Dimension reduction for semidefinite programming

Frank Permenter

Laboratory for Information and Decision Systems Electrical Engineering and Computer Science Massachusetts Institute of Technology

Joint work with Pablo Parrilo (MIT)

July 28th 2016

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX\\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

Formulated over vector space \mathbb{S}^n of $n \times n$ symmetric matrices.

- variable $X \in \mathbb{S}^n$
- $\mathcal{A} \subseteq \mathbb{S}^n$ an affine subspace, $\mathcal{C} \in \mathbb{S}^n$ cost matrix
- \mathbb{S}^n_+ cone of psd matrices

Efficiently solvable in theory; in practice, solving some instances impossible unless special structure is exploited.

Dimension reduction

Reformulate problem over subspace $\mathcal{S} \subseteq \mathbb{S}^n$ intersecting set of optimal solutions

minimizeTr CXsubject to $X \in \mathcal{A} \cap \mathbb{S}^n_+$

minimize Tr CXsubject to $X \in \mathcal{A} \cap \mathbb{S}^n_+ \cap \mathcal{S}$ (Reformulation)

Dimension reduction

Reformulate problem over subspace $S \subseteq \mathbb{S}^n$ intersecting set of optimal solutions

minimize Tr CX

minimize Tr CX subject to $X \in \mathcal{A} \cap \mathbb{S}^n_+$ subject to $X \in \mathcal{A} \cap \mathbb{S}^n_+ \cap \mathcal{S}$ (Reformulation)

where $\mathbb{S}^n_{\perp} \cap S$ equals product $\mathcal{K}_i \times \cdots \times \mathcal{K}_m$ of 'simple' cones.

Dimension reduction

Reformulate problem over subspace $S \subseteq \mathbb{S}^n$ intersecting set of optimal solutions

minimize Tr CX

minimizeTr CXminimizeTr CXsubject to $X \in A \cap \mathbb{S}^n_+$ subject to $X \in A \cap \mathbb{S}^n_+ \cap S$ minimize Tr CX (Reformulation)

where $\mathbb{S}^n_+ \cap S$ equals product $\mathcal{K}_i \times \cdots \times \mathcal{K}_m$ of 'simple' cones.

Reduction methods: symmetry reduction and facial reduction

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX\\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

$$\mathcal{A} := \{X \in \mathbb{S}^n : X_{ii} = 1\}$$

 $\mathcal{C} := adjacency matrix$

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX\\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

$$\mathcal{A} := \{X \in \mathbb{S}^n : X_{ii} = 1\}$$

 $\mathcal{C} := adjacency matrix$

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX\\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

$$\mathcal{A} := \{ X \in \mathbb{S}^n : X_{ii} = 1 \}$$

 $\mathcal{C} := adjacency matrix$

Idea: find special projection map P
P(X) optimal when X optimal.

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX\\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

$$\mathcal{A} := \{ X \in \mathbb{S}^n : X_{ii} = 1 \}$$

 $\mathcal{C} := adjacency matrix$

Idea: find special projection map P

- P(X) optimal when X optimal.
- *P* explicitly constructed from automorphism group of graph.

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX\\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

$$\mathcal{A} := \{ X \in \mathbb{S}^n : X_{ii} = 1 \}$$

 $\mathcal{C} := adjacency matrix$

Idea: find special projection map P

- P(X) optimal when X optimal.
- *P* explicitly constructed from automorphism group of graph.
- Range 'block-diagonal'—a direct-sum of matrix algebras.

range P

 $\begin{array}{ll} \text{minimize} & \text{Tr } CX\\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array}$

$$\mathcal{A} := \{X \in \mathbb{S}^n : X_{ii} = 1\}$$

 $\mathcal{C} := adjacency matrix$

Idea: find special projection map P

- P(X) optimal when X optimal.
- *P* explicitly constructed from automorphism group of graph.
- Range 'block-diagonal'—a direct-sum of matrix algebras.

