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Source Localization in a Sensor Network

• Basic problem: Localize a signal-emitting source using a number of sensors with
a priori known locations

• Well-studied problem in signal processing with many applications [Patwari et
al.’05, Sayed-Tarighat-Khajehnouri’05]:

– acoustics
– emergency response
– target tracking
– ...

• Typical types of measurements used to perform the positioning:

– time of arrival (TOA)
– time-difference of arrival (TDOA)
– angle of arrival (AOA)
– received signal strength (RSS)

• Challenge: Measurements are noisy
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TDOA-Based Localization in NLOS Environment

• Focus of this talk: TDOA measurements

– widely applicable

– better accuracy (over AOA and RSS)

– less stringent synchronization requirement (over TOA)

• Assuming there are N +1 sensors in the network, the TDOA measurements take
the form

ti =
1

c
(‖x− si‖2 − ‖x− s0‖2 + Ei) for i = 1, . . . , N,

where

– x ∈ R
d is the source location to be estimated,

– si ∈ R
d is the i-th sensor’s given location (i = 0, 1, . . . , N) with s0 being the

reference sensor,

– d ≥ 1 is the dimension of the ambient space,

– c is the signal propagation speed (e.g., speed of light),

– 1
c
Ei is the measurement error at the i-th sensor.
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TDOA-Based Localization in NLOS Environment

• In this talk, we assume that the measurement error Ei consists of two parts:

– measurement noise ni

– non-line-of-sight (NLOS) error ei: variable propagation delay of the source
signal due to blockage of the direct (or line-of-sight (LOS)) path between the
source and the i-th sensor

• Putting Ei = ni+ei into the TDOA measurement model, we obtain the following
range-difference measurements:

di = ‖x− si‖2 − ‖x− s0‖2 + ni + ei for i = 1, . . . , N.
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Assumptions on the Measurement Error

• Localization accuracy generally depends on the nature of the measurement error.

• The measurement noise ni is typically modeled as a random variable that is
tightly concentrated around zero.

• However, the NLOS error ei can be environment and time dependent. It is the
difference of the NLOS errors incurred at sensors 0 and i. As such, it needs not
centered around zero and can be positive or negative/of variable magnitude.

• We shall make the following assumptions:

– |ni| ≪ ‖x− s0‖2 (measurement noise is almost negligible)

– |ei| ≤ ρi for some given constant ρi ≥ 0 (estimate on the support of the
NLOS error is available)
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Robust Least Squares Formulation

• Rewrite the range-difference measurements as

di − ‖x− si‖2 − ei = ‖x− s0‖2 + ni.

Squaring both sides and using the assumption on ni, we have

−2‖x− s0‖2ni ≈ (di − ei)
2 − 2(di − ei)‖x− si‖2 + ‖si‖

2
2 − 2sTi x

−‖s0‖
2
2 + 2sT0 x

= 2(s0 − si)
Tx− 2di‖x− si‖2 −

(
‖s0‖

2
2 − ‖si‖

2
2 − d2i

)

+ e2i + 2ei (‖x− si‖2 − di) .

• In view of the LHS, we would like the RHS to be small, regardless of what ei is
(provided that |ei| ≤ ρi).
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Robust Least Squares Formulation

• This motivates the following robust least squares (RLS) formulation:

min
x∈Rd, r∈RN

max
−ρ≤e≤ρ

N∑

i=1

∣
∣2(s0 − si)

Tx− 2diri − bi + e2i + 2ei(ri − di)
∣
∣
2

subject to ‖x− si‖2 = ri, i = 1, . . . , N.

Here, bi = ‖s0‖
2
2 − ‖si‖

2
2 − d2i is a known quantity.

• Note that the inner maximization with respect to e is separable. Hence, we can
rewrite the objective function as

S(x, r) =
N∑

i=1








max
−ρi≤ei≤ρi

∣
∣2(s0 − si)

Tx− 2diri − bi + e2i + 2ei(ri − di)
∣
∣

︸ ︷︷ ︸

Γi(x,r)








2

.

• Note that both objective function and the constraints are non-convex. Moreover,
the S-lemma does not apply.
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Convex Approximation of the RLS Problem

• By the triangle inequality,

∣
∣2(s0 − si)

Tx− 2diri − bi + e2i + 2ei(ri − di)
∣
∣

≤
∣
∣2(s0 − si)

Tx− 2diri − bi
∣
∣+

∣
∣e2i + 2ei(ri − di)

∣
∣.

