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Semidefinite programs (SDPs)

minimize Tr CX
subject to X ∈ A ∩ Sn

+

Formulated over vector space Sn of n × n symmetric matrices.
variable X ∈ Sn

A ⊆ Sn an affine subspace, C ∈ Sn cost matrix
Sn
+ cone of psd matrices

Efficiently solvable in theory; in practice, solving some
instances impossible unless special structure is exploited.
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Dimension reduction

Reformulate problem over subspace S ⊆ Sn intersecting set of
optimal solutions

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ Sn

+ ∩ S
(Reformulation)

S
A ∩ Sn

+

opt. solns

where Sn
+ ∩ S equals product Ki × · · · × Km of ‘simple’ cones.

Reduction methods: symmetry reduction and facial reduction
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Symmetry reduction (MAXCUT relaxation example )

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

range P
A ∩ Sn

+

opt. solns

Idea: find special projection map P
P(X ) optimal when X optimal.
P explicitly constructed from
automorphism group of graph.
Range ‘block-diagonal’—a
direct-sum of matrix algebras.

(e.g., Schrijver ’79; Gatermann, Parrilo. ’03)
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Our approach

This talk: a reduction method subsuming symmetry reduction

Notion of ‘optimal’ reduction and algorithm for finding it
Jordan algebra interpretation: immediate extension to
symmetric cone optimization (e.g., LP, SOCP).

Comparisons (aside):
Borwein-Wolkowicz ’81: minimal face/facial reduction
algorithm
Alizadeh-Schmieta ’00: extension of interior-point methods
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How does symmetry reduction work?

Given SDP minX∈A∩Sn
+

Tr CX , method finds special orthogonal
projection P : Sn → Sn

range of P

A ∩ Sn
+

opt. solns

If X feas./optimal, P(X ) feas./optimal.

P satisfies following conditions:

P(A) ⊆ A, P(Sn
+) ⊆ Sn

+, P(C) = C

Hence, if X feasible then P(X ) feasible with equal cost:

Tr CX = Tr P(C)X = Tr CP(X ).
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Our approach: optimize over projections

Given SDP minX∈A∩Sn
+
〈C,X 〉, find map P that solves

minimize rank P
subject to P(C) = C,P(I) = I

P(A) ⊆ A
P(Sn

+) ⊆ Sn
+

P : Sn → Sn an orthogonal projection.

Main properties:
Can be solved in polynomial time.
Range of P structured: a Jordan subalgebra of Sn.
Sn
+ ∩ range P equals a product of symmetric cones.
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The optimal subspace of minX∈A∩Sn
+
〈C,X 〉

Theorem (Parrilo-P.)

Orthogonal projection P : Sn → Sn solves

minimize rank P
subject to P(C) = C,P(I) = I

P(A) ⊆ A
P(Sn

+) ⊆ Sn
+

iff the range of P solves

minimize dimS
subject to S 3 I,XL⊥ ,C

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S},

where affine set A = XL⊥ + L and PL is proj. map onto L.
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Subspace optimization and solution algorithm

minimize dimS
subject to S 3 C,XL⊥ , I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S}

S ← span{C,XL⊥ , I}
repeat
S ← S + PL(S)
S ← S + span{X 2 : X ∈ S}

until converged.

Properties of algorithm:
Optimal subspace contains each iterate (induction)
Computes ascending chain of subspaces—terminates.
At termination, subspace feasible; hence, optimal.

Properties of minimization problem:
Feasible set closed under intersection (lattice)
A unique solution.
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Decomposition via Jordan algebras

Given SDP minX∈A∩Sn
+
〈C,X 〉, we’ve found subspace S...

S
A ∩ Sn

+

opt. solns
S ⊇ {X 2 : X ∈ S} (1)

Inclusion (1) implies direct-sum decomp. S = ⊕m
i=1Si

S = Q


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 0 Sm

QT ,
Si are simple
Jordan algebras

Number of distinct eigenvalues of generic element equals
rank of Si—a complexity measure.
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Minimizing dimension optimizes decomposition

minimize dimS
subject to S 3 XL⊥ ,C, I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S},

All feasible subspaces have decomp. S = ⊕dS
i=1Si . In what

sense does solution S∗ optimize the ranks of each Si?

