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The Convex Hull Membership Problem (CHMP)

Definition
Given a subset S = {v1, . . . , vn} ⊂ Rm, and p ∈ Rm, either give a
certificate that proves p ∈ conv(S), or one that proves p 6∈ conv(S).

Fact

p ∈ conv(S) ⇐⇒ p =
n∑

i=1

αivi ,

n∑
i=1

αi = 1, αi ≥ 0.

Remark
When p 6∈ conv(S) a certificate is a separating hyperplane.
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Homogeneous and Approximate Version of CHMP

Definition
(Homogeneous CHMP (H-CHMP) )

Given an m × n matrix A, either find x satisfying

Ax = 0, eT x = 1, x ≥ 0,

or prove unsolvable. (test if 0 ∈ conv(A))

Definition
(ε-approximate version of CHMP)
Given ε ∈ (0,1), either compute pε ∈ conv(S) such that:

d(pε,p) ≤ ε · R, R = max{d(p, v1), . . . ,d(p, vn)};

or prove p 6∈ conv(S). (d(u, v) = ‖u − v‖, Euclidean distance)
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Significance of CHMP and H-CHMP

• Applications in approximation theory, machine learning, statistics, etc.
• It has given rise to significant dualities and algorithms:
Gordan’s Theorem (1873) (preceded Farkas Lemma),
Diagonal Scaling Dualities,
Distance Dualities (to be described).
• In fact these are most fundamental problems in linear programming.
• Historically speaking, the first two polynomial-time LP algorithm hap-
pened to be (implicitly) designed for solve H-CHMP:
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Significance of CHMP and H-CHMP

• Karmarkar projective algorithm (1984) solves:

Is min{cT x : Ax = 0, eT x = 1, x ≥ 0} = 0? (H-CHMP)

• Khachiyan ellipsoid algorithm (1979) solves:

Is Ax < b feasible?

Is 0 ∈ conv(B)?, B =

(
AT 0
bT 1

)
. (dual of Ax < b)

• Khachiyan-K. matrix scaling algorithm (1992): Given an n × n sym-
metric psd matrix A, test the solvability of the following nonlinear dual to
H-CHMP (0 ∈ conv(A)?):

DADe = e, D = diag(d1, · · · ,dn), di > 0, e = (1, . . . ,1)T .
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Significance of CHMP and H-CHMP

• Indeed a generalization of H-CHMP, called Homogeneous Program-
ming, is a special but significant conic programming problem: Given a
homogeneous function φ(x),

Is φ(x) = 0?, x 6= 0, x ∈ K , a pointed cone.

The matrix scaling equation DADe = e holds with appropriate interrela-
tion of D and A and e, dependent on φ and K .

Moreover, algorithmic applications of these for semidefinite program-
ming and self-concordant programming have been analyzed, e.g.
“Semidefinite programming and matrix scaling over the semidefinite
cone,” Linear Algebra and its Applications, 2003, B.K.
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Triangle Algorithm : A Geometric Algorithm for CHMP

Triangle Algorithm (S = {v1, . . . , vn}, p)
Step 1. Given iterate p′ =

∑n
i=1 αivi ∈ conv(S), check

if there exists a pivot : vj ∈ S s.t. d(p′, vj) ≥ d(p, vj).

p′′
p vj

p′

If no pivot exists, then p′ is a witness. Stop.
Step 2. Otherwise, compute p′′ = nearest(p; p′v):

p′′ = (1−α)p′+αvj =
n∑

i=1

α′ivi , α =
(p − p′)T (vj − p′)

d2(vj ,p′)
,

α′j = (1− α)αj + α, αi = (1− α)αi , ∀i 6= j .

Replace p′ with p′′ and Go to Step 1.
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Example of Triangle Algorithm for a Triangle

v1 v2

v3

p
p′

p′′

p′′′

Figure: Triangle Algorithm for testing if p ∈ conv({v1, v2, v3}).
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Geometry of Triangle Algorithm
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Geometry of Triangle Algorithm

Theorem
(Distance Duality )
Precisely one of the two conditions is satisfied:
(i): For each p′ ∈ conv(S), there exists v ∈ S such that
d(p′, v) ≥ d(p, v) (v a pivot)
(ii): There exists p′ ∈ conv(S) such that d(p′, v) < d(p, v), for all v ∈ S
(p′ a witness).
Furthermore, (i) is valid if and only if p ∈ conv(S).
Equivalently, (ii) is valid if and only if p 6∈ conv(S).

