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Source Localization in a Sensor Network

e Basic problem: Localize a signal-emitting source using a number of sensors with
a priori known locations

e Well-studied problem in signal processing with many applications [Patwari et
al.’05, Sayed-Tarighat-Khajehnouri’05]:

— acoustics
— emergency response
— target tracking

e Typical types of measurements used to perform the positioning:

— time of arrival (TOA)

— time-difference of arrival (TDOA)
— angle of arrival (AOA)

— received signal strength (RSS)

e Challenge: Measurements are noisy
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TDOA-Based Localization in NLOS Environment

e Focus of this talk: TDOA measurements

— widely applicable
— better accuracy (over AOA and RSS)

— less stringent synchronization requirement (over TOA)

e Assuming there are N + 1 sensors in the network, the TDOA measurements take
the form

1

t; =~
C

(|l& — sill2 — || — so||l2 + F;) fori=1,... N,

where

— x € R% is the source location to be estimated,

— s; € R% is the i-th sensor’s given location (i = 0,1,..., N) with sg being the
reference sensor,

— d > 1 is the dimension of the ambient space,
— c is the signal propagation speed (e.g., speed of light),

— %EZ Is the measurement error at the ¢-th sensor.
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TDOA-Based Localization in NLOS Environment

e In this talk, we assume that the measurement error F; consists of two parts:

— measurement noise n;

— non-line-of-sight (NLOS) error e;: variable propagation delay of the source
signal due to blockage of the direct (or line-of-sight (LOS)) path between the

source and the 7-th sensor

e Putting E;, = n;+e¢; into the TDOA measurement model, we obtain the following
range-difference measurements:

dz':||£B—8i||2—HCIZ—S()HQ—F?%—F@Z' forizl,...,N.
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Assumptions on the Measurement Error

e Localization accuracy generally depends on the nature of the measurement error.

e The measurement noise n; is typically modeled as a random variable that is
tightly concentrated around zero.

e However, the NLOS error e; can be environment and time dependent. |t is the
difference of the NLOS errors incurred at sensors 0 and 7. As such, it needs not
centered around zero and can be positive or negative/of variable magnitude.

e \We shall make the following assumptions:

— |n;| < || — sgl|2 (measurement noise is almost negligible)

— |ei] < p; for some given constant p; > 0 (estimate on the support of the
NLQOS error is available)
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Robust Least Squares Formulation

e Rewrite the range-difference measurements as
di — ||z — sill2 — e; = || — sol[2 + s
Squaring both sides and using the assumption on n;, we have

—2||z — sollans & (di —€;)” — 2(d; — e;)||z — sill2 + ||sill5 — 2s] @
— Isoll3 + 2s{ @
= 2(s0— 8;) @ —2d;||x — sil]2 — (||soll3 — ||s:]15 — d5)

—I—G% + 262' (HSE — SZ‘HQ — dz) .

e In view of the LHS, we would like the RHS to be small, regardless of what ¢, is
(provided that |e;| < p;).
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Robust Least Squares Formulation

e This motivates the following robust least squares (RLS) formulation:

N
min max Z ‘2(80 — SZ')T$ — Zdﬂ“z — bz -+ 6? + 262'(7“2' — dz)‘z
zeR?, reRN  —psesp i
subject to ||z — si|llo =1, i=1,..., V.
Here, b; = ||sol|5 — ||si||3 — d? is a known quantity.

e Note that the inner maximization with respect to e is separable. Hence, we can
rewrite the objective function as

[ \’

S(ma ’I") — Z —pzr'rﬁlgzxﬁpi ‘2(80 — Si)TSE — 2dz7“z — bz -+ 6? -+ 267;(7“7; — dz)‘

- \\ 0 (@,r) J)

e Note that both objective function and the constraints are non-convex. Moreover,
the S-lemma does not apply.
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Convex Approximation of the RLS Problem

e By the triangle inequality,

12(s0 — ;) @ — 2d;r; — b; + €] + 2e(r; — d;)|
< [2(s0 — si) @ — 2d;r; — b| + |€] + 2e5(r; — di)|-

e |t follows that

Li(xe,r) = _pgg?ip- ‘2(30 — sz-)Tw — 2d;r; — b; + e% + 2e;(r; — dz)‘
< ‘2(80 — SZ')TCIJ — 2dz’l“z — bz’ + max ‘63 + 267;(7“7; - dz)’
—pi<e; <p;

e Key Observation:

max ‘e? + 2e;(r; — dz)‘ = p7 + 2p4|ri — dil.
—pi<e;<p;

