
Dimension reduction
for semidefinite programming

Frank Permenter

Laboratory for Information and Decision Systems
Electrical Engineering and Computer Science

Massachusetts Institute of Technology

Joint work with Pablo Parrilo (MIT)

July 28th 2016

1 / 16



Semidefinite programs (SDPs)

minimize Tr CX
subject to X ∈ A ∩ Sn

+

Formulated over vector space Sn of n × n symmetric matrices.
variable X ∈ Sn

A ⊆ Sn an affine subspace, C ∈ Sn cost matrix
Sn
+ cone of psd matrices

Efficiently solvable in theory; in practice, solving some
instances impossible unless special structure is exploited.

2 / 16



Dimension reduction

Reformulate problem over subspace S ⊆ Sn intersecting set of
optimal solutions

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ Sn

+ ∩ S
(Reformulation)

S
A ∩ Sn

+

opt. solns

where Sn
+ ∩ S equals product Ki × · · · × Km of ‘simple’ cones.

Reduction methods: symmetry reduction and facial reduction

3 / 16



Dimension reduction

Reformulate problem over subspace S ⊆ Sn intersecting set of
optimal solutions

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ Sn

+ ∩ S
(Reformulation)

S
A ∩ Sn

+

opt. solns

where Sn
+ ∩ S equals product Ki × · · · × Km of ‘simple’ cones.

Reduction methods: symmetry reduction and facial reduction

3 / 16



Dimension reduction

Reformulate problem over subspace S ⊆ Sn intersecting set of
optimal solutions

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ Sn

+ ∩ S
(Reformulation)

S
A ∩ Sn

+

opt. solns

where Sn
+ ∩ S equals product Ki × · · · × Km of ‘simple’ cones.

Reduction methods: symmetry reduction and facial reduction
3 / 16



Symmetry reduction (MAXCUT relaxation example )

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

range P
A ∩ Sn

+

opt. solns

Idea: find special projection map P
P(X ) optimal when X optimal.
P explicitly constructed from
automorphism group of graph.
Range ‘block-diagonal’—a
direct-sum of matrix algebras.

(e.g., Schrijver ’79; Gatermann, Parrilo. ’03)

4 / 16



Symmetry reduction (MAXCUT relaxation example )

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

range P
A ∩ Sn

+

opt. solns

Idea: find special projection map P
P(X ) optimal when X optimal.
P explicitly constructed from
automorphism group of graph.
Range ‘block-diagonal’—a
direct-sum of matrix algebras.

(e.g., Schrijver ’79; Gatermann, Parrilo. ’03)

4 / 16



Symmetry reduction (MAXCUT relaxation example )

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

range P
A ∩ Sn

+

opt. solns

Idea: find special projection map P
P(X ) optimal when X optimal.

P explicitly constructed from
automorphism group of graph.
Range ‘block-diagonal’—a
direct-sum of matrix algebras.

(e.g., Schrijver ’79; Gatermann, Parrilo. ’03)

4 / 16



Symmetry reduction (MAXCUT relaxation example )

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

range P
A ∩ Sn

+

opt. solns

Idea: find special projection map P
P(X ) optimal when X optimal.
P explicitly constructed from
automorphism group of graph.

Range ‘block-diagonal’—a
direct-sum of matrix algebras.

(e.g., Schrijver ’79; Gatermann, Parrilo. ’03)

4 / 16



Symmetry reduction (MAXCUT relaxation example )

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

range P
A ∩ Sn

+

opt. solns

Idea: find special projection map P
P(X ) optimal when X optimal.
P explicitly constructed from
automorphism group of graph.
Range ‘block-diagonal’—a
direct-sum of matrix algebras.

(e.g., Schrijver ’79; Gatermann, Parrilo. ’03)

4 / 16



Symmetry reduction (MAXCUT relaxation example )

minimize Tr CX
subject to X ∈ A ∩ Sn

+

A := {X ∈ Sn : Xii = 1}
C := adjacency matrix

range P
A ∩ Sn

+

opt. solns

Idea: find special projection map P
P(X ) optimal when X optimal.
P explicitly constructed from
automorphism group of graph.
Range ‘block-diagonal’—a
direct-sum of matrix algebras.

(e.g., Schrijver ’79; Gatermann, Parrilo. ’03)
4 / 16



Our approach

This talk: a reduction method subsuming symmetry reduction

Notion of ‘optimal’ reduction and algorithm for finding it
Jordan algebra interpretation: immediate extension to
symmetric cone optimization (e.g., LP, SOCP).

