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Given G = (V,E) with V = {1,...,n} and edge weight c: E — [-1, 1],

find Xesn
st X[ij= (i) (i €E)
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min (Q,C)
st. Qe S (G)

c(ij) (ije€E)
Clijl=4q1 (i=J)

0 (otherwise)

where

S(G):={AeS8": Ali,j]=0Vij¢ VUE}
5:(G):={A€e S(G): A= 0}
S (G):={A€ S (G): Ali,jl#0VijcE}
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dual optimal solution : Q € 5;(G) with (C,Q) =0
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& Qli,ilp(i) + Y Qlipl) =0 (Vie V)

i

Q is called a stress (matrix) of (G, p) if Q satisfies (1)
Given (G, p), Q € 5(G) is dual opt iff Q is a PSD stress of (G, p).
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SDP Duality

For any primal and dual optimal pair (X, ),

(X,2)=0 = rankX +rankQ <n.

@ high rank dual opt = low rank completion

Rank maximality certificate

@ A completion X for (G, c¢) attains the maximum rank if 3 dual opt with rank
n — rank X.




Parameter v and Unique Completability

Theorem (Connelly82, Laurent-Varvitsiotis14)

e A completion X for (G, c) is unique if 3 dual opt Q with
rank Q2 = n — rank X and the SAP, i.e.,

1X € 8"\ {0} with QX = 0 and X[i,j] = 0 for ije VUE

o (G, p) is universally rigid in S?=1 if (G, p) admits a PSD stress Q with
rank Q = n — d and the SAP.




Parameter v and Unique Completability

Theorem (Connelly82, Laurent-Varvitsiotis14)

e A completion X for (G, c) is unique if 3 dual opt Q with
rank Q2 = n — rank X and the SAP, i.e.,

1X € 8"\ {0} with QX = 0 and X[i,j] = 0 for ije VUE

o (G, p) is universally rigid in S?=1 if (G, p) admits a PSD stress Q with
rank Q = n — d and the SAP.

Colin de Verdiére Parameter v

v(G) := max{corank Q : Q € S, (G) has the SAP}.

v(G) < max{d : 3 universally rigid (G,p) in S~ }



Strict Complementarity and Singularity Degree
Strict Complementarity

A primal and dual optimal pair (X, Q) satisfies a strict complementarity condition
if

rank X +rankQ = n

@ For which problem the strict complementarity can be guaranteed?
@ How far from the strict complementarity?
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Strict Complementarity

A primal and dual optimal pair (X, Q) satisfies a strict complementarity condition
if
rank X + rank Q = n

For which problem the strict complementarity can be guaranteed?
How far from the strict complementarity?

= singularity degree of SDP

= singularity degree of a graph G

Proposition
The following are equivalent for a graph G:
Q sd(G) =1,

@ The strict complementarity holds for any PSD completion problem with
underlying graph G;

@ The projection £(G) of the elliptope (the set of correlation matrices) onto
RE is exposed (Druvyatskiy-Pataki-Wolkowicz15).
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Facial Reduction (Borwein-Wolkowitcz81)

A sequence {Q,...,Q} in 8" is iterated PSD if Q; is positive semidefinite on
V,'_l, where Vo =R" and

Vi={xeR": (x", Q) =0(=1,...,i —1)}.

Theorem (Facial reduction)

For any feasible (G, c), 3X and 3Q4,...,Qk € S(G) s.t.
@ the sequence is iterated PSD
Q@ (C,Q;) =0 for each i
© rank X =dimV

@ the existence of a dual sequence characterizes the max rank of completions
(Connelly-Gortler15)
o with the SAP, it characterize the unique completability (Connelly-Gortler15)

Definition (Sturm 2000)

For a completion problem (G, ¢), the singularity degree sd(G, c) is the length of
the shortest dual certificate sequence {Qy, ..., Qx}.




Singularity Degree of Graphs

Singularity degree of G

sd(G) = maxsd(G, c)

c

Question (Druvyatskiy-Pataki-Wolkowicz15) Characterize G with sd(G) =1
Question (Sol5) sd(G) = o(n)?
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Theorem (T16)

e If G has neither W, (n > 5) nor a proper splitting of W, (n > 4) as an
induced subgraph, then sd(G) < 2.

@ If G has an induced subgraph which is a proper splitting of one of the above
forbidden subgraphs, then sd(G) > 2.

If tw(G) < 2, then sd(G) < 2.

Theorem (T16)

For each n there is a graph G with n vertices and tw(G) = 3 whose singularity

degree is [ 231 ].
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Proof of the first theorem

Theorem (T16)
sd(G) = 1iff G is chordal.

"<" (Druvyatskiy-Pataki-Wolkowicz15)
" ﬁ”

Lemma sd(C,) > 2 if n > 4.

Lemma. sd(G) > sd(H) for any induced subgraph H of G.
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Proof of the first theorem

Theorem (T16)

sd(G) = 1 iff G is chordal. J
"<" (Druvyatskiy-Pataki-Wolkowicz15)

n

Lemma sd(C,) > 2 if n > 4. )

e Consider (G, p):

@ (G, p) is universally rigid
@ there is a unique stress Q with rankQ =1<n—2

Lemma. sd(G) > sd(H) for any induced subgraph H of G. J
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Nondegenerate Singularity Degree

A completion problem (G, c) is nondegenerate if c(ij) # %1 for every ij € E(G). ]

Degenerate edges can easily be eliminated.
@ Suppose c(ijj) =1for j € E ...
@ Any solution X of (G, c) satisfies

X[i, k] = X[j, k]  for every k

e Equivalently, any embedding p realizing ¢ satisfies p(i) = p(j).
The example in the last proof is degenerate...
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Lemma sd(G) < sd*(G) + 1. ]

Corollary (T16) sd(G) < 2 if G has no forbidden induced subgraph listed above. J
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Example of Large Singularity Degree
Theorem (T16)

For each n there is a graph G with n vertices and tw(G) = 3 whose singularity

degree is [251].

Uy Vs Ws
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» (T16) sd(G,X) < 2if (G, X) is odd-Ks-minor free

v

@ Q. Characterize signed graphs (G, X) with sd(G,X) = 1.
@ Q. Characterize graphs G with sd(G) < 2.

@ Q. Bound sd(G) by other graph parameters.
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