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Realizing Linkages given dimension

EDM Completion given rank = PSD Completion given rank

Definition (Realizing a Linkage)

Given graph G = (V ,E , δ) with δ : E → Q,

• find/describe the set of all p : V → Rd with
||pu − pv || = δ(u, v), modulo trivial transformations.

• equivalently, find/describe the set of all completions of
δ(u, v) = ||pu − pv || from E to V × V .
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Realization = Solution of GCS

• Problem: Finding/Roadmapping the real solution set of
the corresponding polynomial (typically quadratic) system.

• Extends to other Geometric Constraint Systems with
underlying constraint (hyper)graphs (other distance
metrics, types of constraints), with corresponding trivial
transformation groups.

• Numerous applications: Computer Aided
Mechanical/Structural design, Robotics, Graphics and
Computer Vision, Molecular Configuration Spaces.
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Connected Components
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 Courtesy:

            Atoms in Motion



  

Problems

● Configuration Space Atlasing &

● Configurational Entropy Computation for
– Assemblies of upto 5 rigid molecular motifs  

– Small molecules with loop closure, pair potentials/sterics

Courtesy: CUIK project, Barcelona



  

Problems
● Configuration Space Atlasing &

● Configurational Entropy Computation for
– Assemblies of upto 5 rigid molecular motifs  

– Small molecules with loop closure

– Sticky sphere systems  (sterics)

Courtesy:

“A geometrical approach to computing free-energy 

landscapes from short-ranged potentials”  

Miranda Holmes-Cerfon, Steven J. Gortler, 

Michael P. Brenner PNAS v110(1)



  

Problems
● Configuration Space Atlasing &

● Computation of Free Energy & Formation Rate (kinetics) for
– Assemblies of upto 5 rigid molecular motifs  

– Small molecules with loop closure

– Sticky sphere systems

● Prediction of Crucial Interactions for Larger Assemblies e.g. Viral Shells
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Motivating Decomposition

–Complexity of solving a quadratic system prohibitively high.
– Easy Case: Triangularizable System (maintaining degree 2) -
QRS (quadratically radically solvable, or ”ruler and compass”
systems.
– A corresponding natural class of graphs:

Definition

For dimension 2, G is 4-decomposable if it is a single edge, or
can be divided into 3 4-decomposable subgraphs s.t. every
two of them share a single vertex.

Note: 4-decomposable implies minimally rigid
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• There is a base edge f with a graph
construction from f : each step
appends a new vertex shared by 2
4-decomposable subgraphs
(clusters)

• Corresponding linkages have a ruler
and compass realization parallel to
the graph theoretical construction

• Extends to arbitrary dimension d .

v0 v0'

v1

v2

v3

v4

a

b

f
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Decomposition for Recombination

Definition (Decomposition-recombination (DR-) plan)

A DR-plan of constraint graph G is a forest where:

• Each node is a rigid subgraph of G .

• A root node is a vertex-maximal rigid subgraph.

• An internal node is the union of its children.

• A leaf node is a single edge
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Example DR-Plans: C2 × C3



Optimal
Decomposition

Meera
Sitharam

Introduction

Recursive De-
composition

Main Result:
Optimal
DR-Plan
Algorithm

Main Result:
Solving Inde-
composables
via Cayley
Convexifica-
tion

Example DR-Plans: C2 × C3



Optimal
Decomposition

Meera
Sitharam

Introduction

Recursive De-
composition

Main Result:
Optimal
DR-Plan
Algorithm

Main Result:
Solving Inde-
composables
via Cayley
Convexifica-
tion

Optimal DR-Plan

An optimal DR-plan minimizes the maximum fan-in.
Corresponds to the largest system that needs to be solved
simultaneously.

In general, finding optimal is NP-hard.
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Uses of DR-Planning

• (Determining complexity of) Realization.

• Decomposition of the stress and flex matrices.

• Completion to Rigid.

• Interactive removal of dependent edges/constraints.
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History

2001: Formalized in HoffmanLomonosovSitharamJSC2001

Late 1980’s: Began with triangle-decomposable graphs.
Corresponds to systems that can be triangularized and
therefore have quadratic radical solutions (QRS).