Comparisons (aside):
Borwein-Wolkowicz ’81: minimal face/facial reduction
algorithm
Alizadeh-Schmieta ’00: extension of interior-point methods

5 / 16



Our approach

This talk: a reduction method subsuming symmetry reduction

Notion of ‘optimal’ reduction and algorithm for finding it
Jordan algebra interpretation: immediate extension to
symmetric cone optimization (e.g., LP, SOCP).

Comparisons (aside):
Borwein-Wolkowicz ’81: minimal face/facial reduction
algorithm

Alizadeh-Schmieta ’00: extension of interior-point methods

5 / 16



Our approach

This talk: a reduction method subsuming symmetry reduction

Notion of ‘optimal’ reduction and algorithm for finding it
Jordan algebra interpretation: immediate extension to
symmetric cone optimization (e.g., LP, SOCP).

Comparisons (aside):
Borwein-Wolkowicz ’81: minimal face/facial reduction
algorithm
Alizadeh-Schmieta ’00: extension of interior-point methods

5 / 16



How does symmetry reduction work?

Given SDP minX∈A∩Sn
+

Tr CX , method finds special orthogonal
projection P : Sn → Sn

range of P

A ∩ Sn
+

opt. solns

If X feas./optimal, P(X ) feas./optimal.

P satisfies following conditions:

P(A) ⊆ A, P(Sn
+) ⊆ Sn

+, P(C) = C

Hence, if X feasible then P(X ) feasible with equal cost:

Tr CX = Tr P(C)X = Tr CP(X ).

6 / 16



How does symmetry reduction work?

Given SDP minX∈A∩Sn
+

Tr CX , method finds special orthogonal
projection P : Sn → Sn

range of P

A ∩ Sn
+

opt. solns

If X feas./optimal, P(X ) feas./optimal.

P satisfies following conditions:

P(A) ⊆ A, P(Sn
+) ⊆ Sn

+, P(C) = C

Hence, if X feasible then P(X ) feasible with equal cost:

Tr CX = Tr P(C)X = Tr CP(X ).

6 / 16



How does symmetry reduction work?

Given SDP minX∈A∩Sn
+

Tr CX , method finds special orthogonal
projection P : Sn → Sn

range of P

A ∩ Sn
+

opt. solns

If X feas./optimal, P(X ) feas./optimal.

P satisfies following conditions:

P(A) ⊆ A, P(Sn
+) ⊆ Sn

+, P(C) = C

Hence, if X feasible then P(X ) feasible with equal cost:

Tr CX = Tr P(C)X = Tr CP(X ).
6 / 16



Our approach: optimize over projections

Given SDP minX∈A∩Sn
+
〈C,X 〉, find map P that solves

minimize rank P
subject to P(C) = C,P(I) = I

P(A) ⊆ A
P(Sn

+) ⊆ Sn
+

P : Sn → Sn an orthogonal projection.

Main properties:
Can be solved in polynomial time.
Range of P structured: a Jordan subalgebra of Sn.
Sn
+ ∩ range P equals a product of symmetric cones.

7 / 16



Our approach: optimize over projections

Given SDP minX∈A∩Sn
+
〈C,X 〉, find map P that solves

minimize rank P
subject to P(C) = C,P(I) = I

P(A) ⊆ A
P(Sn

+) ⊆ Sn
+

P : Sn → Sn an orthogonal projection.

Main properties:
Can be solved in polynomial time.
Range of P structured: a Jordan subalgebra of Sn.
Sn
+ ∩ range P equals a product of symmetric cones.

7 / 16



The optimal subspace of minX∈A∩Sn
+
〈C,X 〉

Theorem (Parrilo-P.)

Orthogonal projection P : Sn → Sn solves

minimize rank P
subject to P(C) = C,P(I) = I

P(A) ⊆ A
P(Sn

+) ⊆ Sn
+

iff the range of P solves

minimize dimS
subject to S 3 I,XL⊥ ,C

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S},

where affine set A = XL⊥ + L and PL is proj. map onto L.

8 / 16



The optimal subspace of minX∈A∩Sn
+
〈C,X 〉

Theorem (Parrilo-P.)