(e.g., Schrijver '79; Gatermann, Parrilo. '03)

opt. solns

This talk: a reduction method subsuming symmetry reduction

- Notion of 'optimal' reduction and algorithm for finding it
- Jordan algebra interpretation: immediate extension to symmetric cone optimization (e.g., LP, SOCP).

This talk: a reduction method subsuming symmetry reduction

- Notion of 'optimal' reduction and algorithm for finding it
- Jordan algebra interpretation: immediate extension to symmetric cone optimization (e.g., LP, SOCP).

Comparisons (aside):

 Borwein-Wolkowicz '81: minimal face/facial reduction algorithm This talk: a reduction method subsuming symmetry reduction

- Notion of 'optimal' reduction and algorithm for finding it
- Jordan algebra interpretation: immediate extension to symmetric cone optimization (e.g., LP, SOCP).

Comparisons (aside):

- Borwein-Wolkowicz '81: minimal face/facial reduction algorithm
- Alizadeh-Schmieta '00: extension of interior-point methods

How does symmetry reduction work?

Given SDP min_{$X \in A \cap S^n_+$} Tr *CX*, method finds special orthogonal projection $P : S^n \to S^n$

If X feas./optimal, P(X) feas./optimal.

How does symmetry reduction work?

Given SDP min_{$X \in A \cap \mathbb{S}^n_+$} Tr *CX*, method finds special orthogonal projection $P : \mathbb{S}^n \to \mathbb{S}^n$

If X feas./optimal, P(X) feas./optimal.

• P satisfies following conditions:

 $P(\mathcal{A}) \subseteq \mathcal{A}, \qquad P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+, \qquad P(\mathcal{C}) = \mathcal{C}$

How does symmetry reduction work?

Given SDP min_{$X \in A \cap \mathbb{S}^n_+$} Tr *CX*, method finds special orthogonal projection $P : \mathbb{S}^n \to \mathbb{S}^n$

If X feas./optimal, P(X) feas./optimal.

• P satisfies following conditions:

 $P(\mathcal{A}) \subseteq \mathcal{A}, \qquad P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+, \qquad P(\mathcal{C}) = \mathcal{C}$

• Hence, if X feasible then P(X) feasible with equal cost: Tr CX = Tr P(C)X = Tr CP(X).

Our approach: optimize over projections

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_+} \langle C, X \rangle$, find map *P* that solves

minimize rank P
subject to
$$P(C) = C, P(I) = I$$

 $P(A) \subseteq A$
 $P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+$
 $P: \mathbb{S}^n \to \mathbb{S}^n$ an orthogonal projection.

Our approach: optimize over projections

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_+} \langle C, X \rangle$, find map *P* that solves

minimize rank *P*
subject to
$$P(C) = C, P(I) = I$$

 $P(\mathcal{A}) \subseteq \mathcal{A}$
 $P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+$
 $P: \mathbb{S}^n \to \mathbb{S}^n$ an orthogonal projection.

Main properties:

- Can be solved in polynomial time.
- Range of *P* structured: a *Jordan subalgebra* of Sⁿ.
- $\mathbb{S}^n_+ \cap$ range *P* equals a product of symmetric cones.

Theorem (Parrilo-P.)

Orthogonal projection $P : \mathbb{S}^n \to \mathbb{S}^n$ solves

 $\begin{array}{ll} \text{minimize} & \text{rank } P \\ \text{subject to} & P(C) = C, P(I) = I \\ & P(\mathcal{A}) \subseteq \mathcal{A} \\ & P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+ \end{array}$

iff the range of P solves

 $\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni I, X_{\mathcal{L}^{\perp}}, \mathcal{C} \\ & \mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\}, \end{array}$

where affine set $\mathcal{A} = X_{\mathcal{L}^{\perp}} + \mathcal{L}$ and $P_{\mathcal{L}}$ is proj. map onto \mathcal{L} .

Theorem (Parrilo-P.)