1990’s-2000’s: Older algorithms were bottom-up and were
based on maximum matching. E.g., Frontier. Polynomial time,
ensuring some properties other than optimality.

2015: When graph is independent, our paper
BakerSitharamWangWilloughbyCAGD2015 contains a
top-down O(|V |3) algorithm with a formal guarantee to find an
optimal DR-plan.
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Summary of Results

If the geometric constraint system we are considering. . .

• Has an underlying abstract rigidity matroid → We can
push the structure theorems through.

• Is independent → We achieve optimality of DR-plan.

• Has an underlying sparsity matroid → We get a
polynomial time algorithm.

For 2D linkages we have O(|V |3) time algorithm.
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Canonical DR-Plan

Definition (Canonical DR-plan)

A DR-plan that satisfies the
additional two properties:

1 Children are rigid
vertex-maximal proper
subgraphs (rvmps) of the
parent.

2 If all pairs of rvmps
intersect trivially then all
of them are children,
otherwise exactly two that
intersect non-trivially are
children.
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Importance of Canonical DR-Plan

We restrict the space of DR-plans for the input to this special
class of canonical DR-plans.

Theorem

A canonical DR-plan exists for a graph G and any canonical
DR-plan is optimal if G is independent.∗

∗Applies when G has an underlying abstract rigidity matroid.

Proof is non-trivial.
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Algorithmic Result

Theorem

Computing an optimal DR-plan for an independent graph G
has time complexity O(|V |3).∗

∗Provided there exists underlying sparsity matroid.

Proof outline:

1 We define a new class of DR-plans.

2 We show it has fan-in no larger than a canonical DR-plan.
(Non-trivial proof.)

3 We show how to build it in time O(|V |3).
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Pseudosequential DR-plan

Definition (Pseudosequential DR-plan)

A DR-plan where, if all pairs of rvmps of a node intersect

• Trivially: then all of them are children.

• Non-trivially: then exactly two that intersect non-trivially,
C1 and C2, are used to find the children; they are C1 and
the pseudosequential DR-plan of C2 \ C1.
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Example DR-Plans: Canonical vs.
Pseudosequential

Canonical Psuedosequential
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Branches

Definition (Branch)

Branch(T , a, b) of tree T is every node on the path from a to
b and their children.

a

b
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A Pseudosequential DR-Plan Branch from the
Leaves

Given G and e ∈ G , there exists a pseudosequential DR-plan
PG where the leaves of branch(PG ,G , e) is exactly∗ the rvmps
of G \ e.

We can find the rvmps of G \ e in O(|V |2).

Given a preprocessing step of finding the rvmps of G \ f for all
f , branch(PG ,G , e) can be built in time O(|V |2).

Building the branch (from G to e):

1 Compute the rvmps of G \ e, {Li}.
2 For each L ∈ {Li}

1 Choose an arbitrary edge f ∈ L and compute the rvmps of
G \ f , {Mi}.

2 Compare the intersection of L with each Mi to get its
position relative to the other leaves.

3 Compute nodes on the path from G to e.
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Finding an Entire Pseudosequential DR-Plan

Building the DR-plan (of G ):

1 Preprocessing: Compute the rvmps of G \ e, for all e.

2 Start with G as the single node in the DR-plan.

3 Recursively compute a branch for each leaf in the DR-plan.
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Algorithm Demonstration
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What Next?

What comes after optimal DR-planning? We’ve decomposed to
the extent possible.

Näıvely, we would, bottom-up, recombine the solved children
into parents.
Recombining is equivalent to solving an indecomposable
system.
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OMD

Definition (Optimal modification for decomposition (OMD))

Informally, drop some edges and add some others to make
–an easily realizable system (i.e. small max fan-in DR-plan),
–easy to search for lengths of added edges (Cayley parameters) that
meet desired lengths of dropped edges.

Dropped edges: Chosen so that the realization space has a convex
Cayley parameterization.