Orthogonal projection P : Sn → Sn solves

minimize rank P
subject to P(C) = C,P(I) = I

P(A) ⊆ A
P(Sn

+) ⊆ Sn
+

iff the range of P solves

minimize dimS
subject to S 3 I,XL⊥ ,C

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S},

where affine set A = XL⊥ + L and PL is proj. map onto L.

8 / 16



Subspace optimization and solution algorithm

minimize dimS
subject to S 3 C,XL⊥ , I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S}

S ← span{C,XL⊥ , I}
repeat
S ← S + PL(S)
S ← S + span{X 2 : X ∈ S}

until converged.

Properties of algorithm:
Optimal subspace contains each iterate (induction)
Computes ascending chain of subspaces—terminates.
At termination, subspace feasible; hence, optimal.

Properties of minimization problem:
Feasible set closed under intersection (lattice)
A unique solution.

9 / 16



Subspace optimization and solution algorithm

minimize dimS
subject to S 3 C,XL⊥ , I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S}

S ← span{C,XL⊥ , I}
repeat
S ← S + PL(S)
S ← S + span{X 2 : X ∈ S}

until converged.

Properties of algorithm:
Optimal subspace contains each iterate (induction)

Computes ascending chain of subspaces—terminates.
At termination, subspace feasible; hence, optimal.

Properties of minimization problem:
Feasible set closed under intersection (lattice)
A unique solution.

9 / 16



Subspace optimization and solution algorithm

minimize dimS
subject to S 3 C,XL⊥ , I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S}

S ← span{C,XL⊥ , I}
repeat
S ← S + PL(S)
S ← S + span{X 2 : X ∈ S}

until converged.

Properties of algorithm:
Optimal subspace contains each iterate (induction)
Computes ascending chain of subspaces—terminates.

At termination, subspace feasible; hence, optimal.

Properties of minimization problem:
Feasible set closed under intersection (lattice)
A unique solution.

9 / 16



Subspace optimization and solution algorithm

minimize dimS
subject to S 3 C,XL⊥ , I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S}

S ← span{C,XL⊥ , I}
repeat
S ← S + PL(S)
S ← S + span{X 2 : X ∈ S}

until converged.

Properties of algorithm:
Optimal subspace contains each iterate (induction)
Computes ascending chain of subspaces—terminates.
At termination, subspace feasible; hence, optimal.

Properties of minimization problem:
Feasible set closed under intersection (lattice)
A unique solution.

9 / 16



Subspace optimization and solution algorithm

minimize dimS
subject to S 3 C,XL⊥ , I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S}

S ← span{C,XL⊥ , I}
repeat
S ← S + PL(S)
S ← S + span{X 2 : X ∈ S}

until converged.

Properties of algorithm:
Optimal subspace contains each iterate (induction)
Computes ascending chain of subspaces—terminates.
At termination, subspace feasible; hence, optimal.

Properties of minimization problem:
Feasible set closed under intersection (lattice)

A unique solution.

9 / 16



Subspace optimization and solution algorithm

minimize dimS
subject to S 3 C,XL⊥ , I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S}

S ← span{C,XL⊥ , I}
repeat
S ← S + PL(S)
S ← S + span{X 2 : X ∈ S}

until converged.

Properties of algorithm:
Optimal subspace contains each iterate (induction)
Computes ascending chain of subspaces—terminates.
At termination, subspace feasible; hence, optimal.

Properties of minimization problem:
Feasible set closed under intersection (lattice)
A unique solution.

9 / 16



Decomposition via Jordan algebras

Given SDP minX∈A∩Sn
+
〈C,X 〉, we’ve found subspace S...

S
A ∩ Sn

+

opt. solns
S ⊇ {X 2 : X ∈ S} (1)

Inclusion (1) implies direct-sum decomp. S = ⊕m
i=1Si

S = Q


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 0 Sm

QT ,
Si are simple
Jordan algebras

Number of distinct eigenvalues of generic element equals
rank of Si—a complexity measure.

10 / 16



Decomposition via Jordan algebras

Given SDP minX∈A∩Sn
+
〈C,X 〉, we’ve found subspace S...

S
A ∩ Sn

+

opt. solns
S ⊇ {X 2 : X ∈ S} (1)

Inclusion (1) implies direct-sum decomp. S = ⊕m
i=1Si

S = Q


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 0 Sm

QT ,
Si are simple
Jordan algebras

Number of distinct eigenvalues of generic element equals
rank of Si—a complexity measure.