Remark
H.W. Kuhn (1967), proves this in the Euclidean plane making use of
several results, including Ville’s Lemma. Some generalizations of the
theorem over normed spaces is given by Durier and Michelot (1986).
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Iterative Reduction of Error Gap

r

δ δ′

p′′

p v

p′

Theorem

Given two consecutive iterates p′, p′′, corresponding to the triangle
4pp′v with v a pivot, let δ = d(p′,p), δ′ = d(p′′,p), and r = d(p, v).
Then, if δ ≤ r ,

δ′ ≤ δ
√

1− δ2

4r2 .
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Complexity of Triangle Algorithm: First Bound

Theorem

(i) Suppose p ∈ conv(S). Given ε > 0, the number of iterations to
compute a point pε in conv(S) so that d(p,pε) ≤ εR,
R = max{d(p, v1), . . . ,d(p, vn)} is

O
(

1
ε2

)
.

(ii) Suppose p 6∈ conv(S). The number of iterations to compute a
witness p′ in conv(S) is

O
(

R2

∆2

)
, ∆ = min

{
d(x ,p) : x ∈ conv(S)

}
.
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Remarks on the Triangle Algorithm

Remark
In straightforward implementation, worst-case complexity in each
iteration is O(mn) arithmetic operations.

Remark
With a preprocessing time of O(mn2), each iteration can be
implemented in O(m + n) arithmetic operations.

Remark
To find pivot Triangle Algorithm does not require taking square-roots:

d(p′, v) ≥ d(p, v) ⇐⇒ ‖p′‖2 − ‖p‖2 ≥ 2vT (p′ − p).
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Remarks on Other Algorithms for Solving CHMP

Remark
• Simplex Method solves CHMP as Phase I.
• Sparse greedy approximation solves CHMP by conversion into a
convex quadratic minimization over a simplex.
• Sparse greedy approximation is equivalent to Frank-Wolf, also
Gilbert’s algorithm. Motivation behind their iterative steps is algebraic -
Triangle Algorithm is motivated by geometric properties.
• So-called fast gradient method of Nesterov can also be applied, an
O(1/ε) iteration algorithm, complexity of each iteration is O(mn).
•Worst-case complexity of each iteration of Triangle Algorithm is
O(mn). However, even without preprocessing, often, each iteration
requires only O(m + n).
• Triangle Algorithm could outperform these due to distance duality,
simplicity and degrees of freedom it offers.
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Experimental Results with Triangle Algorithm

Figure: Running time comparison as n grows
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Experimental Results with Triangle Algorithm

As the number of points n grow, the running time of the Simplex and
Frank-Wolfe methods increase while the Triangle Algorithm performs
very well with only a slight increase in the running time.

One explanation is the fact that the Triangle Algorithm does not need
to make use of all the n points and thus spends less time than the
simplex method and Frank-Wolfe in each iteration. Another is that by
virtue of selecting a pivot it makes good reductions in each iteration.

n # of points visited per iteration iterations
500 185 459.6

1000 228.26 479.6
3000 240.37 540.4
5000 242.22 541.6

10000 254.84 535.4

Table: The performance of Triangle algorithm when m=100
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Properties and Characterizations of Witnesses:
Separation Property

Definition
Let Wp be the set of all witnesses, i.e. points p′ ∈ conv(S) such that

d(p′, vi) < d(p, vi), ∀i = 1, . . . ,n.

Theorem
If p′ ∈Wp the orthogonal bisecting hyperplane of the line segment pp′

separates p from conv(S).
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Properties and Characterizations of Witnesses:
Approximation of Distance to Convex Hull

Corollary

Suppose p 6∈ conv(S) = conv({v1, . . . , vn}).
Let

∆ = d(p, conv(S)) = min{d(p, x) : x ∈ conv(S)}.

Then any witness p′ ∈Wp gives an estimate of ∆ to within a factor of
two. More precisely,

1
2

d(p,p′) ≤ ∆ ≤ d(p,p′).
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Then any witness p′ ∈Wp gives an estimate of ∆ to within a factor of
two. More precisely,

1
2

d(p,p′) ≤ ∆ ≤ d(p,p′).
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Properties and Characterizations of Witnesses:
Intersection Ball Property

Corollary

Given S = {v1, . . . , vn} and p all in Rm, consider the set of open balls
Bi balls centered at vi with radius d(p, vi), i = 1, . . . ,n.
Then p ∈ conv(S) if and only if (∩n

i=1Bi) ∩ conv(S) = ∅.
Equivalently, p ∈ conv(S) if and only if (∩n

i=1Bi) ∩ conv(S) = ∅.
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A Case with No Witness: p ∈ conv(S)

v1 v2

v3

p

Figure: No witnesses: p ∈ conv(S). The three discs intersect only at p.

