# Facial reduction for Euclidean distance matrix problems 

Nathan Krislock

Department of Mathematical Sciences
Northern Illinois University, USA


Northern Illinois University

Distance Geometry: Theory and Applications DIMACS Center, Rutgers University, USA July 26, 2016

Joint work with Dmitriy Drusvyatskiy (University of Washington), Yuen-Lam Voronin (University of Colorado), and Henry Wolkowicz (University of Waterloo)

## Outline

(1) Euclidean Distance Matrices
(2) Facial Reduction
(3) Facial Reduction for EDM Completion
(4) Noisy EDM Completion

## Outline

(1) Euclidean Distance Matrices

## Sensor Network Localization



## Protein Structure Determination



## Euclidean Distance Matrices

## Euclidean distance matrices (EDMs)

- An $n \times n$ matrix $D$ is an EDM if

$$
\begin{equation*}
\exists p_{1}, \ldots, p_{n} \in \mathbb{R}^{k}: D_{i j}=\left\|p_{i}-p_{j}\right\|_{2}^{2} \tag{1}
\end{equation*}
$$

- The embedding dimension of $D$ :

$$
\operatorname{dim}(D)=\min \{k:(1) \text { holds }\}
$$

- $\mathcal{E}^{n}=$ the set of all $n \times n$ EDMs

EDM completion

$$
\begin{array}{cl}
\text { find } & D \in \mathcal{E}^{n} \\
\text { such that } & D_{i j}=\bar{D}_{i j}, \quad \forall i j \in E \\
& \operatorname{dim}(D) \leq k
\end{array}
$$

## Euclidean Distance Matrices

EDMs and semidefinite matrices

- Let $p_{1}, \ldots, p_{n} \in \mathbb{R}^{k}$ and $D$ be their EDM
- Let $Y \in \mathcal{S}^{n}$ be the Gram matrix:

$$
Y_{i j}=\left\langle p_{i}, p_{j}\right\rangle, \quad \forall i j
$$

- Then $Y$ is a semidefinite matrix: $Y \in \mathcal{S}_{+}^{n}$

$$
\begin{aligned}
D_{i j} & =\left\|p_{i}-p_{j}\right\|_{2}^{2} \\
& =\left\langle p_{i}, p_{i}\right\rangle-2\left\langle p_{i}, p_{j}\right\rangle+\left\langle p_{j}, p_{j}\right\rangle \\
& =Y_{i i}-2 Y_{i j}+Y_{j j} \\
& =: \mathcal{K}(Y)_{i j}
\end{aligned}
$$

- Therefore: $\mathcal{K}\left(\mathcal{S}_{+}^{n}\right)=\mathcal{E}^{n}$


## Euclidean Distance Matrices

Translation invariant: $D=D^{\prime}$ but $Y \neq Y^{\prime}$



Centered matrices: $\mathcal{S}_{c}^{n}:=\left\{Y \in \mathcal{S}^{n}: Y e=0\right\}, e=\left[\begin{array}{lll}1 & \cdots & 1\end{array}\right]^{\top}$

- $\mathcal{K}: \mathcal{S}_{+}^{n} \cap \mathcal{S}_{c}^{n} \rightarrow \mathcal{E}^{n}$ is a linear bijection whose inverse is given by

$$
\mathcal{K}^{\dagger}(D)=-\frac{1}{2} J \operatorname{offDiag}(D) J, \quad J=I-\frac{1}{n} e e^{T}
$$

- If $D \in \mathcal{E}^{n}$, then $\operatorname{dim}(D)=\operatorname{rank}\left(\mathcal{K}^{\dagger}(D)\right)$


## Euclidean Distance Matrices

## EDM completion

| find | $Y \in \mathcal{S}_{+}^{n} \cap \mathcal{S}_{c}^{n}$ |
| :---: | :--- |
| such that | $\mathcal{K}(Y)_{i j}=\bar{D}_{i j}, \quad \forall i j \in E$ |
|  | $\operatorname{rank}(Y) \leq k$ |

- non-convex and NP-hard


## Semidefinite relaxation

$$
\begin{array}{cl}
\text { find } & Y \in \mathcal{S}_{+}^{n} \cap \mathcal{S}_{c}^{n} \\
\text { such that } & \mathcal{K}(Y)_{i j}=\bar{D}_{i j}, \quad \forall i j \in E
\end{array}
$$