A. M.-C. So, SEEM, CUHK 29 July 2016 7



Convex Approximation of the RLS Problem

e Hence,

Fi(w,r) S ’2(80 — Si)TCIZ — 2dzrz — bz —+ ,03 —+ 2,02‘7“1 — dz|

e Observation: The function F:r given by
T (z,r) =|2(s0 — si)lx — 2d;r; — b;| + p? 4 2p4|ri — dj
Is non-negative and convex.

e Thus,
N

$H(a,r) = (T (=,7)°
i=1
is a convex majorant of the non-convex objective function of the RLS problem.

A. M.-C. So, SEEM, CUHK 29 July 2016 8



Convex Approximation of the RLS Problem

e Using the convex majorant, we have the following approximation of the RLS
problem:

N
2
min QS—SiTJJ—2di7“7;—b7;—|— 2+2zrz_dz
2ERd. rCRN ; (12(s0 = s:) pi + 2pil ) (ARLS)
subject to ||l —sillo =7, t=1,...,N.
e This can be relaxed to an SOCP via standard techniques:
min
zeR4, reRN 1o
nERN,WOER
subject to 2(80 — Si)TCE — 2dzrz — bz + ,OZ2 + 2,02‘7“1 — dz| < 1, 1 = 1, ce ,N,
’CIZ—SZ'HQSTZ', ’I::l,...,N,
n(l3 < 7o
(SOCP)
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Convex Approximation of the RLS Problem

e Alternatively, observe that

(|2(s0 — s5)" @ — 2dir; — bi| + pi + 2ps|rs — di)
= max {:l: (2(80 — Si)TSIJ — 2dz7°z — bz) + ,012 + 2pz(7“z — dz)} .

e Hence, Problem (ARLS) can be written as

N

min T;

zeRI rcRN ;

subject to [+ (2(so — s;)T@ — 2d;r; — b;) + p7 £ 2pi(r; — d;)]” < 7,
i=1....N,

2
7

|z —si|2=7r%, i=1,...,N.

e The above problem is linear in 7 and Y = yy?!, where y = (z, r).
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Convex Approximation of the RLS Problem

e Hence, we also have the following SDP relaxation of (ARLS):

N
min :
Y esd+N ZTZ
yeRI+N rcgrN =1 (SDP)
subject to  some linear constraints in Y, y, and T,
Y
- 7l =o.
Y 1
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Theoretical Issues

e When is (ARLS) equivalent to the original RLS problem? In particular, when
does the convex majorant I';"(x, ) equal the original function T';(x,7)?

e Does (SDP) always yield a tighter relaxation of (ARLS) than (SOCP)?

e Do the relaxations yield a unique solution?
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Exactness of Problem (ARLS)

e Consider a fixed i € {1,..., N}. Recall

Li(x,r) = max ‘2(30 —s)) ' —2dir; — by + €7 + 2e;(r; — dz)‘
—pi<e;<p;
I'f(x,r) = ‘2(80 — ;) e — 2dir; — bi‘ + p? 4 2p4|rs — d

e Proposition: If p; = 0, then [y(x,7) = I/ (x,r). Otherwise, I';(z,7) =
I (z,r) iff 2(sg — s;)Tx — 2d;r; — b; > 0; i.e. (using the definition of b;),

(ni—l—ei)Q—2Ha:—30H2(nz-—|—67;) Z 0. (1)

e Interpretation: Recall that n; + e; is the measurement error associated with
|x* — s;]|2 — ||&* — sgl|2, where x* is the true location of the source.