Orthogonal projection $P : \mathbb{S}^n \to \mathbb{S}^n$ solves

 $\begin{array}{ll} \text{minimize} & \text{rank } P\\ \text{subject to} & P(C) = C, P(I) = I\\ & P(\mathcal{A}) \subseteq \mathcal{A}\\ & P(\mathbb{S}^n_+) \subseteq \mathbb{S}^n_+ \end{array}$

iff the range of P solves

 $\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni I, X_{\mathcal{L}^{\perp}}, C \\ & \mathcal{S} \supseteq P_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supset \{X^2 : X \in \mathcal{S}\}, \end{array}$

where affine set $A = X_{\mathcal{L}^{\perp}} + \mathcal{L}$ and $P_{\mathcal{L}}$ is proj. map onto \mathcal{L} .

 $\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni \mathcal{C}, \mathcal{X}_{\mathcal{L}^{\perp}}, \mathcal{I} \\ & \mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supseteq \left\{ \mathcal{X}^2 : \mathcal{X} \in \mathcal{S} \right\} \end{array}$

$$\begin{split} \mathcal{S} &\leftarrow \text{span}\{C, X_{\mathcal{L}^{\perp}}, I\} \\ \text{repeat} \\ \mid & \mathcal{S} \leftarrow \mathcal{S} + \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \leftarrow \mathcal{S} + \text{span}\{X^2 : X \in \mathcal{S}\} \\ \text{until converged.} \end{split}$$

minimize $\dim S$ subject to $S \ni C, X_{C^{\perp}}, I$ $\mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S})$

 $\mathcal{S} \leftarrow \operatorname{span}\{C, X_{\mathcal{C}^{\perp}}, I\}$ repeat $\mathcal{S} \leftarrow \mathcal{S} + \mathcal{P}_{\mathcal{L}}(\mathcal{S})$ $\mathcal{S} \supset \{X^2 : X \in \mathcal{S}\} \qquad \mathcal{S} \leftarrow \mathcal{S} + \operatorname{span}\{X^2 : X \in \mathcal{S}\}$ until converged.

Properties of algorithm:

Optimal subspace contains each iterate (induction)

 $\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni \mathcal{C}, X_{\mathcal{L}^{\perp}}, I \\ & \mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} \end{array}$

$$\begin{split} \mathcal{S} &\leftarrow \text{span}\{C, X_{\mathcal{L}^{\perp}}, I\} \\ \textbf{repeat} \\ \mid & \mathcal{S} \leftarrow \mathcal{S} + \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ \mid & \mathcal{S} \leftarrow \mathcal{S} + \text{span}\{X^2 : X \in \mathcal{S}\} \\ \textbf{until converged.} \end{split}$$

Properties of algorithm:

- Optimal subspace contains each iterate (induction)
- Computes ascending chain of subspaces-terminates.

 $\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni \mathcal{C}, X_{\mathcal{L}^{\perp}}, I \\ & \mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} \end{array}$

$$\begin{split} \mathcal{S} &\leftarrow \text{span}\{C, X_{\mathcal{L}^{\perp}}, I\} \\ \textbf{repeat} \\ \mid & \mathcal{S} \leftarrow \mathcal{S} + \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \leftarrow \mathcal{S} + \text{span}\{X^2 : X \in \mathcal{S}\} \\ \textbf{until converged.} \end{split}$$

Properties of algorithm:

- Optimal subspace contains each iterate (induction)
- Computes ascending chain of subspaces—terminates.
- At termination, subspace feasible; hence, optimal.

 $\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni \mathcal{C}, X_{\mathcal{L}^{\perp}}, I \\ & \mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} \end{array}$

$$\begin{split} \mathcal{S} &\leftarrow \text{span}\{C, X_{\mathcal{L}^{\perp}}, I\} \\ \textbf{repeat} \\ \mid & \mathcal{S} \leftarrow \mathcal{S} + \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ \mid & \mathcal{S} \leftarrow \mathcal{S} + \text{span}\{X^2 : X \in \mathcal{S}\} \\ \textbf{until converged.} \end{split}$$

Properties of algorithm:

- Optimal subspace contains each iterate (induction)
- Computes ascending chain of subspaces—terminates.
- At termination, subspace feasible; hence, optimal.

