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Purpose

= Parameters related to graph convexities
= Common graph convexities

= Complexity results concerning the computation
of graph convexity parameters

= Bounds



Contents

= Graph Convexities:
geodetic, monophonic, P;

= Convexity parameters:
hull number, interval number, convexity number

= Convexity parameters:
Caratheodory number, Helly number, Radon
number, rank

= Computing the rank:
general graphs, special classes, relation to
open packings

= Bounds



Convexity Space

A, finite set
C collection of subsets A

(A, C) Convexity space :
m()AcC
= C IS closed under intersections

C € C iIs called convex



Graph Convexity

Gz, graph

Convexity space (A, C),
where A = V(G), for a graph G.



Convex Hull

Convex Hull of S C V(G) relative to (V(G),C):
smallest convex set (' O S

Notation: H(S)

The convex hull H(S) is the intersection of all con-
vex sets containing .S



Applications

Social networks



Geodetic convexity

geodetic convexity .
convex sets closed under shortest paths

Van de Vel 1993

Chepoi 1994

Polat 1995

Chartrand, Harary and Zhang 2002

Caceres, Marques, Oellerman and Puertas 2005



Examples

CONVEX

N\
6 NOT CONVEX



Monophonic convexity

monophonic convexity
convex sets closed under induced paths

Jamison 1982
Farber and Jamison 1985

Edelman and Jamison 1985
Duchet 1988

Caceres, Hernando, Mora, Pelayo, Puertas, Seara 2005
Dourado, Protti, Szwarcfiter 2010



P; convexity

P53 convexity
convex sets closed under common neighbors

Erdds, Fried, Hajnal, Milner 1972
Moon 1972

Varlet 1972

Parker, Westhoff and Wolf 2009

Centeno, Dourado, Penso, Rautenbach and Szwarcfiter 2010



1

{2,3,5,6} Convex
{1,3,5,6} Not convex




Convexity Parameters

= Interval number (geodetic number)
= convexity number
= hull number

= Helly number

= Caratheodory number
= Radon number

= rank



Hull Number and Convexity Number

If H(S) = V(G) then S'is a hull set .

The least cardinality hull set of G Is the hull number
of the graph.

The largest proper convex set of (G Is the convexity
number Of the graph.



Interval Number

(V(G),C) is an interval convexity :

3 function I : (1) — 2V, s.t.

C CV(G) belongsto C <
I(z,y) C C for every distinct elements x,y € C.
For S C V(G), write I(S) = U, yes!(z,y)

If 1(S) = V(G) then S is an interval set

The least cardinality interval set of &G Is the interval
number Of the graph.



Helly number

Theorem 1 (Helly 1923) In a d-dimensional
Euclidean space, if in a finite collection of n > d
convex sets any d+1 sets have a point in common,
then there is a point common to all sets of the
collection.



Helly number

The smallest £, such that every k-intersecting
subfamily of convex sets has a non-empty
intersection.



Helly-Independence

For S C V(G), the set
mvESH(S \ {U})
IS the Helly-core of S.

S IS Helly-independent If It has a non-empty
Helly-core, and Helly-dependent otherwise.

h(G) = Helly number
the maximum cardinality of a Helly-independent set.



Carathéodory number

Theorem 2 (Carathéodory 1911) Every point u, In

the convex hull of a set S  R? lies in the convex
hull of a subset F' of S, of size at most d + 1.



Carathéodory number

c(G) = Caratheodory number,

the smallest £, s.t.

forall S CV(G),and all u € H(S),
thereis FF C S, |F| <k,

satisfying v € H(F').




Carathéodory-Independence

For S C V(G), let
0S = UpesH(S \ {v})

S IS Carath éodory-independent (OF irredundant ) If
H(S) # 0S5, and Carath éodory-dependent (Or
redundant otherwise.

c(G) = Carathéodory number
maximum  cardinality of a Caratheodory-
Independent set.



|

P3 convexity:
{e, b, c,d}, largest Carathéodory-independent set

= c(G) =4



Radon Number

Theorem 3 (Radon 1921):

Every set of d + 2 points in R? can be partitioned
INto two sets, whose convex hulls intersect.



