
Robust Camera Location Estimation
by Convex Programming
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SfM Problem

Structure from Motion (SfM) Problem

Given a collection of 2D photos of a 3D object, recover the 3D structure by
estimating the camera motion, i.e. camera locations and orientations

3D Structure 

Camera 

Locations

?

=⇒ We are primarily interested in the camera location estimation part
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SfM Problem

Structure from Motion

Classical Approach

Find corresponding points between images, estimate relative poses

Estimate camera orientations and locations, i.e. camera motion

Estimate the 3D structure (e.g., by reprojection error minimization)

Previous Methods

Incremental methods: Incorporate images one by one (or in small groups) to
maintain efficiency ⇒ prone to accumulation of errors

Joint structure and motion estimation: Computationally hard, usually non-convex
methods, no guarantees of convergence to global optima

Orientation estimation methods: Relatively stable and efficient solvers

Global Location Estimation

Ill-conditioned problem (because of undetermined relative scales)

Current methods: Usually not well-formulated, not stable, inefficient
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The Abstract Problem

Problem: Location Estimation from Pairwise Directions

Estimate the locations t1, t2, . . . , tn ∈ Rd, for arbitrary d ≥ 2, from a subset
of (noisy) measurements of the pairwise directions, where the direction
between ti and tj is given by the unit norm vector γij :

γij =
ti − tj
‖ti − tj‖

t1

t2
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γ12
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Pairwise Directions Locations

A (noiseless) instance in R3, with n = 6 locations and m = 8 pairwise directions.
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Well-posedness

Well-posedness of the Location Estimation Problem

• We represent the total pairwise information using a graph Gt = (Vt, Et) and
endow each edge (i, j) with the direction measurement γij

Fundamental Questions

Is the problem well-posed, i.e. do we have enough information to estimate the
locations {ti}i∈Vt stably (or, exactly in the noiseless case) ?

What does well-posedness depend on, is it a (generic) property of Gt?

Can it be decided efficiently?

What can we do if an instance is not well-posed?

⇒ Well-posedness was previously studied in various contexts, under the general
title of parallel rigidity theory.
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Well-posedness

Well-posedness: Simple Examples

Consider the following noiseless instance:

1 2
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⇒ Well-posed in R3, but not in R2
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Well-posedness

Main Results of Parallel Rigidity Theory

Unique Realization of Locations

Unique solution exists if and only if the formation is parallel rigid.

Rigidity is Generic

Parallel rigidity is a generic property, i.e. it is a function of Gt only.

Theorem (Efficient Decidability, Whiteley, 1987)

For a graph G = (V,E), let (d− 1)E denote the set consisting of (d− 1) copies of each
edge in E. Then, G is generically parallel rigid in Rd if and only if there exists a
nonempty set D ⊆ (d− 1)E, with |D| = d|V | − (d+ 1), such that for all subsets D′ of
D,

|D′| ≤ d|V (D′)| − (d+ 1) ,

where V (D′) denotes the vertex set of the edges in D′.

Maximally Parallel Rigid Components

If Gt is not parallel rigid, we can efficiently find maximally parallel rigid subgraphs.
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Robust Location Estimation

Robust Location Estimation from Pairwise Directions

Objective

Minimize the effects of direction measurements with large errors, i.e. outlier directions,
in location estimation, by maintaining computational efficiency

Recipe

Formulation based on a robust cost function, approximate by convex programming

Linearization of Pairwise Directions

γij =
ti − tj
‖ti − tj‖

+ εγij ⇔ εtij = ti − tj − dijγij

where dij = ‖ti − tj‖ and εtij = ‖ti − tj‖εγij

Idea

Large εγij induces large εtij ⇒ exchange robustness to εγij with robustness to εtij
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Robust Location Estimation

Least Unsquared Deviations (LUD) formulation

Relax the non-convex constraint dij = ‖ti − tj‖ to obtain:

minimize
{ti}i∈Vt⊆Rd

{dij}(i,j)∈Et

∑
(i,j)∈Et

‖ti − tj − dijγij‖

subject to
∑
i∈Vt

ti = 0 ; dij ≥ c, ∀(i, j) ∈ Et

• Inspired by convex programs developed for robust signal recovery in the presence
of outliers, exact signal recovery from partially corrupted data

• Prevents collapsing solutions via the constraint dij ≥ c
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Robust Location Estimation

IRLS for LUD

Initialize: w0
ij = 1,∀(i, j) ∈ Et

for r = 0, 1, . . . do

• Compute {t̂r+1
i }, {d̂r+1

ij } by solving the QP:

minimize{∑
ti=0,

dij≥1
} ∑

(i,j)∈Et

wr
ij ‖ti − tj − dijγij‖2

• wr+1
ij ←

(∥∥∥t̂r+1
i − t̂r+1

j − d̂r+1
ij γij

∥∥∥2 + δ

)−1/2
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Robust Direction Estimation