— Scenario 1: n; +¢; <0 or n; + e; > 2| — sgl|2 (so that (1) holds)
e.g., ¥ <> sg highly NLOS but * <+ s; almost LOS

— Scenario 2: 0 < n; + €; < 2| — sgpl|2 (so that (1) fails)
e.g., ¥ < sg almost LOS but x* ++ s; mildly NLOS
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Relative Tightness of the Approximations

e One may expect that every feasible solution (x, 7, 1,7) to (SOCP) can be used
to construct a feasible solution (Y, x,r, ) to (SDP).

e However, there are instances for which this is not truel

e Reason: Recall that y = (x, 7). Observe that

Hw_SzH% — xlx—2x's, + ||SZ||%
d
< Y Vi—2x"s;+ ||si3 (2)
i=1
< Ydiid+i (3)

where (2) follows from Y = yy! in (SDP) and (3) is one of the linear constraints
in (SDP). Also, Y = yy’ implies that r? < Y. a4

However, we have the tighter constraint || — s;||2 < r; in (SOCP).
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A Refined SDP Approximation

e The above observation suggests that we can tighten (SDP) to

N
min T
Y esd+N Z ‘
yeRA+N rerN =1
subject to  some linear constraints in Y, y, and T, (RSDP)
||$—S7;|2§7“Z', ’izl,...,N,
v o
r 2| =o.
y 1]

e It is indeed true (and easy to show) that every feasible solution (x,r,1,170)
to (SOCP) can be used to construct a feasible solution (Y, x,r,7) to (RSDP).
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Solution Uniqueness of the Convex Approximations

e Theorem: Suppose there exists an i € {1,..., N} such that
™ — sif| = 73

holds for all optimal solutions (x*, r*,n*,ng) (resp. (Y *,x*,r*, 7)) to (SOCP)
(resp. (RSDP)). Then, both (SOCP) and (RSDP) uniquely localize the source.

o Theorem: Let Y € StV be decomposed as
Y1 Yoo
Y = :

[Yfé Yzz]

where Y71 € S Yy € R¥>Y  and Y, € SV. Suppose that every optimal
solution (Y*,x*, r*, 7*) to (RSDP) satisfies rank(Y7;) < 1. Then, (RSDP)
uniquely localizes the source.
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Numerical Experiments
e Real measurement data from http://www.eecs.umich.edu/~hero/localize

e 44 nodes deployed in a room of area 14mx13m; at least 5 and up to 9 from
7 =14{15,2,9,43,37,13,17,4,40} are chosen as sensors; node 15 is the reference
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Figure 1: Sensor and source geometry in a real room [Patwari et al.’03]: A:
sensor, o: source.
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Numerical Experiments

e From the data, we use p = 6.6724 as an upper bound on the magnitudes of the
NLOS errors in the TDOA measurements.

o After fixing the first N 4+ 1 nodes in Z as sensors, where N = 4,...,8, the
remaining M = 44 — (N + 1) nodes are regarded as different sources.

e Localization performance is measured by the RMSE criterion:

1 M
RMSE = \ ~ ; & — x*]|2.

Here, x; and x; are the estimated and true location of the source in the 4th
run, respectively.
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Numerical Experiments

e \We compare 5 methods:

— SDR-Non-Robust: [Yang-Wang-Luo’09]

— WLS-Non-Robust: [Cheung-So-Ma-Chan’06]
— RC-SDR-Non-Robust: [Xu-Ding-Dasgupta’11]
— SOCR-Robust: Formulation (SOCP)

— SDR-Robust: Formulation (RSDP)

e Simulation environment

— MATLAB R2012b on a DELL personal computer with a 3.3GHz Intel(R)
Core(TM) i5-2500 CPU and 8GB RAM

— Solver used to solve (SOCP) and (RSDP): SDPT3
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Numerical Experiments
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Figure 2: Comparison of RMSE of different methods using real data: p = 6.6724
and N =4,5,...,8.
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Numerical Experiments
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Figure 3: Comparison of average running times of different

data: p =6.6724 and N =4,5,...,8.
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Numerical Experiments

e Further details and more experiments can be found in our paper:

G. Wang, A. M.-C. So, Y. Li, "Robust Convex Approximation Methods for
TDOA-Based Localization under NLOS Conditions”, IEEE Transactions on

Signal Processing 64(13):3281-3296, 2016.
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Thank You!
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