- convex and solvable in polynomial-time by an interior-point method
- only problems of small size can be solved efficiently
- highly degenerate: not strictly feasible
- facial reduction $\Rightarrow$ a much smaller equivalent problem


## Outline

## (1) Euclidean Distance Matrices

(2) Facial Reduction

## (3) Facial Reduction for EDM Completion

## Facial Reduction

Face of a convex cone $K$

- We say a convex cone $F \subseteq K$ is a face of $K$ (denoted $F \unlhd K$ ) if

$$
x, y \in F \quad \text { whenever } \quad x, y \in K \text { and } \frac{1}{2}(x+y) \in F
$$

- The minimal face of $K$ containing $S \subseteq K$ is

$$
\operatorname{face}(S):=\bigcap_{S \subseteq F \unlhd K} F
$$

- We say that $F \unlhd K$ is exposed if there exists $\phi$ such that

$$
F=K \cap\{\phi\}^{\perp}
$$

## Facial Reduction

A simple example

| minimize | $2 x_{1}$ | + | $6 x_{2}$ | - | $x_{3}$ | - | $2 x_{4}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| subject to | $x_{1}$ | + | $x_{2}$ | + | $x_{3}$ | + | $x_{4}$ | $=$ | 1 |
|  | $x_{1}$ | - | $x_{2}$ | - | $x_{3}$ |  |  | $=$ | -1 |
|  | $x_{1}$ | , | $x_{2}$ | , | $x_{3}$ | , | $x_{4}$ | $\geq$ | 0 |

- Summing the constraints:

$$
2 x_{1}+x_{4}=0 \quad \Rightarrow \quad x_{1}=x_{4}=0
$$

Restrict problem to the face $\left\{x \in \mathbb{R}_{+}^{4}: x_{1}=x_{4}=0\right\}$

| minimize | $6 x_{2}-x_{3}$ |  |
| :---: | :---: | :---: | :---: |
| subject to | $x_{2}$ | $+x_{3}=1$ |
|  | $x_{2}$ | ,$x_{3} \geq 0$ |

## Facial Reduction

Linear programming

(LP) $\quad$| minimize | $c^{T} x$ |
| :---: | :--- |
| subject to | $A x=b$ |
|  | $x \in \mathbb{R}_{+}^{n}$ |

## Certificate of non-strict feasibility

- Suppose $\exists y \in \mathbb{R}^{m}$ such that $0 \neq A^{T} y \geq 0$ and $b^{T} y=0$
- If $A x=b$ and $x \geq 0$, then

$$
\begin{aligned}
y^{T} A x=y^{T} b & \Longrightarrow \quad\left(A^{T} y\right)^{T} x=0 \\
& \Longrightarrow \quad x_{i}=0, \quad \forall i \in \operatorname{supp}\left(A^{T} y\right)
\end{aligned}
$$

- Therefore, the feasible set of (LP) is contained in the face

$$
\mathbb{R}_{+}^{n} \cap\left\{A^{T} y\right\}^{\perp}=\left\{x \in \mathbb{R}_{+}^{n}: x_{i}=0, \forall i \in \operatorname{supp}\left(A^{T} y\right)\right\}
$$

## Facial Reduction

Semidefinite programming

(SDP) $\quad$| minimize | $\langle C, X\rangle$ |
| :---: | :--- | :--- |
| subject to | $\mathcal{A} X=b$ |
|  | $X \in \mathcal{S}_{+}^{n}$ |

Certificate of non-strict feasibility

- Suppose $\exists y \in \mathbb{R}^{m}$ such that $0 \neq \mathcal{A}^{*} y \succeq 0$ and $b^{T} y=0$
- If $\mathcal{A} X=b$ and $X \succeq 0$, then

$$
\begin{aligned}
y^{\top} \mathcal{A} X=y^{\top} b & \Longrightarrow \quad\left\langle\mathcal{A}^{*} y, X\right\rangle=0 \\
& \Longrightarrow \quad X\left(\mathcal{A}^{*} y\right)=\left(\mathcal{A}^{*} y\right) X=0
\end{aligned}
$$

- Therefore, the feasible set of (SDP) is contained in the face

$$
\mathcal{S}_{+}^{n} \cap\left\{\mathcal{A}^{*} y\right\}^{\perp}=\left\{X \in \mathcal{S}_{+}^{n}: \text { range }(X) \subseteq \operatorname{null}\left(A^{*} y\right)\right\}
$$