Robust Pairwise Direction Estimation

Pinhole Camera Model

tjti

P

pi pj

For a camera Ci = (Ri, ti, fi) and P ∈ R3 :

Represent P in i’th coordinate system:

Pi = RTi (P− ti) = (P xi , P
y
i , P

z
i )
T

Project onto i’th image plane:

qi = (fi/P
z
i )(P

x
i , P

y
i )
T ∈ R2

Pairwise Directions from Epipolar Constraints

For a pair (Ci, Cj) with given (Ri, Rj), (fi, fj) and a set

{(qki ,qkj )}
mij

k=1 of corresponding points:

• Fact: P, ti, tj are coplanar (equiv. to epipolar constraint)

[(P− ti)× (P− tj)]
T (ti − tj) = 0

⇔ (Riη
k
i ×Rjηkj )T (ti − tj) = 0 (for ηki

..=
[
qk
i /fi
1

]
)

⇔ (νkij)
T (ti − tj) = 0, (for νkij

..=
Riη

k
i ×Rjηkj

‖Riηki ×Rjηkj ‖
)

ν1
ij

ν2
ij

ν3
ij

ν4
ij

ν5
ij

ν6
ij ν7

ij

γ0
ij
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Robust Direction Estimation

Robust Directions from Noisy 2D Subspace Samples

• Given noisy Ri’s, fi’s and qki ’s, we essentially obtain noisy samples ν̂kij ’s from the 2D
subspace orthogonal to ti − tj

• To maintain robustness to outliers among ν̂kij ’s,

we estimate the lines γ0ij using the non-convex

problem (solved via a heuristic IRLS method):

minimize
γ0ij∈R3

mij∑
k=1

|〈γ0ij , ν̂kij〉|

subject to ‖γ0ij‖ = 1

• The heuristic IRLS method is not guaranteed
to converge (because of non-convexity)

• However, we empirically observed high
quality line estimates

• Computationally much more efficient (relative
to previous methods with similar accuracy)

• Pairwise directions are computed from the
lines using the fact that the 3D points should
lie in front of the cameras.

Madrid Metropolis

 

 

Piazza del Popolo

Notre Dame

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Vienna Cathedral

Robust Directions

PCA Directions

Histogram plots of direction errors as compared to
simpler PCA method (for datasets from [WS14])[WS14] K. Wilson and N. Snavely, Robust global

translations with 1DSfM, ECCV 2014.
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Histogram plots of direction errors as compared to
simpler PCA method (for datasets from [WS14])[WS14] K. Wilson and N. Snavely, Robust global

translations with 1DSfM, ECCV 2014.
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Experiments

Syncthetic Data Experiments

Measurement Model

Measurement graphs Gt = (Vt, Et) are random graphs drawn from
Erdös-Rényi model, i.e. each (i, j) is in the edge set Et with probability q,
independently of all other edges.

Noise model: Given a set of locations {ti}ni=1 ⊆ Rd and Gt = (Vt, Et), for
each (i, j) ∈ Et, we let γij = γ̃ij/‖γ̃ij‖, where

γ̃ij =

{
γUij , w.p. p

(ti − tj)/‖ti − tj‖+ σγGij w.p. 1− p

Here, {γUij}(i,j)∈Et
are i.i.d. Unif(Sd−1), {γGij}(i,j)∈Et

and ti’s are i.i.d.
N (0, I3).
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Experiments

Synthetic Data: Relatively High Robustness to Outliers

Performance Measure

Normalized root mean square error (NRMSE) of the
estimates t̂i w.r.t. the original locations ti (after the
removal of global scale and translation, and for t0
denoting the center of ti’s.)

NRMSE({t̂i}) =

√∑
i ‖t̂i − ti‖2∑
i ‖ti − t0‖2

Methods for comparison:

• Least Squares (LS) method
[AKK12] M. Arie-Nachimson, S. Kovalsky,
I. Kemelmacher-Shlizerman, AS, and R. Basri, Global
motion estimation from point matches, 3DimPVT, 2012.
[BAT04] M. Brand, M. Antone, and S. Teller, Spectral
solution of large-scale extrinsic camera calibration as a
graph embedding problem, ECCV, 2004.

• Constrained Least Squares (CLS) method
[TV14] R. Tron and R. Vidal, Distributed 3-D
localization of camera sensor networks from 2-D image
measurements, IEEE Trans. on Auto. Cont., 2014.

