## Facial reduction for Euclidean distance matrix problems

#### Nathan Krislock

Department of Mathematical Sciences Northern Illinois University, USA



Distance Geometry: Theory and Applications
DIMACS Center, Rutgers University, USA
July 26, 2016

Joint work with Dmitriy Drusvyatskiy (University of Washington), Yuen-Lam Voronin (University of Colorado), and Henry Wolkowicz (University of Waterloo)

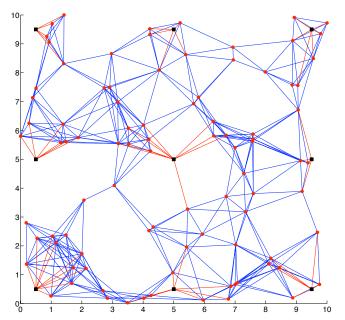
#### Outline

- Euclidean Distance Matrices
- Pacial Reduction
- 3 Facial Reduction for EDM Completion
- 4 Noisy EDM Completion

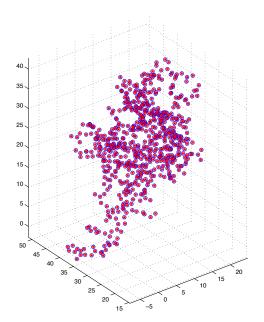
#### Outline

- Euclidean Distance Matrices
- Pacial Reduction
- Facial Reduction for EDM Completion
- 4 Noisy EDM Completion

## Sensor Network Localization



## Protein Structure Determination



## Euclidean distance matrices (EDMs)

• An  $n \times n$  matrix D is an EDM if

$$\exists p_1, \ldots, p_n \in \mathbb{R}^k : D_{ij} = \|p_i - p_j\|_2^2$$
 (1)

• The embedding dimension of *D*:

$$\dim(D) = \min\{k : (1) \text{ holds}\}\$$

•  $\mathcal{E}^n$  = the set of all  $n \times n$  EDMs

### EDM completion

$$\begin{array}{ll} \text{find} & D \in \mathcal{E}^n \\ \text{such that} & D_{ij} = \bar{D}_{ij}, \qquad \forall ij \in E \\ & \dim(D) \leq k \end{array}$$

#### EDMs and semidefinite matrices

- Let  $p_1, \ldots, p_n \in \mathbb{R}^k$  and D be their EDM
- Let  $Y \in \mathcal{S}^n$  be the Gram matrix:

$$Y_{ij} = \langle p_i, p_j \rangle, \quad \forall ij$$

• Then Y is a semidefinite matrix:  $Y \in \mathcal{S}^n_+$ 

$$D_{ij} = \|p_i - p_j\|_2^2$$

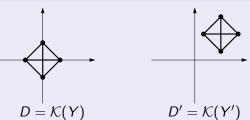
$$= \langle p_i, p_i \rangle - 2\langle p_i, p_j \rangle + \langle p_j, p_j \rangle$$

$$= Y_{ii} - 2Y_{ij} + Y_{jj}$$

$$=: \mathcal{K}(Y)_{ij}$$

• Therefore:  $\mathcal{K}(\mathcal{S}^n_+) = \mathcal{E}^n$ 

# Translation invariant: D = D' but $Y \neq Y'$



Centered matrices: 
$$S_c^n := \{Y \in S^n : Ye = 0\}, e = \begin{bmatrix} 1 & \cdots & 1 \end{bmatrix}^T$$

•  $\mathcal{K} \colon \mathcal{S}^n_+ \cap \mathcal{S}^n_c \to \mathcal{E}^n$  is a linear bijection whose inverse is given by

$$\mathcal{K}^{\dagger}(D) = -\frac{1}{2}J \operatorname{offDiag}(D)J, \quad J = I - \frac{1}{n}ee^{T}$$

• If  $D \in \mathcal{E}^n$ , then  $\dim(D) = \operatorname{rank}(\mathcal{K}^{\dagger}(D))$ 