• It follows that

Γi(x, r) = max
−ρi≤ei≤ρi

∣
∣2(s0 − si)

Tx− 2diri − bi + e2i + 2ei(ri − di)
∣
∣

≤
∣
∣2(s0 − si)

Tx− 2diri − bi
∣
∣+ max

−ρi≤ei≤ρi

∣
∣e2i + 2ei(ri − di)

∣
∣.

• Key Observation:

max
−ρi≤ei≤ρi

∣
∣e2i + 2ei(ri − di)

∣
∣ = ρ2i + 2ρi|ri − di|.
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Convex Approximation of the RLS Problem

• Hence,

Γi(x, r) ≤
∣
∣2(s0 − si)

Tx− 2diri − bi
∣
∣+ ρ2i + 2ρi|ri − di|.

• Observation: The function Γ+
i given by

Γ+
i (x, r) =

∣
∣2(s0 − si)

Tx− 2diri − bi
∣
∣+ ρ2i + 2ρi|ri − di|

is non-negative and convex.

• Thus,

S+(x, r) =
N∑

i=1

(
Γ+
i (x, r)

)2

is a convex majorant of the non-convex objective function of the RLS problem.
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Convex Approximation of the RLS Problem

• Using the convex majorant, we have the following approximation of the RLS
problem:

min
x∈Rd, r∈RN

N∑

i=1

(∣
∣2(s0 − si)

Tx− 2diri − bi
∣
∣+ ρ2i + 2ρi|ri − di|

)2

subject to ‖x− si‖2 = ri, i = 1, . . . , N.

(ARLS)

• This can be relaxed to an SOCP via standard techniques:

min
x∈Rd, r∈RN

η∈RN, η0∈R

η0

subject to
∣
∣2(s0 − si)

Tx− 2diri − bi
∣
∣+ ρ2i + 2ρi|ri − di| ≤ ηi, i = 1, . . . , N,

‖x− si‖2 ≤ ri, i = 1, . . . , N,

‖η‖22 ≤ η0.

(SOCP)

A. M.-C. So, SEEM, CUHK 29 July 2016 9



Convex Approximation of the RLS Problem

• Alternatively, observe that

(∣
∣2(s0 − si)

Tx− 2diri − bi
∣
∣+ ρ2i + 2ρi|ri − di|

)

= max
{
±
(
2(s0 − si)

Tx− 2diri − bi
)
+ ρ2i ± 2ρi(ri − di)

}
.

• Hence, Problem (ARLS) can be written as

min
x∈Rd, r∈RN

N∑

i=1

τi

subject to
[
±
(
2(s0 − si)

Tx− 2diri − bi
)
+ ρ2i ± 2ρi(ri − di)

]2
≤ τi,

i = 1, . . . , N,

‖x− si‖
2
2 = r2i , i = 1, . . . , N.

• The above problem is linear in τ and Y = yyT , where y = (x, r).
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Convex Approximation of the RLS Problem

• Hence, we also have the following SDP relaxation of (ARLS):

min
Y ∈Sd+N

y∈Rd+N, τ∈RN

N∑

i=1

τi

subject to some linear constraints in Y , y, and τ ,
[
Y y

yT 1

]

� 0.

(SDP)
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Theoretical Issues

• When is (ARLS) equivalent to the original RLS problem? In particular, when
does the convex majorant Γ+

i (x, r) equal the original function Γi(x, r)?

• Does (SDP) always yield a tighter relaxation of (ARLS) than (SOCP)?

• Do the relaxations yield a unique solution?
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Exactness of Problem (ARLS)

• Consider a fixed i ∈ {1, . . . , N}. Recall

Γi(x, r) = max
−ρi≤ei≤ρi

∣
∣2(s0 − si)

Tx− 2diri − bi + e2i + 2ei(ri − di)
∣
∣

Γ+
i (x, r) =

∣
∣2(s0 − si)

Tx− 2diri − bi
∣
∣+ ρ2i + 2ρi|ri − di|

• Proposition: If ρi = 0, then Γi(x, r) = Γ+
i (x, r). Otherwise, Γi(x, r) =

Γ+
i (x, r) iff 2(s0 − si)

Tx− 2diri − bi ≥ 0; i.e. (using the definition of bi),

(ni + ei)
2 − 2‖x− s0‖2(ni + ei) ≥ 0. (1)

• Interpretation: Recall that ni + ei is the measurement error associated with
‖x∗ − si‖2 − ‖x∗ − s0‖2, where x∗ is the true location of the source.