## Facial Reduction

Faces of the semidefinite cone
Let $Q=\left[\begin{array}{ll}U & V\end{array}\right] \in \mathbb{R}^{n \times n}$ be orthogonal and

$$
F:=\left\{X \in \mathcal{S}_{+}^{n}: \operatorname{range}(X) \subseteq \operatorname{range}(U)\right\} \unlhd \mathcal{S}_{+}^{n} .
$$

Then

$$
F=U \mathcal{S}_{+}^{k} U^{T}
$$

Semidefinite facial reduction [Borwein \& Wolkowicz (1981)]

$$
\left\{X \in \mathcal{S}_{+}^{n}:\left\langle A_{i}, X\right\rangle=b_{i}, \forall i\right\} \subseteq U \mathcal{S}_{+}^{k} U^{T}
$$

Then substituting $X=U Z U^{\top}$, (SDP) is equivalent to:

$$
\begin{array}{cl}
\text { minimize } & \left\langle C, U Z U^{\top}\right\rangle \\
\text { subject to } & \left\langle A_{i}, U Z U^{\top}\right\rangle=b_{i}, \quad \forall i \\
& Z \in \mathcal{S}_{+}^{k}
\end{array}
$$

## Facial Reduction

Faces of the semidefinite cone
Let $Q=\left[\begin{array}{ll}U & V\end{array}\right] \in \mathbb{R}^{n \times n}$ be orthogonal and

$$
F:=\left\{X \in \mathcal{S}_{+}^{n}: \operatorname{range}(X) \subseteq \operatorname{range}(U)\right\} \unlhd \mathcal{S}_{+}^{n} .
$$

Then

$$
F=U \mathcal{S}_{+}^{k} U^{T}
$$

Semidefinite facial reduction [Borwein \& Wolkowicz (1981)]

$$
\left\{X \in \mathcal{S}_{+}^{n}:\left\langle A_{i}, X\right\rangle=b_{i}, \forall i\right\} \subseteq U \mathcal{S}_{+}^{k} U^{T}
$$

Then substituting $X=U Z U^{\top}$, (SDP) is equivalent to:

$$
\begin{array}{cl}
\hline \operatorname{minimize} & \left\langle U^{T} C U, Z\right\rangle \\
\text { subject to } & \left\langle U^{T} A_{i} U, Z\right\rangle=b_{i}, \quad \forall i \\
& Z \in \mathcal{S}_{+}^{k}
\end{array}
$$

## Outline

## (1) Euclidean Distance Matrices

(2) Facial Reduction

## (3) Facial Reduction for EDM Completion

## (4) Noisy EDM Completion

## Facial Reduction for EDM Completion

Theorem: Facial reduction for EDM [K. \& Wolkowicz (2010)]
Let $D \in \mathcal{E}^{p}$ with $\operatorname{dim}(D)=k$,

$$
\mathcal{F}:=\left\{Y \in \mathcal{S}_{+}^{n} \cap \mathcal{S}_{c}^{n}: \mathcal{K}(Y)_{i j}=D_{i j}, \forall i, j=1, \ldots, p\right\},
$$

the columns of $\bar{U} \in \mathbb{R}^{p \times(k+1)}$ form a basis for range $\left(\left[\mathcal{K}^{\dagger}(D) \quad e\right]\right)$, and

$$
U:=\left[\begin{array}{cc}
\bar{U} & 0 \\
0 & I_{n-p}
\end{array}\right] .
$$

Then

$$
\operatorname{face}(\mathcal{F})=\left(U \mathcal{S}_{+}^{n-p+k+1} U^{T}\right) \cap \mathcal{S}_{c}^{n} .
$$

## Facial Reduction for EDM Completion

Theorem: Constraint reduction [K. \& Wolkowicz (2010)]

- Let $D \in \mathcal{E}^{p}$ with $\operatorname{dim}(D)=k$,

$$
\mathcal{F}:=\left\{Y \in \mathcal{S}_{+}^{n} \cap \mathcal{S}_{c}^{n}: \mathcal{K}(Y)_{i j}=D_{i j}, \forall i, j=1, \ldots, p\right\}
$$

and $U$ be defined as in the previous theorem.