### EDM completion

$$\begin{array}{ll} \text{find} & Y \in \mathcal{S}^n_+ \cap \mathcal{S}^n_c \\ \text{such that} & \mathcal{K}(Y)_{ij} = \bar{D}_{ij}, \quad \forall ij \in E \\ & \operatorname{rank}(Y) \leq k \end{array}$$

non-convex and NP-hard

#### Semidefinite relaxation

$$\begin{array}{ll} \text{find} & Y \in \mathcal{S}^n_+ \cap \mathcal{S}^n_c \\ \text{such that} & \mathcal{K}(Y)_{ij} = \bar{D}_{ij}, \quad \forall ij \in E \end{array}$$

- convex and solvable in polynomial-time by an interior-point method
- only problems of small size can be solved efficiently
- highly degenerate: not strictly feasible
- facial reduction ⇒ a much smaller equivalent problem

#### Outline

- Euclidean Distance Matrices
- 2 Facial Reduction
- 3 Facial Reduction for EDM Completion
- 4 Noisy EDM Completion

#### Face of a convex cone K

• We say a convex cone  $F \subseteq K$  is a face of K (denoted  $F \subseteq K$ ) if

$$x,y\in F$$
 whenever  $x,y\in K$  and  $\frac{1}{2}(x+y)\in F$ 

• The minimal face of K containing  $S \subseteq K$  is

$$face(S) := \bigcap_{S \subseteq F \trianglelefteq K} F$$

• We say that  $F \subseteq K$  is exposed if there exists  $\phi$  such that

$$F = K \cap \{\phi\}^{\perp}$$

### A simple example

minimize 
$$2x_1 + 6x_2 - x_3 - 2x_4$$
 subject to  $x_1 + x_2 + x_3 + x_4 = 1$   $x_1 - x_2 - x_3 + x_4 \ge 0$ 

Summing the constraints:

$$2x_1 + x_4 = 0 \quad \Rightarrow \quad x_1 = x_4 = 0$$

Restrict problem to the face 
$$\left\{x \in \mathbb{R}^4_+ : x_1 = x_4 = 0\right\}$$

minimize 
$$6x_2 - x_3$$
  
subject to  $x_2 + x_3 = 1$   
 $x_2 , x_3 \ge 0$ 

### Linear programming

minimize 
$$c^T x$$
  
subject to  $Ax = b$   
 $x \in \mathbb{R}^n_+$ 

### Certificate of non-strict feasibility

- Suppose  $\exists y \in \mathbb{R}^m$  such that  $0 \neq A^T y \geq 0$  and  $b^T y = 0$
- If Ax = b and  $x \ge 0$ , then

$$y^T A x = y^T b \implies (A^T y)^T x = 0$$
  
 $\implies x_i = 0, \forall i \in \text{supp}(A^T y)$ 

• Therefore, the feasible set of (LP) is contained in the face

$$\mathbb{R}^n_+ \cap \{A^T y\}^\perp = \left\{ x \in \mathbb{R}^n_+ : x_i = 0, \forall i \in \mathsf{supp}(A^T y) \right\}$$

### Semidefinite programming

minimize 
$$\langle C, X \rangle$$
  
subject to  $AX = b$   
 $X \in \mathcal{S}^n_+$ 

#### Certificate of non-strict feasibility

- Suppose  $\exists y \in \mathbb{R}^m$  such that  $0 \neq \mathcal{A}^* y \succeq 0$  and  $b^T y = 0$
- If AX = b and  $X \succeq 0$ , then

$$y^{T}AX = y^{T}b \implies \langle A^{*}y, X \rangle = 0$$
  
 $\implies X(A^{*}y) = (A^{*}y)X = 0$ 

Therefore, the feasible set of (SDP) is contained in the face

$$\mathcal{S}^n_+ \cap \{\mathcal{A}^*y\}^{\perp} = \{X \in \mathcal{S}^n_+ : \mathsf{range}(X) \subseteq \mathsf{null}(\mathcal{A}^*y)\}$$