Properties of minimization problem:

• Feasible set closed under intersection (lattice)

 $\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni \mathcal{C}, X_{\mathcal{L}^{\perp}}, I \\ & \mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\} \end{array}$

$$\begin{split} \mathcal{S} &\leftarrow \text{span}\{C, X_{\mathcal{L}^{\perp}}, I\} \\ \textbf{repeat} \\ \mid & \mathcal{S} \leftarrow \mathcal{S} + \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ \mid & \mathcal{S} \leftarrow \mathcal{S} + \text{span}\{X^2 : X \in \mathcal{S}\} \\ \textbf{until converged.} \end{split}$$

Properties of algorithm:

- Optimal subspace contains each iterate (induction)
- Computes ascending chain of subspaces—terminates.
- At termination, subspace feasible; hence, optimal.

Properties of minimization problem:

- Feasible set closed under intersection (lattice)
- A unique solution.

Decomposition via Jordan algebras

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_{\perp}} \langle C, X \rangle$, we've found subspace \mathcal{S} ...

Decomposition via Jordan algebras

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_{\perp}} \langle C, X \rangle$, we've found subspace \mathcal{S} ...

$$\mathcal{S} \longrightarrow \mathcal{S} \supseteq \{ X^2 : X \in \mathcal{S} \} \quad (1)$$
opt. solns \longrightarrow

• Inclusion (1) implies direct-sum decomp. $S = \bigoplus_{i=1}^{m} S_i$

$$S = Q \begin{pmatrix} S_1 & 0 & \dots & 0 \\ 0 & S_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & S_m \end{pmatrix} Q^T,$$

 S_i are simple Jordan algebras

Decomposition via Jordan algebras

Given SDP $\min_{X \in \mathcal{A} \cap \mathbb{S}^n_{\perp}} \langle C, X \rangle$, we've found subspace \mathcal{S} ...

$$\mathcal{S} \longrightarrow \mathcal{S} \supseteq \{ X^2 : X \in \mathcal{S} \} \quad (1)$$
opt. solns \longrightarrow

• Inclusion (1) implies direct-sum decomp. $S = \bigoplus_{i=1}^{m} S_i$

$$S = Q \begin{pmatrix} S_1 & 0 & \dots & 0 \\ 0 & S_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & S_m \end{pmatrix} Q^T, \quad \begin{array}{c} S_i \text{ are simple} \\ \text{Jordan algebras} \\ \text{Jordan algebras} \\ \end{array}$$

 Number of distinct eigenvalues of generic element equals rank of S_i—a complexity measure.

Minimizing dimension optimizes decomposition

$$\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni X_{\mathcal{L}^{\perp}}, \mathcal{C}, I \\ & \mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\}, \end{array}$$

All feasible subspaces have decomp. $S = \bigoplus_{i=1}^{d_S} S_i$. In what sense does solution S^* optimize the ranks of each S_i ?

Minimizing dimension optimizes decomposition

$$\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni X_{\mathcal{L}^{\perp}}, \mathcal{C}, \mathcal{I} \\ & \mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\}, \end{array}$$

All feasible subspaces have decomp. $S = \bigoplus_{i=1}^{d_S} S_i$. In what sense does solution S^* optimize the ranks of each S_i ?

Thm. (Parrilo-P.):

• S^* minimizes $\sum_i \operatorname{rank} S_i$ and $\max_i \operatorname{rank} S_i$

Minimizing dimension optimizes decomposition

$$\begin{array}{ll} \text{minimize} & \dim \mathcal{S} \\ \text{subject to} & \mathcal{S} \ni X_{\mathcal{L}^{\perp}}, \mathcal{C}, \mathcal{I} \\ & \mathcal{S} \supseteq \mathcal{P}_{\mathcal{L}}(\mathcal{S}) \\ & \mathcal{S} \supseteq \{X^2 : X \in \mathcal{S}\}, \end{array}$$

All feasible subspaces have decomp. $S = \bigoplus_{i=1}^{d_S} S_i$. In what sense does solution S^* optimize the ranks of each S_i ?