10 / 16



Decomposition via Jordan algebras

Given SDP minX∈A∩Sn
+
〈C,X 〉, we’ve found subspace S...

S
A ∩ Sn

+

opt. solns
S ⊇ {X 2 : X ∈ S} (1)

Inclusion (1) implies direct-sum decomp. S = ⊕m
i=1Si

S = Q


S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 0 Sm

QT ,
Si are simple
Jordan algebras

Number of distinct eigenvalues of generic element equals
rank of Si—a complexity measure.

10 / 16



Minimizing dimension optimizes decomposition

minimize dimS
subject to S 3 XL⊥ ,C, I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S},

All feasible subspaces have decomp. S = ⊕dS
i=1Si . In what

sense does solution S∗ optimize the ranks of each Si?

Thm. (Parrilo-P.):
S∗ minimizes

∑
i rankSi and maxi rankSi

Majorization inequalities hold, i.e., for each m ≥ 1

m∑
i=1

rankS∗i ≤
m∑

i=1

rankSi

(ranks sorted in decreasing order)

11 / 16



Minimizing dimension optimizes decomposition

minimize dimS
subject to S 3 XL⊥ ,C, I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S},

All feasible subspaces have decomp. S = ⊕dS
i=1Si . In what

sense does solution S∗ optimize the ranks of each Si?

Thm. (Parrilo-P.):
S∗ minimizes

∑
i rankSi and maxi rankSi

Majorization inequalities hold, i.e., for each m ≥ 1

m∑
i=1

rankS∗i ≤
m∑

i=1

rankSi

(ranks sorted in decreasing order)

11 / 16



Minimizing dimension optimizes decomposition

minimize dimS
subject to S 3 XL⊥ ,C, I

S ⊇ PL(S)
S ⊇ {X 2 : X ∈ S},

All feasible subspaces have decomp. S = ⊕dS
i=1Si . In what

sense does solution S∗ optimize the ranks of each Si?

Thm. (Parrilo-P.):
S∗ minimizes

∑
i rankSi and maxi rankSi

Majorization inequalities hold, i.e., for each m ≥ 1

m∑
i=1

rankS∗i ≤
m∑

i=1

rankSi

(ranks sorted in decreasing order)
11 / 16



Majorization example

Subspaces (parametrized by ui and vi ) and their rank vectors
u1 u2 0 0 0
u2 u3 0 0 0
0 0 u4 0 0
0 0 0 u5 u6
0 0 0 u6 u7


ru = (2,1,2)


v1 v2 0 0 0
v2 v3 0 0 0
0 0 v4 v5 v6
0 0 v5 v7 v8
0 0 v6 v8 v9


rv = (2,3)

Vector r ′u = (2,2,1) majorized by r ′v = (3,2,0):

2 ≤ 3, 2 + 2 ≤ 3 + 2, 2 + 2 + 1 ≤ 3 + 2 + 0

12 / 16



Majorization example

Subspaces (parametrized by ui and vi ) and their rank vectors
u1 u2 0 0 0
u2 u3 0 0 0
0 0 u4 0 0
0 0 0 u5 u6
0 0 0 u6 u7


ru = (2,1,2)


v1 v2 0 0 0
v2 v3 0 0 0
0 0 v4 v5 v6
0 0 v5 v7 v8
0 0 v6 v8 v9


rv = (2,3)

Vector r ′u = (2,2,1) majorized by r ′v = (3,2,0):

2 ≤ 3, 2 + 2 ≤ 3 + 2, 2 + 2 + 1 ≤ 3 + 2 + 0

12 / 16



Structure theorem of Jordan-von Neumann-Wigner

If {X 2 : X ∈ S} ⊆ S , then S = ⊕m
i=1Si with Si isomorphic to

Algebra of Hermitian matrices with real, complex or
quaternion entries
A spin-factor algebra

Implies S ∩ Sn
+ isomorphic to K1 × · · · × Km, where Ki is

PSD cone with real/complex/quaternion entries
Lorentz cone

Allows us to reformulate over K1 × · · · × Km:

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ T (K1 × · · · × Km)︸ ︷︷ ︸

S∩Sn
+

13 / 16



Structure theorem of Jordan-von Neumann-Wigner

If {X 2 : X ∈ S} ⊆ S , then S = ⊕m
i=1Si with Si isomorphic to

Algebra of Hermitian matrices with real, complex or
quaternion entries
A spin-factor algebra