#### Faces of the semidefinite cone

Let  $Q = \begin{bmatrix} U & V \end{bmatrix} \in \mathbb{R}^{n \times n}$  be orthogonal and

$$F:=\left\{X\in\mathcal{S}^n_+: \mathsf{range}(X)\subseteq\mathsf{range}(U)
ight\} riangleq \mathcal{S}^n_+.$$

Then

$$F = US_+^k U^T.$$

## Semidefinite facial reduction [Borwein & Wolkowicz (1981)]

$$\left\{X \in \mathcal{S}^n_+ : \langle A_i, X \rangle = b_i, \forall i \right\} \subseteq U \mathcal{S}^k_+ U^T$$

Then substituting  $X = UZU^T$ , (SDP) is equivalent to:

minimize 
$$\langle C, UZU^T \rangle$$
  
subject to  $\langle A_i, UZU^T \rangle = b_i$ ,  $\forall i$   
 $Z \in \mathcal{S}_+^k$ 

#### Faces of the semidefinite cone

Let  $Q = \begin{bmatrix} U & V \end{bmatrix} \in \mathbb{R}^{n \times n}$  be orthogonal and

$$F:=\left\{X\in\mathcal{S}^n_+: \mathsf{range}(X)\subseteq\mathsf{range}(U)
ight\} riangleq \mathcal{S}^n_+.$$

Then

$$F = US_+^k U^T.$$

## Semidefinite facial reduction [Borwein & Wolkowicz (1981)]

$$\left\{X \in \mathcal{S}^n_+ : \langle A_i, X \rangle = b_i, \forall i \right\} \subseteq U \mathcal{S}^k_+ U^T$$

Then substituting  $X = UZU^T$ , (SDP) is equivalent to:

minimize 
$$\langle U^T C U, Z \rangle$$
  
subject to  $\langle U^T A_i U, Z \rangle = b_i, \quad \forall i$   
 $Z \in \mathcal{S}_+^k$ 

#### Outline

- Euclidean Distance Matrices
- Pacial Reduction
- 3 Facial Reduction for EDM Completion
- 4 Noisy EDM Completion

## Theorem: Facial reduction for EDM [K. & Wolkowicz (2010)]

Let  $D \in \mathcal{E}^p$  with  $\dim(D) = k$ ,

$$\mathcal{F} := \left\{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}^n_c : \mathcal{K}(Y)_{ij} = D_{ij}, \forall i,j = 1, \dots, p \right\},$$

the columns of  $ar{U} \in \mathbb{R}^{p imes (k+1)}$  form a basis for range  $ig( egin{bmatrix} \mathcal{K}^\dagger(D) & e \end{bmatrix} ig)$  , and

$$U:=\begin{bmatrix} \bar{U} & 0 \\ 0 & I_{n-p} \end{bmatrix}.$$

Then

$$\mathsf{face}(\mathcal{F}) = \left( U \mathcal{S}_{+}^{n-p+k+1} U^{\mathsf{T}} \right) \cap \mathcal{S}_{c}^{n}.$$

## Theorem: Constraint reduction [K. & Wolkowicz (2010)]

• Let  $D \in \mathcal{E}^p$  with  $\dim(D) = k$ ,

$$\mathcal{F} := \left\{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}^n_c : \mathcal{K}(Y)_{ij} = D_{ij}, \forall i, j = 1, \dots, p \right\},\,$$

and U be defined as in the previous theorem.

- Let  $\beta \subseteq \{1, \ldots, p\}$  such that  $\dim(D[\beta, \beta]) = k$ .
- Then

$$\mathcal{F} = \left\{ Y \in \left( U \mathcal{S}_{+}^{n-p+k+1} U^{T} \right) \cap \mathcal{S}_{c}^{n} : \mathcal{K}(Y)_{ij} = D_{ij}, \forall i, j \in \beta \right\}.$$

Example : 
$$n = 1000$$
,  $p = 100$ ,  $|\beta| = 3$ 

variables:  $1000 \rightsquigarrow 903$ , constraints:  $4950 \rightsquigarrow 3$ 

### Algorithm for computing the face

$$\mathcal{F} := \left\{ Y \in \mathcal{S}_{+}^{n} \cap \mathcal{S}_{c}^{n} : \mathcal{K}(Y)_{ij} = D_{ij}, \forall ij \in E \right\}$$

