Alfakih. It also
allows us to prove that the property of super stability is invariantwith respect to projective
transforms and also to the coning and slicing operations. Finally this allows us to unify
some previous results on the Strong Arnold Property of matrices.

(Joint work with Bob Connelly and Louis Theran.)
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17. Thu 28 July, 11:10-11:50

Simon Billinge, Columbia University, USA

TheUnassignedDistanceGeometryProblemAppliedtoFindAtoms
in Nanoclusters for Sustainable Energy

Studies of distance geometry problems (DGP) have focused on cases where the vertices
at the ends of all or most of the given distances are known or assigned, which we call as-
signed distance geometry problems (aDGPs). The problem can get much more difficult
when the vertices at the end of each edge are not known, the case we call the unassigned
distance geometry problem (uDGP).

There is a pressing practical problem that is a realization of this case: finding the atomic
structure of molecules and nanoparticles using X-ray or neutron diffraction data from
non-crystalline materials. In this talk I will review the nanostructure inverse problem
and its graph theoretical description, and describe some progress that has beenmade using
build-up algorithms for discovering unassigned graph structures constrained by experi-
mental results. I will also discuss limitations of the approach for real data with noise and
measured with finite resolution, that makes these buildup problems inherently ill-posed.

(Joint work with Philip Duxbury and Pavol Juhas.)

18. Thu 28 July, 1:50pm-2:20pm

Carlile Lavor, IMECC, University of Campinas, Brazil

Distance Geometry and Clifford Algebra

Distance Geometry (DG) is the study of geometry based on the concept of distance and
Clifford Algebra (CA) is a generalization of the hypercomplex number systems based on
the concept of multivector. This talk will explain how DG and CA can be combined to
model problems related to 3D protein structure determination using Nuclear Magnetic
Resonance data.

19. Thu 28 July, 2:20pm-3

Tibor Jordan,Eötvös Lorand University, Hungary

Generic Global Rigidity of Graphs

Ad-dimensional bar-and-joint framework is said to be globally rigid if everyd-dimensional
framework with the same underlying graph and with the same edge lengths is congruent
to it. It is known that, for every fixed d, if the set of the joint coordinates is generic then
global rigidity depends only on the underlying graph.

A major combinatorial question, which is still open in three-space and in higher dimen-
sions, is whether there is a good characterization of the generically globally rigid graphs.
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In this talk we shall give a survey of the known results and open questions concerning (a
number of versions of) this question.

20. Thu 28 July, 3pm-3:30

Amit Singer,Princeton University, USA

Non-uniqueGamesOverCompactGroups andOrientationEstima-
tion in Cryo-EM

LetG be a compact group and let fij be real valued bandlimited functions overG for i, j ∈
{1, . . . , n}. We define the Non-Unique Games (NUG) problem as finding g1, . . . , gn in
G that minimize

∑n
i,j=1 fij(gig

−1
j ). We devise a relaxation of the NUG problem to a

semidefinite program (SDP) by taking the Fourier transform of fij over G. The NUG
framework can be seen as a generalization of the little Grothendieck problem over the or-
thogonal group and the Unique Games problem and includes many practically relevant
problems, such as orientation estimation in cryo-electron microscopy.

(Joint work with Yutong Chen and Afonso Bandeira.)

21. Thu 28 July, 3:50-4:20

Onur Ozyesil,Princeton University

Robust Camera Location Estimation by Convex Programming

3D structure recovery from a collection of 2D images requires the estimation of the cam-
era locations and orientations, i.e. the camera motion. For large, irregular collections of
images, existingmethods for the location estimation part, which can be formulated as the
inverse problem of estimating n locations t1, t2, . . . , tn in R3 from noisy measurements
of a subset of the pairwise directions ti−tj

∥ti−tj∥ , are sensitive to outliers in directionmeasure-
ments. In ourwork, wefirstly provide a complete characterization ofwell-posed instances
of the location estimation problem, by presenting its relation to the existing theory of
parallel rigidity. For robust estimation of camera locations, we introduce a two-step ap-
proach, comprised of a pairwise direction estimation method robust to outliers in point
correspondences between image pairs, and a convex program to maintain robustness to
outlier directions. In the presence of partially corrupted measurements, we empirically
demonstrate that our convex formulation can even recover the locations exactly. Lastly,
we demonstrate the utility of our formulations through experiments on Internet photo
collections.