Implies S ∩ Sn
+ isomorphic to K1 × · · · × Km, where Ki is

PSD cone with real/complex/quaternion entries
Lorentz cone

Allows us to reformulate over K1 × · · · × Km:

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ T (K1 × · · · × Km)︸ ︷︷ ︸

S∩Sn
+

13 / 16



Structure theorem of Jordan-von Neumann-Wigner

If {X 2 : X ∈ S} ⊆ S , then S = ⊕m
i=1Si with Si isomorphic to

Algebra of Hermitian matrices with real, complex or
quaternion entries
A spin-factor algebra

Implies S ∩ Sn
+ isomorphic to K1 × · · · × Km, where Ki is

PSD cone with real/complex/quaternion entries
Lorentz cone

Allows us to reformulate over K1 × · · · × Km:

minimize Tr CX
subject to X ∈ A ∩ Sn

+

minimize Tr CX
subject to X ∈ A ∩ T (K1 × · · · × Km)︸ ︷︷ ︸

S∩Sn
+

13 / 16



Computational results

Instances from DIMACS SDP problem library:

instance dimS∗ dimSn

hamming_7_5_6 5 8256
hamming_8_3_4 5 32896
hamming_9_5_6 6 131328
hamming_9_8 6 131328
hamming_10_2 7 524800

S ∩ Sn
+ isomorphic to non-negative orthant—problem converted

into linear program.

14 / 16



Results: SOSOPT (Seiler ’13) Demo scripts

Script Name n (before) n (after)
sosoptdemo2 13, 3 3, 2× 3, 1× 7
sosoptdemo4 35 5× 5, 1× 10
gsosoptdemo1 9, 5 6, 3× 2, 2
IOGainDemo_3 15, 8 10, 5× 2, 3

Chesi(1|2)_IterationWithVlin 9, 5 6, 3× 2, 2
Chesi3_GlobalStability 14, 5 8, 6, 3, 2

Chesi(3|4)_IterationWithVlin 9, 5 6, 3× 2, 2
Chesi(5|6)_Bootstrap 19, 9 13, 6× 2, 3

Chesi(5|6)_IterationWithVlin 19, 9 13, 6× 2, 3
Coutinho3_IterationWithVlin 9, 5 6, 3× 2, 2
HachichoTibken_Bootstrap 19, 9 12, 7, 6, 3

HachichoTibken_IterationWithVlin 19, 9 12, 7, 6, 3
Hahn_IterationWithVlin 9, 5 6, 3, 3, 2

KuChen_IterationWithVlin 19, 9 13, 6× 2, 3
Parrilo1_GlobalStabilityWithVec 3, 2 2, 1× 3
Parrilo2_GlobalStabilityWithMat 3, 2 2, 1× 3

VDP_IterationWithVball 5, 4 3× 2, 2, 1
VDP_IterationWithVlin 9, 5 6, 3× 2, 2
VDP_LinearizedLyap 9, 5 6, 3× 2, 2

VannelliVidyasagar2_Bootstrap 19, 9 13, 6× 2, 3
VannelliVidyasagar2_IterationWithVlin 19, 9 13, 6× 2, 3
VincentGrantham_IterationWithVlin 9, 5 6, 3× 2, 2

WTBenchmark_IterationWithVlin 19, 9 13, 6× 2, 3

15 / 16



Conclusions

New reduction method for SDP.

Generalizes symmetry reduction and *-algebra-methods
Fully algorithmic, don’t need to compute automorphisms!
Yields optimal ‘block-diagonalization’ (majorization)
Through Jordan algebra theory, extends to LP/SOCP/...

arXiv preprint later this week...

Thanks for your attention!

16 / 16



Conclusions

New reduction method for SDP.

Generalizes symmetry reduction and *-algebra-methods
Fully algorithmic, don’t need to compute automorphisms!
Yields optimal ‘block-diagonalization’ (majorization)
Through Jordan algebra theory, extends to LP/SOCP/...

arXiv preprint later this week...

Thanks for your attention!

16 / 16



Conclusions

New reduction method for SDP.

Generalizes symmetry reduction and *-algebra-methods
Fully algorithmic, don’t need to compute automorphisms!
Yields optimal ‘block-diagonalization’ (majorization)
Through Jordan algebra theory, extends to LP/SOCP/...

arXiv preprint later this week...

Thanks for your attention!

16 / 16