- Let $\beta \subseteq\{1, \ldots, p\}$ such that $\operatorname{dim}(D[\beta, \beta])=k$.
- Then

$$
\mathcal{F}=\left\{Y \in\left(U \mathcal{S}_{+}^{n-p+k+1} U^{T}\right) \cap \mathcal{S}_{c}^{n}: \mathcal{K}(Y)_{i j}=D_{i j}, \forall i, j \in \beta\right\}
$$

Example : $n=1000, p=100,|\beta|=3$
variables: $1000 \rightsquigarrow 903$, constraints: $4950 \rightsquigarrow 3$

## Facial Reduction for EDM Completion

Algorithm for computing the face

$$
\mathcal{F}:=\left\{Y \in \mathcal{S}_{+}^{n} \cap \mathcal{S}_{c}^{n}: \mathcal{K}(Y)_{i j}=D_{i j}, \forall i j \in E\right\}
$$

- Find some cliques $\alpha_{i}$ in the graph
- Let $F_{i}:=\left(U_{i} \mathcal{S}_{+}^{n-\left|\alpha_{i}\right|+t_{i}+1} U_{i}^{T}\right) \cap \mathcal{S}_{c}^{n}$ be the corresponding faces
- Compute $U \in \mathbb{R}^{n \times(t+1)}$ full column rank such that

$$
\operatorname{range}(U)=\bigcap_{i} \operatorname{range}\left(U_{i}\right)
$$

- Then:

$$
\mathcal{F} \subseteq\left(U \mathcal{S}_{+}^{t+1} U^{T}\right) \cap \mathcal{S}_{c}^{n}
$$

## Facial Reduction for EDM Completion

## Protein structure determination

- Protein 2L30 from the PDB
- 393 cliques: 269 2D + 124 3D
- SDP size: $1867 \rightsquigarrow 512$
- equality constraints: $7143 \rightsquigarrow 1492$


Babak Alipanahi, Nathan Krislock, Ali Ghodsi, Henry Wolkowicz, Logan Donaldson, and Ming Li. (2012)
Determining protein structures from NOESY distance constraints by semidefinite programming. Journal of Computational Biology.

## Facial Reduction for EDM Completion

Theorem: EDM completion [K. \& Wolkowicz (2010)]
Let $D$ be a partial EDM and

- $\mathcal{F}:=\left\{Y \in \mathcal{S}_{+}^{n} \cap \mathcal{S}_{c}^{n}: \mathcal{K}(Y)_{i j}=D_{i j}, \forall i j \in E\right\}$
- $\mathcal{F} \subseteq\left(U \mathcal{S}_{+}^{t+1} U^{T}\right) \cap \mathcal{S}_{c}^{n}=(U V) \mathcal{S}_{+}^{t}(U V)^{T}$

If $\exists \bar{Y} \in \mathcal{F}$ and $\beta$ is a clique with $\operatorname{dim}(D[\beta, \beta])=t$, then:

- $\bar{Y}=(U V) \bar{Z}(U V)^{T}$, where $\bar{Z}$ is the unique solution of

$$
(J U[\beta,:] V) Z(J U[\beta,:] V)^{T}=\mathcal{K}^{\dagger}(D[\beta])
$$

- $\bar{D}:=\mathcal{K}\left(\bar{P} \bar{P}^{T}\right) \in \mathcal{E}^{n}$ is the unique completion of $D$, where

$$
\bar{P}:=U V \bar{Z}^{1 / 2} \in \mathbb{R}^{n \times t}
$$

Note: In this case, an SDP solver is not required.

## Facial Reduction for EDM Completion

Face representation approach

| $n$ | $R$ | Time | RMSD (\%R) |
| :---: | :---: | :---: | :---: |
| 10000 | 0.06 | 8 s | $2 \mathrm{e}-10$ |
| 20000 | 0.03 | 17 s | $7 \mathrm{e}-10$ |
| 60000 | 0.015 | 1 m 53 s | $5 \mathrm{e}-9$ |
| 100000 | 0.011 | 5 m 46 s | $8 \mathrm{e}-7$ |

Point representation approach

| $n$ | $R$ | Time | RMSD (\%R) |
| :---: | :---: | :---: | :---: |
| 10000 | 0.06 | 6 s | $1 \mathrm{e}-12$ |
| 20000 | 0.03 | 14 s | $3 \mathrm{e}-12$ |
| 60000 | 0.015 | 1 m 27 s | $6 \mathrm{e}-12$ |
| 100000 | 0.011 | 3 m 55 s | $9 \mathrm{e}-12$ |

## Outline

## (1) Euclidean Distance Matrices

(2) Facial Reduction
(3) Facial Reduction for EDM Completion
(4) Noisy EDM Completion