(Joint work with Amit Singer.)
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22. Thu 28 July, 4:20-5pm

Martin Vetterli,EPFL, Switzerland

Euclid’s SLAM12 dunk

Positioning has been around since the dawn of civilization, from recovering landowner-
ship after floods in ancient Egypt or the longitude competition for seafaring in 18th cen-
tury England, to the ubiquity of GPS today. Positioning dovetails with mapping, again a
venture pursued for millennia. Doing the two at the same time is muchmore recent, and
famously epitomized in the SLAM problem. Initially conceived as a modality-generic
computational method, modern SLAM use cases are in computer vision and time of
flight (ToF) positioning with light, radio, or sound. With ToFs we get distances from
which we can reason about the trajectory and the environment. Thus a fundamental ob-
ject related to localization andmappingwithToFmeasurements is theEuclideandistance
matrix (EDM). In our work, we consider variations on the theme of EDMs in localiza-
tion and mapping. The twist is that our ToFs come from echoes which puts forward
various challenges. For example, ToFs are not labeled—we do not a priori know which
reflector generates which echo.

There aremanyways to formulate and address SLAMfrom echoes. We focus onwhat we
believe is themost general andmost challenging setting: a single omni-directional source
and a single omni-directional receiver. This, too, can come in many tastes and colors. In
this talk I will present results for the case when the source is static and the receivermoves,
and for the case when colocated source and receiver move together. The latter abstracts
into a new problem similar to metric multidimensional unfolding. The difference is that
instead of distances between two point sets, we get distances between a point set and a set
of halfspaces. This leads to a new class of invariances and new algorithms.

(Joint work with Ivan Dokmanic andMiranda Krekovic.)

23. Fri 29 July, 9-9:30

Georgina Hall,Princeton University, USA

Polynomial DCDecompositions and Applications

Difference of Convex (DC) programing is a class of optimization problems where the
objective and constraints are given as the difference of two convex functions. Although
several important problems (e.g., in machine learning) already appear in DC form, such
a decomposition is not always available. We consider this decomposition question for
polynomial optimization and present algorithms based on linear, second order cone, or
semidefinite programming that can find so-called undominatedDC decompositions. We
also present applications to distance geometry problems.

12Simultaneous Localization AndMapping.
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24. Fri 29 July, 9:30-10

Yuehaw Khoo,Princeton University, USA

Integrating NOE and RDC using Semidefinite Programming for
Protein Structure Determination

Nuclear magnetic resonance (NMR) spectroscopy is the most-used technique for pro-
tein structure determination besides X-ray crystallography. Typically the 3D structure
of a protein is obtained through finding the coordinates of atoms subject to pairwise dis-
tance constraints. However, for large proteins there are usually insufficient distancemea-
surements and the structure determination problem becomes ill-posed. Residual dipolar
coupling (RDC) measurements provide additional geometric information on the angles
between bond directions and the principal-axis-frame. The optimization problem in-
volving RDC is non-convex and we present a novel convex programming relaxation to
it. In simulations we attain the Cramer-Rao lower bound with relatively efficient run-
ning time. From real data, we obtain the protein backbone structure for ubiquitin with
one Angstrom resolution.

(Joint work with Amit Singer and David Cowburn.)

25. Fri 29 July, 10:30-11:10

Meera Sitharam,University of Florida at Gainesville, USA

Efficient Realization of Linkages via Optimal Recursive Decom-
position, Rigidity, and Cayley Convexification

Finding all realizations of distance constraint systems (linkages) is essential for many ap-
plications and is a computationally difficult problem already in 2 and 3 dimensions.

(1) As an essential step towards tractability, in the case where the underlying graph is
generically independent in the rigidity matroid, we formalize the notion of a canonical
recursive decomposition of an input graph into its (proper) maximal rigid subgraphs, and
give a polynomial time algorithm for finding it. The recursive decomposition is a tree
with the leaves being edges and the internal nodes being rigid subgraphs (or linkages). The
decomposition is optimal in that itminimizes themaximum fanin, which accurately cap-
tures the algebraic complexity of the realization problem. The formalization of canonical
decomposition, and its optimality extend to general abstract rigidity matroids, and the
polynomial time algorithm extends to sparsity matroids.