– Scenario 1: ni + ei ≤ 0 or ni + ei ≥ 2‖x− s0‖2 (so that (1) holds)
e.g., x∗ ↔ s0 highly NLOS but x∗ ↔ si almost LOS

– Scenario 2: 0 < ni + ei < 2‖x− s0‖2 (so that (1) fails)
e.g., x∗ ↔ s0 almost LOS but x∗ ↔ si mildly NLOS
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Relative Tightness of the Approximations

• One may expect that every feasible solution (x, r,η, η0) to (SOCP) can be used
to construct a feasible solution (Y ,x, r, τ ) to (SDP).

• However, there are instances for which this is not true!

• Reason: Recall that y = (x, r). Observe that

‖x− si‖
2
2 = xTx− 2xTsi + ‖si‖

2
2

≤
d∑

i=1

Yii − 2xTsi + ‖si‖
2
2 (2)

≤ Yd+i,d+i, (3)

where (2) follows from Y � yyT in (SDP) and (3) is one of the linear constraints
in (SDP). Also, Y � yyT implies that r2i ≤ Yd+i,d+i.

However, we have the tighter constraint ‖x− si‖2 ≤ ri in (SOCP).
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A Refined SDP Approximation

• The above observation suggests that we can tighten (SDP) to

min
Y ∈Sd+N

y∈Rd+N, τ∈RN

N∑

i=1

τi

subject to some linear constraints in Y , y, and τ ,

‖x− si‖2 ≤ ri, i = 1, . . . , N,
[
Y y

yT 1

]

� 0.

(RSDP)

• It is indeed true (and easy to show) that every feasible solution (x, r,η, η0)
to (SOCP) can be used to construct a feasible solution (Y ,x, r, τ ) to (RSDP).

A. M.-C. So, SEEM, CUHK 29 July 2016 15



Solution Uniqueness of the Convex Approximations

• Theorem: Suppose there exists an i ∈ {1, . . . , N} such that

‖x∗ − si‖ = r∗i

holds for all optimal solutions (x∗, r∗,η∗, η∗0) (resp. (Y
∗,x∗, r∗, τ ∗)) to (SOCP)

(resp. (RSDP)). Then, both (SOCP) and (RSDP) uniquely localize the source.

• Theorem: Let Y ∈ S
d+N be decomposed as

Y =

[
Y11 Y12

Y T
12 Y22

]

,

where Y11 ∈ S
d, Y12 ∈ R

d×N , and Y22 ∈ S
N . Suppose that every optimal

solution (Y ∗,x∗, r∗, τ ∗) to (RSDP) satisfies rank(Y ∗
11) ≤ 1. Then, (RSDP)

uniquely localizes the source.
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Numerical Experiments
• Real measurement data from http://www.eecs.umich.edu/~hero/localize

• 44 nodes deployed in a room of area 14m×13m; at least 5 and up to 9 from
I = {15, 2, 9, 43, 37, 13, 17, 4, 40} are chosen as sensors; node 15 is the reference
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Figure 1: Sensor and source geometry in a real room [Patwari et al.’03]: △:
sensor, ◦: source.
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Numerical Experiments

• From the data, we use ρ = 6.6724 as an upper bound on the magnitudes of the
NLOS errors in the TDOA measurements.

• After fixing the first N + 1 nodes in I as sensors, where N = 4, . . . , 8, the
remaining M = 44− (N + 1) nodes are regarded as different sources.

• Localization performance is measured by the RMSE criterion:

RMSE =

√
√
√
√ 1

M

M∑

i=1

‖x̂i − x∗
i ‖

2.

Here, x̂i and x∗
i are the estimated and true location of the source in the ith

run, respectively.
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Numerical Experiments

• We compare 5 methods:

– SDR-Non-Robust: [Yang-Wang-Luo’09]

– WLS-Non-Robust: [Cheung-So-Ma-Chan’06]

– RC-SDR-Non-Robust: [Xu-Ding-Dasgupta’11]

– SOCR-Robust: Formulation (SOCP)

– SDR-Robust: Formulation (RSDP)

• Simulation environment

– MATLAB R2012b on a DELL personal computer with a 3.3GHz Intel(R)
Core(TM) i5-2500 CPU and 8GB RAM

– Solver used to solve (SOCP) and (RSDP): SDPT3
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Numerical Experiments
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Figure 2: Comparison of RMSE of different methods using real data: ρ = 6.6724
and N = 4, 5, . . . , 8.
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Numerical Experiments
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Figure 3: Comparison of average running times of different methods using real
data: ρ = 6.6724 and N = 4, 5, . . . , 8.
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Numerical Experiments

• Further details and more experiments can be found in our paper:

G. Wang, A. M.-C. So, Y. Li, “Robust Convex Approximation Methods for
TDOA-Based Localization under NLOS Conditions”, IEEE Transactions on
Signal Processing 64(13):3281–3296, 2016.
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Thank You!
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