Thm. (Parrilo-P.):

- S^* minimizes $\sum_i \operatorname{rank} S_i$ and $\max_i \operatorname{rank} S_i$
- *Majorization* inequalities hold, i.e., for each $m \ge 1$

$$\sum_{i=1}^{m} \operatorname{rank} \mathcal{S}_{i}^{*} \leq \sum_{i=1}^{m} \operatorname{rank} \mathcal{S}_{i}$$

(ranks sorted in decreasing order)

Subspaces (parametrized by u_i and v_i) and their rank vectors

$$\begin{pmatrix} u_1 & u_2 & 0 & 0 & 0 \\ u_2 & u_3 & 0 & 0 & 0 \\ 0 & 0 & u_4 & 0 & 0 \\ 0 & 0 & 0 & u_5 & u_6 \\ 0 & 0 & 0 & u_6 & u_7 \end{pmatrix} \qquad \begin{pmatrix} v_1 & v_2 & 0 & 0 & 0 \\ v_2 & v_3 & 0 & 0 & 0 \\ 0 & 0 & v_4 & v_5 & v_6 \\ 0 & 0 & v_5 & v_7 & v_8 \\ 0 & 0 & v_6 & v_8 & v_9 \end{pmatrix}$$

$$r_u = (2, 1, 2)$$
 $r_v = (2, 3)$

Subspaces (parametrized by u_i and v_i) and their rank vectors

$$\begin{pmatrix} u_1 & u_2 & 0 & 0 & 0 \\ u_2 & u_3 & 0 & 0 & 0 \\ 0 & 0 & u_4 & 0 & 0 \\ 0 & 0 & 0 & u_5 & u_6 \\ 0 & 0 & 0 & u_6 & u_7 \end{pmatrix} \qquad \qquad \begin{pmatrix} v_1 & v_2 & 0 & 0 & 0 \\ v_2 & v_3 & 0 & 0 & 0 \\ 0 & 0 & v_4 & v_5 & v_6 \\ 0 & 0 & v_5 & v_7 & v_8 \\ 0 & 0 & v_6 & v_8 & v_9 \end{pmatrix}$$

$$r_u = (2, 1, 2)$$
 $r_v = (2, 3)$

Vector $r'_u = (2, 2, 1)$ majorized by $r'_v = (3, 2, 0)$:

 $2 \leq 3, \qquad 2+2 \leq 3+2, \qquad 2+2+1 \leq 3+2+0$

Structure theorem of Jordan-von Neumann-Wigner

- If $\{X^2: X \in S\} \subseteq S$, then $S = \oplus_{i=1}^m S_i$ with S_i isomorphic to
 - Algebra of Hermitian matrices with real, complex or quaternion entries
 - A spin-factor algebra

Structure theorem of Jordan-von Neumann-Wigner

If $\{X^2: X \in S\} \subseteq S$, then $S = \oplus_{i=1}^m S_i$ with S_i isomorphic to

- Algebra of Hermitian matrices with real, complex or quaternion entries
- A spin-factor algebra

Implies $S \cap \mathbb{S}^n_+$ isomorphic to $\mathcal{K}_1 \times \cdots \times \mathcal{K}_m$, where \mathcal{K}_i is

- PSD cone with real/complex/quaternion entries
- Lorentz cone

Structure theorem of Jordan-von Neumann-Wigner

If $\{X^2: X \in S\} \subseteq S$, then $S = \oplus_{i=1}^m S_i$ with S_i isomorphic to

- Algebra of Hermitian matrices with real, complex or quaternion entries
- A spin-factor algebra

Implies $S \cap \mathbb{S}^n_+$ isomorphic to $\mathcal{K}_1 \times \cdots \times \mathcal{K}_m$, where \mathcal{K}_i is