## Noisy EDM Completion

Multiplicative noise model

$$
d_{i j}=\left\|p_{i}-p_{j}\right\|_{2}\left(1+\sigma \varepsilon_{i j}\right), \quad \text { for all } i j \in E
$$

- $\varepsilon_{i j}$ is normally distributed with mean 0 and standard deviation 1
- $\sigma \geq 0$ is the noise factor
- $D_{i j}=d_{i j}^{2}$

Point representation approach (no refinement used)

| $n$ | $\sigma$ | $R$ | Time | RMSD (\%R) |
| :---: | :---: | :---: | :---: | :---: |
| 10000 | $1 \mathrm{e}-6$ | 0.04 | 5 s | 0.002 |
| 10000 | $1 \mathrm{e}-4$ | 0.04 | 5 s | 0.25 |
| 10000 | $1 \mathrm{e}-2$ | 0.04 | 5 s | 500 |

## Noisy EDM Completion

Exposing vector representation of faces

- Recall we had faces in primal form:

$$
F_{i}=\left(U_{i} \mathcal{S}_{+}^{n-\left|\alpha_{i}\right|+t_{i}+1} U_{i}^{T}\right) \cap \mathcal{S}_{c}^{n}
$$

- The exposing vector $\Phi_{i}$ for the face $F_{i}$ gives a dual representation:

$$
F_{i}=\mathcal{S}_{+}^{n} \cap\left\{\Phi_{i}\right\}^{\perp}
$$

- The intersection of the faces can be easily computed by

$$
F:=\bigcap_{i} F_{i}=\mathcal{S}_{+}^{n} \cap\left\{\sum_{i} \Phi_{i}\right\}^{\perp}
$$

## Noisy EDM Completion

## Exposing Vector Algorithm

- For each clique $\alpha$
$Y_{\alpha}:=$ nearest pos. semidef. rank-r matrix to $\mathcal{K}^{\dagger}(D[\alpha, \alpha])$
$\Phi_{\alpha}:=$ exposing vector of face $\left(\left\{Y_{\alpha}\right\}\right)$ extended to $\mathcal{S}^{n}$ by adding zeros
- $\Phi:=$ nearest pos. semidef. rank- $(n-r-1)$ matrix to $\sum_{\alpha} \Phi_{\alpha}$
- Let $U \in \mathbb{R}^{n \times r}$, such that $U^{T} e=0$, be eigenvectors of $\Phi$ for the smallest $r$ eigenvalues
- Solve $\min \left\{\sum_{i j \in E}\left|\mathcal{K}\left(U Z U^{T}\right)_{i j}-D_{i j}\right|^{2}: Z \in \mathcal{S}_{+}^{r}\right\}$
- Return $P=U Z^{1 / 2}$


## Noisy EDM Completion




## Noisy EDM Completion

Exposing Vector Algorithm + Refinement ( $10 \%$ anchors)

| Specifications |  |  | Time |  | RMSD $(\% R)$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $\sigma$ | $R$ | initial | refine | initial | refine |
| 2000 | 0.0 | 0.20 | 1 s | 0.1 s | 0.0 | 0.0 |
| 2000 | 0.1 | 0.20 | 1 s | 2 s | 3.9 | 1.0 |
| 2000 | 0.2 | 0.20 | 1 s | 2 s | 8.1 | 2.0 |
| 2000 | 0.3 | 0.20 | 1 s | 2 s | 12.5 | 3.0 |
| 4000 | 0.0 | 0.16 | 4 s | 0.3 s | 0.0 | 0.0 |
| 4000 | 0.1 | 0.16 | 4 s | 6 s | 3.6 | 0.9 |
| 4000 | 0.2 | 0.16 | 4 s | 6 s | 7.3 | 1.7 |
| 4000 | 0.3 | 0.16 | 4 s | 6 s | 11.2 | 2.6 |
| 10000 | 0.05 | 0.10 | 12 s | 14 s | 1.8 | 0.4 |
| 15000 | 0.05 | 0.10 | 29 s | 20 s | 1.6 | 0.3 |
| 20000 | 0.05 | 0.10 | 54 s | 44 s | 1.5 | 0.3 |

## Summary

- EDM problems are highly degenerate due to non-strict-feasibility
- Facial reduction is a powerful technique for taking advantage of this degeneracy
- The exposing vector approach is a very effective approach for noisy EDM problems