- Find some cliques  $\alpha_i$  in the graph
- Let  $F_i:=\left(U_i\mathcal{S}^{n-|lpha_i|+t_i+1}_+U_i^{\mathcal{T}}
  ight)\cap\mathcal{S}^n_c$  be the corresponding faces
- ullet Compute  $U \in \mathbb{R}^{n imes (t+1)}$  full column rank such that

$$range(U) = \bigcap_{i} range(U_i)$$

Then:

$$\mathcal{F} \subseteq \left( U \mathcal{S}_{+}^{t+1} U^{\mathsf{T}} \right) \cap \mathcal{S}_{c}^{n}$$

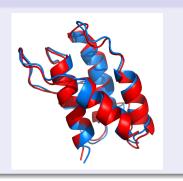
#### Protein structure determination

Protein 2L30 from the PDB

• 393 cliques: 269 2D + 124 3D

• SDP size: 1867 *→* 512

equality constraints: 7143 → 1492





Babak Alipanahi, Nathan Krislock, Ali Ghodsi, Henry Wolkowicz, Logan Donaldson, and Ming Li. (2012)

Determining protein structures from NOESY distance constraints by semidefinite programming. *Journal of Computational Biology*.

## Theorem: EDM completion [K. & Wolkowicz (2010)]

Let D be a partial EDM and

• 
$$\mathcal{F} := \{ Y \in \mathcal{S}^n_+ \cap \mathcal{S}^n_c : \mathcal{K}(Y)_{ij} = D_{ij}, \forall ij \in E \}$$

• 
$$\mathcal{F} \subseteq (U\mathcal{S}_{+}^{t+1}U^T) \cap \mathcal{S}_{c}^{n} = (UV)\mathcal{S}_{+}^{t}(UV)^T$$

If  $\exists \bar{Y} \in \mathcal{F}$  and  $\beta$  is a clique with  $\dim(D[\beta, \beta]) = t$ , then:

•  $\bar{Y} = (UV)\bar{Z}(UV)^T$ , where  $\bar{Z}$  is the unique solution of

$$(JU[\beta,:]V)Z(JU[\beta,:]V)^T = \mathcal{K}^{\dagger}(D[\beta])$$

•  $\bar{D} := \mathcal{K}(\bar{P}\bar{P}^T) \in \mathcal{E}^n$  is the unique completion of D, where

$$\bar{P} := UV\bar{Z}^{1/2} \in \mathbb{R}^{n \times t}$$

<u>Note</u>: In this case, an SDP solver is not required.

## Face representation approach

| n      | R     | Time     | RMSD (%R) |  |
|--------|-------|----------|-----------|--|
| 10000  | 0.06  | 8 s      | 2e-10     |  |
| 20000  | 0.03  | 17 s     | 7e-10     |  |
| 60000  | 0.015 | 1 m 53 s | 5e-9      |  |
| 100000 | 0.011 | 5 m 46 s | 8e-7      |  |

## Point representation approach

| n      | R     | Time     | RMSD (%R) |  |
|--------|-------|----------|-----------|--|
| 10000  | 0.06  | 6 s      | 1e-12     |  |
| 20000  | 0.03  | 14 s     | 3e-12     |  |
| 60000  | 0.015 | 1 m 27 s | 6e-12     |  |
| 100000 | 0.011 | 3 m 55 s | 9e-12     |  |

### Outline

- Euclidean Distance Matrices
- Pacial Reduction
- Facial Reduction for EDM Completion
- 4 Noisy EDM Completion

### Multiplicative noise model

$$d_{ij} = \|p_i - p_j\|_2 (1 + \sigma \varepsilon_{ij}), \quad \text{for all } ij \in E$$

- ullet  $arepsilon_{ij}$  is normally distributed with mean 0 and standard deviation 1
- $\sigma \geq 0$  is the *noise factor*
- $\bullet \ D_{ij}=d_{ij}^2$