- PSD cone with real/complex/quaternion entries
- Lorentz cone

Allows us to reformulate over $\mathcal{K}_1 \times \cdots \times \mathcal{K}_m$:

 $\begin{array}{lll} \text{minimize} & \text{Tr } \mathcal{CX} \\ \text{subject to} & X \in \mathcal{A} \cap \mathbb{S}^n_+ \end{array} & \begin{array}{lll} \text{minimize} & \text{Tr } \mathcal{CX} \\ \text{subject to} & X \in \mathcal{A} \cap \underbrace{\mathcal{T}(\mathcal{K}_1 \times \cdots \times \mathcal{K}_m)}_{\mathcal{S} \cap \mathbb{S}^n_+} \end{array}$

Instances from DIMACS SDP problem library:

instance	$\dim \mathcal{S}^*$	dim S ⁿ
hamming_7_5_6	5	8256
hamming_8_3_4	5	32896
hamming_9_5_6	6	131328
hamming_9_8	6	131328
hamming_10_2	7	524800

 $S \cap \mathbb{S}^n_+$ isomorphic to non-negative orthant—problem converted into linear program.

Results: SOSOPT (Seiler '13) Demo scripts

Script Name	n (before)	n (after)
sosoptdemo2	13, 3	$3,2\times3,1\times7$
sosoptdemo4	35	5 imes 5, 1 imes 10
gsosoptdemo1	9,5	6, 3 × 2, 2
IOGainDemo_3	15, 8	10,5 imes 2,3
Chesi(1 2)_IterationWithVlin	9,5	6, 3 imes 2, 2
Chesi3_GlobalStability	14, 5	8, 6, 3, 2
Chesi(3 4)_IterationWithVlin	9,5	$6,3\times2,2$
Chesi(5 6)_Bootstrap	19, 9	13,6 imes 2,3
Chesi(5 6)_IterationWithVlin	19, 9	13,6 imes 2,3
Coutinho3_IterationWithVlin	9,5	$6,3\times2,2$
HachichoTibken_Bootstrap	19, 9	12, 7, 6, 3
HachichoTibken_IterationWithVlin	19, 9	12, 7, 6, 3
Hahn_IterationWithVlin	9,5	6, 3, 3, 2
KuChen_IterationWithVlin	19, 9	$13,6\times 2,3$
Parrilo1_GlobalStabilityWithVec	3,2	2, 1 × 3
Parrilo2_GlobalStabilityWithMat	3,2	2,1 imes 3
VDP_IterationWithVball	5,4	3 imes 2, 2, 1
VDP_IterationWithVlin	9,5	6, 3 imes 2, 2
VDP_LinearizedLyap	9,5	$6,3\times2,2$
VannelliVidyasagar2_Bootstrap	19, 9	$13,6\times 2,3$
VannelliVidyasagar2_IterationWithVlin	19, 9	13,6 imes 2,3
VincentGrantham_IterationWithVlin	9,5	$6,3\times2,2$
WTBenchmark_IterationWithVlin	19, 9	$13, 6 \times 2, 3$

New reduction method for SDP.

- Generalizes symmetry reduction and *-algebra-methods
- Fully algorithmic, don't need to compute automorphisms!
- Yields optimal 'block-diagonalization' (majorization)
- Through Jordan algebra theory, extends to LP/SOCP/...

New reduction method for SDP.

- Generalizes symmetry reduction and *-algebra-methods
- Fully algorithmic, don't need to compute automorphisms!
- Yields optimal 'block-diagonalization' (majorization)
- Through Jordan algebra theory, extends to LP/SOCP/...

arXiv preprint later this week...

New reduction method for SDP.

- Generalizes symmetry reduction and *-algebra-methods
- Fully algorithmic, don't need to compute automorphisms!
- Yields optimal 'block-diagonalization' (majorization)
- Through Jordan algebra theory, extends to LP/SOCP/...

arXiv preprint later this week...

Thanks for your attention!