• Semidefinite Relaxation (SDR) method

[OSB15] OÖ, AS, and R. Basri, Stable camera motion
estimation using convex programming, SIAM J. Imaging
Sci., 8(2):1220-1262, 2015.
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Experiments

Synthetic Data: Relatively High Robustness to Outliers
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Experiments

Exact Recovery with Partially Corrupted Directions

• Empirical observation: LUD can recover locations exactly with partially corrupted data

p

q

d = 2, n = 100
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The color intensity of each pixel represents log10(NRMSE), depending on the edge probability q (x-axis), and
the outlier probability p (y-axis). NRMSE values are averaged over 10 trials.
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Experiments

Real Data Experiments: Internet Photo Collections

We tested our methods on internet photo collections from [WS14] and observed that:

• The LUD solver is more robust to outliers as compared to existing methods, and is
more efficient as compared to methods with similar accuracy

• The robust direction estimation by IRLS further improves robustness to outliers

Snapshots of selected 3D structures computed using the LUD solver (before bundle adjustment)
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Experiments

Real Datasets: Comparison of Estimation Accuracy and Efficiency

Estimation errors in meters (Bundler sequential SfM [SSS06] is taken as ground truth):

Dataset LUD CLS [TV14] SDR [OSB15] 1DSfM [WS14] LS [G01]

Name
Size Initial After BA Initial After BA Initial After BA Init. After BA After BA

PCA Robust Robust Robust Robust Robust Robust

m Nc ẽ ê ẽ ê Nc ẽ ê ẽ ê Nc ẽ ê ẽ ê Nc ẽ ê ẽ Nc ẽ ê Nc ẽ
Piazza del Popolo 60 328 3.0 7 1.5 5 305 1.0 4 3.5 6 305 1.4 5 1.9 8 305 1.3 7 3.1 308 2.2 200 93 16
NYC Library 130 332 4.9 9 2.0 6 320 1.4 7 5.0 8 320 3.9 8 5.0 8 320 4.6 8 2.5 295 0.4 1 271 1.4
Metropolis 200 341 4.3 8 1.6 4 288 1.5 4 6.4 10 288 3.1 7 4.2 8 288 3.1 7 9.9 291 0.5 70 240 18
Yorkminster 150 437 5.4 10 2.7 5 404 1.3 4 6.2 9 404 2.9 8 5.0 10 404 4.0 10 3.4 401 0.1 500 345 6.7
Tower of London 300 572 12 25 4.7 20 425 3.3 10 16 30 425 15 30 20 30 425 17 30 11 414 1.0 40 306 44
Montreal N. D. 30 450 1.4 2 0.5 1 435 0.4 1 1.1 2 435 0.5 1 − − − − − 2.5 427 0.4 1 357 9.8
Notre Dame 300 553 1.1 2 0.3 0.8 536 0.2 0.7 0.8 2 536 0.3 0.9 − − − − − 10 507 1.9 7 473 2.1
Alamo 70 577 1.5 3 0.4 2 547 0.3 2 1.3 3 547 0.6 2 − − − − − 1.1 529 0.3 2e7 422 2.4
Vienna Cathedral 120 836 7.2 12 5.4 10 750 4.4 10 8.8 10 750 8.2 10 − − − − − 6.6 770 0.4 2e4 652 12

Running times in seconds:

LUD CLS [TV14] SDR [OSB15] 1DSfM [WS14] [G01] [SSS06]

Dataset TR TG Tγ Tt TBA Ttot Tt TBA Ttot Tt TBA Ttot TR Tγ Tt TBA Ttot Ttot Ttot
Piazza del Popolo 35 43 18 35 31 162 9 106 211 358 39 493 14 9 35 191 249 138 1287
NYC Library 27 44 18 57 54 200 7 47 143 462 52 603 9 13 54 392 468 220 3807
Metropolis 27 37 13 27 38 142 6 23 106 181 45 303 15 8 20 201 244 139 1315
Yorkminster 19 46 33 51 148 297 10 133 241 648 75 821 11 18 93 777 899 394 3225
Tower of London 24 54 23 41 86 228 8 202 311 352 170 623 9 14 55 606 648 264 1900
Montreal N. D. 68 115 91 112 167 553 21 270 565 − − − 17 22 75 1135 1249 424 2710
Notre Dame 135 214 325 247 126 1047 52 504 1230 − − − 53 42 59 1445 1599 1193 6154
Alamo 103 232 96 186 133 750 40 339 810 − − − 56 29 73 752 910 1403 1654
Vienna Cathedral 267 472 265 255 208 1467 46 182 1232 − − − 98 60 144 2837 3139 2273 10276

[SSS06] N. Snavely, S. M. Seitz, and R. Szeliski, Photo tourism: exploring photo collections in 3D, SIGGRAPH, 2006.

[G01] V. M. Govindu, Combining two-view constraints for motion estimation, CVPR, 2001.
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