## Point representation approach (no refinement used)

| n     | $\sigma$ | R    | Time | RMSD (%R) |
|-------|----------|------|------|-----------|
| 10000 | 1e-6     | 0.04 | 5 s  | 0.002     |
| 10000 | 1e-4     | 0.04 | 5 s  | 0.25      |
| 10000 | 1e-2     | 0.04 | 5 s  | 500       |

#### Exposing vector representation of faces

• Recall we had faces in primal form:

$$F_i = \left(U_i \mathcal{S}_+^{n-|\alpha_i|+t_i+1} U_i^T\right) \cap \mathcal{S}_c^n$$

• The exposing vector  $\Phi_i$  for the face  $F_i$  gives a dual representation:

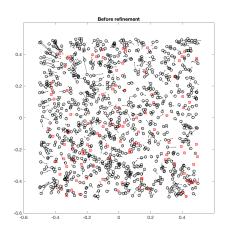
$$F_i = \mathcal{S}^n_+ \cap \left\{ \Phi_i \right\}^\perp$$

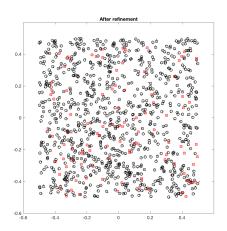
• The intersection of the faces can be easily computed by

$$F := \bigcap_{i} F_{i} = \mathcal{S}_{+}^{n} \cap \left\{ \sum_{i} \Phi_{i} \right\}^{\perp}$$

### **Exposing Vector Algorithm**

- ullet For each clique lpha
  - $Y_{\alpha}:=$  nearest pos. semidef. rank-r matrix to  $\mathcal{K}^{\dagger}(D[\alpha,\alpha])$
  - $\Phi_{\alpha} := \text{exposing vector of face}(\{Y_{\alpha}\}) \text{ extended to } \mathcal{S}^n \text{ by adding zeros}$
- $\Phi:=$  nearest pos. semidef. rank-(n-r-1) matrix to  $\sum_{lpha}\Phi_{lpha}$
- Let  $U \in \mathbb{R}^{n \times r}$ , such that  $U^T e = 0$ , be eigenvectors of  $\Phi$  for the smallest r eigenvalues
- Solve min  $\left\{\sum_{ij\in E} |\mathcal{K}(UZU^T)_{ij} D_{ij}|^2 : Z \in \mathcal{S}^r_+ \right\}$
- Return  $P = UZ^{1/2}$





## Exposing Vector Algorithm + Refinement (10% anchors)

| Specifications |          | Time |         | RMSD (%R) |         |        |
|----------------|----------|------|---------|-----------|---------|--------|
| n              | $\sigma$ | R    | initial | refine    | initial | refine |
| 2000           | 0.0      | 0.20 | 1 s     | 0.1 s     | 0.0     | 0.0    |
| 2000           | 0.1      | 0.20 | 1 s     | 2 s       | 3.9     | 1.0    |
| 2000           | 0.2      | 0.20 | 1 s     | 2 s       | 8.1     | 2.0    |
| 2000           | 0.3      | 0.20 | 1 s     | 2 s       | 12.5    | 3.0    |
| 4000           | 0.0      | 0.16 | 4 s     | 0.3 s     | 0.0     | 0.0    |
| 4000           | 0.1      | 0.16 | 4 s     | 6 s       | 3.6     | 0.9    |
| 4000           | 0.2      | 0.16 | 4 s     | 6 s       | 7.3     | 1.7    |
| 4000           | 0.3      | 0.16 | 4 s     | 6 s       | 11.2    | 2.6    |
| 10000          | 0.05     | 0.10 | 12 s    | 14 s      | 1.8     | 0.4    |
| 15000          | 0.05     | 0.10 | 29 s    | 20 s      | 1.6     | 0.3    |
| 20000          | 0.05     | 0.10 | 54 s    | 44 s      | 1.5     | 0.3    |

## Summary

- EDM problems are highly degenerate due to non-strict-feasibility
- Facial reduction is a powerful technique for taking advantage of this degeneracy
- The exposing vector approach is a very effective approach for noisy EDM problems