Thm. (Parrilo-P.):
S∗ minimizes

∑
i rankSi and maxi rankSi

Majorization inequalities hold, i.e., for each m ≥ 1

m∑
i=1

rankS∗i ≤
m∑

i=1

rankSi

(ranks sorted in decreasing order)
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Majorization example

Subspaces (parametrized by ui and vi ) and their rank vectors
u1 u2 0 0 0
u2 u3 0 0 0
0 0 u4 0 0
0 0 0 u5 u6
0 0 0 u6 u7


ru = (2,1,2)


v1 v2 0 0 0
v2 v3 0 0 0
0 0 v4 v5 v6
0 0 v5 v7 v8
0 0 v6 v8 v9


rv = (2,3)

Vector r ′u = (2,2,1) majorized by r ′v = (3,2,0):

2 ≤ 3, 2 + 2 ≤ 3 + 2, 2 + 2 + 1 ≤ 3 + 2 + 0
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Structure theorem of Jordan-von Neumann-Wigner

If {X 2 : X ∈ S} ⊆ S , then S = ⊕m
i=1Si with Si isomorphic to

Algebra of Hermitian matrices with real, complex or
quaternion entries
A spin-factor algebra

Implies S ∩ Sn
+ isomorphic to K1 × · · · × Km, where Ki is

PSD cone with real/complex/quaternion entries
Lorentz cone

Allows us to reformulate over K1 × · · · × Km:

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ T (K1 × · · · × Km)︸ ︷︷ ︸

S∩Sn
+
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Computational results

Instances from DIMACS SDP problem library:

instance dimS∗ dimSn

hamming_7_5_6 5 8256
hamming_8_3_4 5 32896
hamming_9_5_6 6 131328
hamming_9_8 6 131328
hamming_10_2 7 524800

S ∩ Sn
+ isomorphic to non-negative orthant—problem converted

into linear program.
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Results: SOSOPT (Seiler ’13) Demo scripts

Script Name n (before) n (after)
sosoptdemo2 13, 3 3, 2× 3, 1× 7
sosoptdemo4 35 5× 5, 1× 10
gsosoptdemo1 9, 5 6, 3× 2, 2
IOGainDemo_3 15, 8 10, 5× 2, 3

Chesi(1|2)_IterationWithVlin 9, 5 6, 3× 2, 2
Chesi3_GlobalStability 14, 5 8, 6, 3, 2

Chesi(3|4)_IterationWithVlin 9, 5 6, 3× 2, 2
Chesi(5|6)_Bootstrap 19, 9 13, 6× 2, 3

Chesi(5|6)_IterationWithVlin 19, 9 13, 6× 2, 3
Coutinho3_IterationWithVlin 9, 5 6, 3× 2, 2
HachichoTibken_Bootstrap 19, 9 12, 7, 6, 3

HachichoTibken_IterationWithVlin 19, 9 12, 7, 6, 3
Hahn_IterationWithVlin 9, 5 6, 3, 3, 2

KuChen_IterationWithVlin 19, 9 13, 6× 2, 3
Parrilo1_GlobalStabilityWithVec 3, 2 2, 1× 3
Parrilo2_GlobalStabilityWithMat 3, 2 2, 1× 3

VDP_IterationWithVball 5, 4 3× 2, 2, 1
VDP_IterationWithVlin 9, 5 6, 3× 2, 2
VDP_LinearizedLyap 9, 5 6, 3× 2, 2

VannelliVidyasagar2_Bootstrap 19, 9 13, 6× 2, 3
VannelliVidyasagar2_IterationWithVlin 19, 9 13, 6× 2, 3
VincentGrantham_IterationWithVlin 9, 5 6, 3× 2, 2

WTBenchmark_IterationWithVlin 19, 9 13, 6× 2, 3
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Conclusions

New reduction method for SDP.

Generalizes symmetry reduction and *-algebra-methods
Fully algorithmic, don’t need to compute automorphisms!
Yields optimal ‘block-diagonalization’ (majorization)
Through Jordan algebra theory, extends to LP/SOCP/...

arXiv preprint later this week...

Thanks for your attention!
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