Radon number

Let R C V(G) and R = R U Ry
R = Ry U Rs IS a Radon partition :
H(R\)NH(Ry) #0

R Is a Radon set If it admits a Radon partition,

R(G) = Radon number |,
least £, s.t. all sets of size < £ admit a Radon

partition



Radon-Independence

A set R C V(@) admitting no Radon patrtition is
called Radon-independent (Or anti-Radon , Or simploid
c.f. Nesetril and Strausz 2006).

r(G) = 14+ maximum cardinality of an anti-Radon
set of G.



Example

a b C € f

d
G S @ O O O

P3 convexity:
{a,b,d, e}, largest Radon-independent set

= r(G) =5



Convex Rank

A set S C V(G) is convex-independent if

s & H(5\{s}),
for every s € S, and convex-dependent , otherwise.

rank(G) = maximum cardinality of a
convex-independent set

Notation: rk(G)



Heredity

Helly-independence,

Radon-independence,

convex-independence:
are hereditary

Carathéodory-independence:
not necessarily



Implications
Radon-independence = Helly-independence =
convex-independence

Caratheodory-independence =
convex-independence



Relationships

mh+1<r(Levil951)
m 7 < ch+ 1 (Kay and Womble 1971)



Basic problems - geodetic convexity
Given S C V(G):

= Compute I(5) - Poly

= Decide if S Is convex - Poly

= Decide if S is an interval set - Poly
= Compute H(S) - Poly

= Decide If S Is a hull set - Poly



Basic problems -P; convexity
Given S C V(G):

= Compute I(5) - Poly

= Decide if S Is convex - Poly

= Decide if S is an interval set - Poly
= Compute H(S) - Poly

= Decide If S Is a hull set - Poly



Basic problems - monophonic convexity
Given S C V(G):

= Compute 7(S) - NPH

= Decide if S Is convex - Poly

= Decide if S is an interval set - NPH
= Compute H(S) - Poly

= Decide If S Is a hull set - Poly



Complexity - Geodetic Convexity

Parameter Status Reference

interval number NPC Atici 2002

hull number NPC Dourado, Gimbel, Kratochvil, Protti, Szwarcfiter 2009
convexity number NPC Gimbel 2003

Helly number Co-NPC Polat 1995

Carathéodory number NPC Dourado, Rautenbach, Santos, Schéafer, Szwarcfiter 2013
Radon number NPH Dourado, Szwarcfiter, Toman 2012

rank NPC Kanté, Sampaio, Santos, Szwarcfiter 2016



Complexity - P; Convexity

Parameter
interval no.
hull no.
convexity no.

Helly no.

Carathéodory no.

Radon no.

rank

Status
NPC
NPC
NPC
Co-NPC
NPC
NPH
NPC

Reference

Chang, Nemhauser 1984

Centeno, Dourado, Penso, Rautenbach, Szwarcfiter 2011
Centeno, Dourado, Szwarcfiter 2009

Barbosa, Coelho, Dourado, Rautenbach, Szwarcfiter 2012
Dourado, Rautenbach, Santos, Schafer, Szwarcfiter, Toman 2013
Ramos, Santos, Szwarcfiter 2014



Complexity - Monophonic Convexity

Parameter Status  Reference

interval number NPC  Dourado, Protti, Szwarcfiter 2010
hull number Poly Dourado, Protti, Szwarcfiter 2010
convexity number NPC  Dourado, Protti, Szwarcfiter 2010
Helly number NPH  Duchet 1988

Carathéodory number Poly Duchet 1988

Radon number NPH  Duchet 1988

rank NPC Ramos, Santos, Szwarcfiter 2014



Convex Independence

Example (for P; convexity)
D 6

’—:/
O O
1 2 3 4

{1,4,5} is convexly-independet
{1,3,5} is convexly-dependent




Problem Statement

MAXIMUM CONVEXLY INDEPENDENT SET
INPUT: Graph G, integer k

QUESTION: Does G contain a convexly
Independent set of size > £ ?



A related problem

An open packing of GG is a subset S C V(G) whose
open neighborhoods are pairwise disjoint.

Henning and Slater (1999)



A related problem

MAXIMUM OPEN PACKING

INPUT: Graph G, integer k

QUESTION: Does G contain an open packing of
size >k ?