Added edges: Cayley parameters that convexify the realization space.
Additionally, realization of modified linkage can be efficiently
computed (e.g., triangle-decomposable.)
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Convexity permits efficient search the realization space of
modified linkage for realizations that satisfy the dropped
constraints.

e1

e2

e1

e2

f1

f2
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Convex Cayley Characterization

[SitharamGaoDCG2010], [SitharamWilloughbyADG2015]:
–Characterizes graphs that have (Strong/Weak) Convex Cayley
Parameterization in dimension d
–Strong: Directly equivalent to d-flattenability, i.e., gram
dimension ≤ d .
–Results extend to linkages in other norms
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d-flattenability

Definition

A graph G is d-flattenable under norm ||.|| if for any m and
any realization r : V (G )→ Rm there is a realization
r ′ : V (G )→ Rd with ||r(u)− r(v)|| = ||r ′(u)− r ′(v)|| for
every (u, v) ∈ E (G ).

Analogous definition for flattenability of frameworks (G , r)



Optimal
Decomposition

Meera
Sitharam

Introduction

Recursive De-
composition

Main Result:
Optimal
DR-Plan
Algorithm

Main Result:
Solving Inde-
composables
via Cayley
Convexifica-
tion

d-flattenability

Observation

Let Φlp(n) be the cone of vectors of
(n

2

)
pairwise lpp distances

on n points. Let Φd
lp

(n) be the stratum of the cone consisting

of those vectors when the points are in Rd . Then G is
d-flattenable if and only if both objects have the same
projection on on the edge set G .
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Strong (Inherently) Convex Cayley Spaces

Definition

SitharamGaoDCG2010 A graph H has an inherently convex
Cayley space in d-dimensions for a given norm lq, 1 ≤ q ≤ ∞,
if the projection of Φd

lq
(n) on the edge set of H is convex. I.e.,

the space of realizable edge-length-vectors for H in
d-dimensions and given norm, is convex.

Theorem

SitharamWilloughby2015 For any norm, a graph H has an
inherently convex Cayley realization space in d dimensions if
and only if H is d-flattenable.
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Observation

• For any norm and any dimension d, d-flattenability and
Strong Cayley convexity in dimension d are minor-closed
properties, with finite forbidden minor characterizations.

• Graphs of tree-width d (among others) have inherently
convex Cayley configuration spaces.
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Applications

• Application (l2, Inherently Convex, multiple Cayley
parameters): EASAL for molecular/sticky-sphere assembly
OzkanSitharamBiCoB2011; WuEtAlACMBCB2013,16;

SitharamEtAl2015,16; OzkanEtAl2016A,B,C

• Application (l2, Non-Convex, single Cayley parameter):
CayMos for CAD Mechanisms SitharamWangSPM2014,
WangSitharamTOMS2015, SitharamWangGao2013a,b
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EASAL – Virus Assembly  

● Approximate computation of volume of potential energy basins → free energy change 
for each node of assembly tree

● Topology of configuration space → formation rates for each node of assembly tree

● Likelihood of each assembly tree



Predicting crucial interactions 
for T=1,3 viral capsid shell assembly 

•  predict minimal sets of 
geometric constraints whose 
removal disrupts assembly of  
viral shell.



Predicting crucial interactions 
for T=1 viral shell assembly 

•  see how the atlas differs (in black) if a 
constraint is dropped.
• crucial constraints result in big changes in  
(approximate)  configurational entropy + 
formation rate  computation



•  EASAL’s prediction  is 
confirmed by 
mutagenesis data from 
the Agbandge-Mckenna 
lab at UF



                   



  

EASAL – Virus Assembly  
● Mysterious “Missing” factor:  Combinatorial entropy 

– counting pathway symmetry equivalence classes 
(*)

● Sparse mutagenesis data – need to use kinetics, 
differential calorimetry and other combination of 
experimental data, including fine-grained MC/MD for 
cross-validation

(*) Bona, Sitharam, Vince “Tree orbits under  permutation groups and application to virus 
assembly” Bulletin of Math Bio, 2011



  

EASAL – Sticky Spheres  
● Complete computation of free energy and formation rates for  6,7,8 

sticky sphere system
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Opensource Software

Available on my webpage.
Decomposition:
FRONTIER (GPL, bitbucket),
New version Under development Available at:
cise.ufl.edu/~tbaker/drp

cise.ufl.edu/~tbaker/drp
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More Opensource Software

Cayley Configuration spaces:
CayMos (for 2D mechanisms) (GPL, bitbucket)
EASAL (for molecular and sticky sphere assembly)