(2) The realization of a parent linkage in the decomposition tree is achieved by recom-
bining the realizations of its child linkages, thus the problem now reduces to realizing
indecomposable linkages. We suggest a newmethod of optimal modification by dropping
edges so that the resulting flexible linkage has a convex, so-called Cayley or nonedge pa-
rameterized realization space andmoreover, adding in the Cayley nonedges as edges gives
a decomposable graph. The convexity and decomposability vastly simplify the search for
the required distances of the dropped edges and thus the realizations of the original graph.
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While the question of dropping theminimumnumber of edges (and thusminimizing the
dimension of the search space) appears to beNP-hard, we formalize a different optimality
condition that ensures an efficient and stable search for realizations.

(3) If time permits, a very brief glimpse of highly related new results by the speaker and
coauthors will be provided. (Related to (1)) a newly formulated abstract rigidity matroid
called GEM (graded exchange matroid) that will combinatorially capture the 3D rigid-
ity matroid, IF a well-known maximality conjecture is true. (Related to (1)) a new type
of rigidity related to incidence geometry that give bounds and algorithms for dictionary
learning (Related to (2)): the close connection between the concept of convex Cayley re-
alization spaces and graph flattenability (introduced for the Euclidean norm by Barvinok
and studied by Belk/Connelly) in any norm. And finally (Related to (2)): videos demo-
ing opensource software of Cayley realization spaces for molecular assembly and CAD
applications.

26. Fri 29 July, 11:10-11:50

Abdo Al-Fakih,University of Windsor, Canada

On the uniqueness of the EDM Completion problem, also known
as the bar framework universal rigidity problem

An n × n matrix D = (dij) is called a Euclidean distance matrix (EDM) if there ex-
ist points p1, . . . , pn in some Euclidean space such that dij = ||pi − pj||2 for all i, j ∈
{1, . . . , n}. Given a partial matrix A where some of its entries are specified or fixed and
the others are unspecified or free, the EDM Completion problem is the problem of com-
pletingA into an EDM by assigning values to its free entries.

In this talk, we are interested in the uniqueness of a given EDM completion of A. This
problem is also known as the bar framework universal rigidity problem. In particular, we
are interested in a sufficient condition for a given free entry ofA to assume the same value
in all EDMcompletions ofA. Obviously, such condition leads into a sufficient condition
for the uniqueness of a given EDM completion ofA.

27. Fri 29 July, 2:20pm-3:00pm

AntonyMan-Cho So, Chinese University of Hong Kong

Robust Convex Approximation Methods for TDOA-Based Local-
ization under NLOS Conditions

In this talk, we present a novel robust optimization approach to source localization using
time-difference-of-arrival (TDOA) measurements that are collected under non-line-of-
sight (NLOS) conditions. A key feature of our approach is that it does not require knowl-
edge of the distribution or statistics of the NLOS errors, which are often difficult to ob-
tain in practice. Instead, it only assumes that the NLOS errors have bounded supports.
Based on this assumption, we formulate the TDOA-based source localization problem as
a robust least squares (RLS) problem, in which a location estimate that is robust against
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the NLOS errors is sought. Since the RLS problem is non-convex, we propose two effi-
ciently implementable convex relaxation-based approximation methods to tackle it. We
then analyze the approximation quality of these two methods and establish conditions
under which they will yield a unique localization of the source.

28. Fri 29 July, 3:00pm-3:30pm

Shin-Ichi Tanigawa,Kyoto University, Japan

SingularityDegree of the Positive SemidefiniteMatrix Comple-
tion Problem

The singularity degree of a semidefinite programming problem is the smallest number
of facial reduction steps to make the problem strongly feasible. We introduce two new
graph parameters, called the singularity degree and the nondegenerate singularity degree,
based on the singularity degree of the positive semidefinite matrix completion problem.
We give a characterization of the class of graphs whose parameter value is equal to one
for each parameter. Specifically, we show that the singularity degree of a graph is equal to
one if and only if the graph is chordal, and the nondegenerate singularity degree of a graph
is equal to one if and only if the graph is the clique sum of chordal graphs and K4-minor
free graphs. We also show that the singularity degree is bounded by two if the treewidth
is bounded by two, and exhibit a family of graphs with treewidth three, whose singularity
degree grows linearly in the number of vertices.
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