Notation: p(G) = maximum open packing of the
graph

Relation: p(G) < rk(G)



Open packing - Hardness

Theorem 4 (Henning and Slater 1999) The
maximum open packing problem is NP-complete,
even for chordal graphs.



Split graphs and Convexly indep sets

Lemma 1l : Let C be any cligue of some graph G,
and vy,v9 € C. Then H({v,v2}) C C.

Lemma 2 : Let G be a split graph with bipartition
C Ul =V(G), minimum degreee > 2, and S a
convexly indep set of size > 2. Then S C I.



Sketch

) |SNC|>2 = H(S)=V(G), contradiction

i) |SNC| =1: Letvy € SNC and v, € SN 1.
Then there Is v3 € C adjacent to v;. Consequently,
v3 € H({v1,v}), implying H(S) = V(G), again a
contradiction



Lemma

Lemma 3 Let G be a split graph with bipartition

C Ul =V(G), minimum degree > 2, and S, |S| > 2
a proper subset of V(G). Then S'is convexly indep
iff H(S) = S.

Sketch: Let S be convexly indep. By the previous
lemma, S C I. By contradiction, suppose H(S) #
S. Then Jw € C'N H(S) such that w is adjacent
to v, € S. Since §(G) > 2, Jug € C, vy # w,
such that v, v3 are adjacent. Consequently, H(S) =
V(G), implying that S is not convexly indep. The
converse Is similar.



Hardness - Rank

Theorem 5 The maximum convexly indep set

problem is NP-complete, even for split graphs of
minimum degree > 2.

Reduction: Set packing



Hardness - Open packing

Corollary 1 The maximum open packing problem
IS NP-complete, even for split graphs of minimum
degree > 2.

Note: Improves the NP-completess for chordal
graphs, by Henning and Slater.



More hardness

Theorem 6 The maximum convexly indep set

problem is NP-complete for bipartite graphs having
diameter < 3

Reduction: From the NP-completeness of maximum
convexly indep set for split graphs.



More hardness - Monophonic

Theorem 7 In the monophonic convexity, the
maximum convexly indep set problem is

NP-complete for graphs having no clique cutsets.

Reduction: From maximum clique problem



Polynomial time

= [hreshold graphs
= Biconnected interval graphs
= trees



Threshold graphs

Theorem 8 Let GG be a threshold graph,
V(G)| > 3, and D the subset of minimum degree
vertices of GG. Then

= (i) Gisastar = rk(G) = |V(G)| — 1. Otherwise
m (ii): 0(G) =1= rk(G) =|D| + 1. Otherwise
- T]f(G) = 2



Threshold graphs

Sketch:

= (1): No leaf v of a graph belongs to the hull set of
any set not containing wv.

= (Il): Any two vertices of G form a maximal
convexly indep set.

= (i) All degree one vertices have a common
neighbor. Then |D| is convexly indep. However
we can still add an additional vertex u # v to the
set and maintain it as convexly independent.



Biconnected interval graphs

Lemma 4 Let G be a biconnected chordal graph,
and u, v a pair of distinct vertices of ¢z, at distance
< 2. Then H(u,v) = V(G).



Biconnected interval graphs

Let G be an interval graph, and Z the family of
Intervals representing G.
Greedy Algorithm:

1. Define S := (), and sort Z in non-decreasing
ordering of the endpoints of the intervals.

2. while Z +# (), choose the vertex v having the
least endpoint in Z, add v to S, and remove from
7 the intervals of v and all vertices lying at
distance < 2 from v In G.

3. Terminate the algorithm: S Is a maximum
convexly indep set of G.



Trees

T tree, rooted at r € V(T).

Let u, v be adjacent vertices of 1", and .S a subset of
V(T') containing both u, v. Then u sends a unit of load
to v If

uw e Hp_ (S —v)
(u does not depend on v to be inside H (S — v)
Notation:

ch(v) = total load that v received by v, considering
all its neighbors in Hy_,(S — v).



Trees

Lemma 5 Let S C V(T) be a convexly indep set,
and v € V(T). Thenv € H(S — v) iff ch(v) > 2.

Corollary 2 S C V(T) is convexly indep iff exists
nov € S, s.t ch(v) > 2.



Trees

P,(1, 7, k), the contribution of v = size of max convexly indep
set using only vertices from the subtree rooted in v Iin the
state defined by 7, j and k.

If P,(¢,7, k) is not defined then v’s contribution is —oo.

= ¢ = 1 means that v receives 1 unity of charge from its
parent, while : = 0 means it does not.

= 7 = 1 means that v is part of the convexly independent
set, while 4 = 0 means the opposite.

= k IS the amount of charge that v receives from its children.



Trees

Notation: p, = parent of v; N'(v) = N(v) \ {p.}.

Define the functions:

f(v,i) = max{P,(:,0,0), P,(i,0,1)} (1)
h(v,1) = max{2<rlrgla§< {P(¢,0,k)}, O<I]£1<a§% )P (L 1L,k (2

g(v,11,172) = h(v,41) — f(v,12) 3)



P,(0,0,0) =

P,(0,0,1) = <

P,U(O,O,Q) =

P'U(O, O, k) — <
k>3

(4)

if v has no child,

(5)

Z f(u,0) + max g(u,0,0), otherwise;
ueEN'(v)
| uEN'(v)
( —00, if v has less than 2 children,
1 0,1 otherwise;
> flu, 1)+ L > g(u,0,1), ;
\uEN’(’u) IX|=2 UEX
(6)
( —00, if v has less than k children,
1 1,1 otherwise;
> flu, 1)+ . > g(u,1,1), :
\U,EN,(U) X |=k WEX

(7)



Py(1,0,0) = {

(uEN'(v)

Py(1,0,1) =

Z f(u,1) + max g(u,l,l)-i-l,

uEN'(v)

ifv=r,

otherwise;

Z f(u,1) + max g¢g(u,0,1),

( wEN'(v)

ueN'(v)

(8)

if v has no child,

otherwise;

(9)

(10)

if v has no child orv = r,

otherwise;

(11)



— 00, if v has less than k children or v = r,

P’U(17 07 k) = <
k>2 1 1.1 th .
>, flu )+vsrgnj%}/((v) > g(u,1,1), otherwise;
\uEN’(v) 'S|=k u€eS
(12)
( — 00, ifv=r,
Pv(lalao) = < (13)
> flu, 1) +1, otherwise;
( uEN(v)
Py(1,1,k) = —o0. (14)

k>1



Trees - geodetic and monophonic

Theorem 9 The set of leaves of a tree 7' Is the
maximum convexly indep set of 7', in both the
geodetic and monophonic convexities.



Bounds

Theorem 10 Let G be a graph with minimum
degree §(G). Then

2n
(G)+1

Moreover, this bound is tight.

A similar expression has been obtained by
Henning, Rautenbach and Schafer (2013), for

bounding the Radon number.
Note that the rank of a graph can be used as a
tighter bound for the Radon number, since

2N
<
— 3G -1

rk(G) < 5

rd(G) — 1 < rk(G)



Further problems

This was essentially the first computational study of
this parameter. There are many open problems, as
the study of the rank of a graph in the geodetic con-
vexity.



THANK YOU FOR THE ATTENTION



	
	Purpose
	Contents
	Convexity Space
	Graph Convexity
	Convex Hull
	Applications
	Geodetic convexity
	Examples
	Monophonic convexity
	$P_3$ convexity
	Example
	Convexity Parameters
	Hull Number and Convexity Number
	Interval Number
	Helly number
	Helly number
	Helly-Independence
	Carathéodory number
	Carathéodory number
	Carathéodory-Independence
	Example
	Radon Number
	Radon number
	Radon-Independence
	Example
	Convex Rank
	Heredity
	Implications
	Relationships
	Basic problems - geodetic convexity
	Basic problems - $P_3$ convexity
	Basic problems - monophonic convexity
	Complexity - Geodetic Convexity
	Complexity - $P_3$ Convexity
	Complexity - Monophonic Convexity
	Convex independence
	Problem Statement
	A related problem
	A related problem
	Open packing - Hardness
	Split graphs and Convexly indep sets
	Sketch
	Lemma
	Hardness - Rank
	Hardness - Open packing
	More hardness
	More hardness - Monophonic
	Polynomial time
	Threshold graphs
	Threshold graphs
	Biconnected interval graphs
	Biconnected interval graphs
	Trees
	Trees
	Trees
	Trees
	
	
	
	Trees - geodetic and monophonic
	Bounds
	Further problems
	 