(Rutgers) Triangle Algorithm July 26, 2016 22 / 57



A Case with No Witness: p ∈ conv(S)

v1 v2

v3

p

Figure: No witnesses: p ∈ conv(S). The three discs intersect only at p.

(Rutgers) Triangle Algorithm July 26, 2016 22 / 57



Some Cases with Witnesses: p 6∈ conv(S)

v1 v2

v3p

v1 v2

v3
p

v1 v2

v3

p

Figure: Examples with Wp 6= ∅, p 6∈ conv(S). Wp is interior of gray areas: For
any p′ ∈Wp the bisector of pp′ separates p from conv(S).

(Rutgers) Triangle Algorithm July 26, 2016 23 / 57



Some Cases with Witnesses: p 6∈ conv(S)

v1 v2

v3p

v1 v2

v3
p

v1 v2

v3

p

Figure: Examples with Wp 6= ∅, p 6∈ conv(S). Wp is interior of gray areas: For
any p′ ∈Wp the bisector of pp′ separates p from conv(S).

(Rutgers) Triangle Algorithm July 26, 2016 23 / 57



Strict Distance Duality

Definition

Given p′ ∈ conv(S), we say v ∈ S is a strict pivot if ∠p′pv ≥ π/2.

r

δ δ′

p′′

p v

p′

Theorem

(Strict Distance Duality ) Assume p 6∈ S. Then p ∈ conv(S) if and only
if for each p′ ∈ conv(S) there exists a strict pivot.
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Complexity of Triangle Algorithm: Second Bound

Theorem
Assume p lies at the center of a ball of radius ρ in the relative interior of
conv(S), and Triangle Algorithm uses strict pivot in each iteration.
The number of iterations to compute pε ∈ conv(S) such that

d(p,pε) < εR, R = max{d(p, vi), i = 1, . . . ,n}

satisfies

O
((

R
ρ

)2

log
1
ε

)
.
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Complexity of Triangle Algorithm: Third Bound

Theorem
Given ε ∈ (0,1), the number of iterations of the Triangle Algorithm to
test if there exists pε ∈ conv(S) such that d(p,pε) < εR,
R = max{d(p, vi), i = 1, . . . ,n}, is

O
(

1
c

ln
1
ε

)
, (1)

where c is the visibility factor, a constant satisfying the inequalities

sin(pp′v ′) ≤ 1√
1 + c

, c ≥ ε2, (2)

over all the iterates p′ having corresponding pivot v ′.
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Example

p

p′

vj

p′
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Strict Witness

Definition
We say p′ ∈ conv(S) is a strict witness if there is no strict pivot at p′.
Equivalently, p′ is a strict witness if the orthogonal hyperplane to the
line p′p at p separates p from conv(S). Denote the set of all strict
witnesses by Ŵp.

Ŵp contains Wp.

Proposition
We have

Ŵp =

{
x ∈ conv(S) : (x − p)T (vi − p) > 0, i = 1, . . . ,n

}
.

(Rutgers) Triangle Algorithm July 26, 2016 28 / 57



Strict Witness

Definition
We say p′ ∈ conv(S) is a strict witness if there is no strict pivot at p′.
Equivalently, p′ is a strict witness if the orthogonal hyperplane to the
line p′p at p separates p from conv(S). Denote the set of all strict
witnesses by Ŵp.
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Strict Witness

v1 v2

v3p

v1 v2

v3p

Figure: Witness set Wp (left) and Strict Witness set Ŵp (right).
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Solving Strict LP Feasibility Via Triangle Algorithm

Test if Ax < b is feasible, A is an m × n matrix.
(The problem Khachiyan considered in 1979).
Ax < b is feasible if and only if the following CHMP is infeasible(

AT 0
bT 1

)(
y
s

)
=

(
0
0

)
,

m∑
i=1

yi + s = 1, y ≥ 0, s ≥ 0.

Denote rows of A by aT
i . Then columns of matrix in CHMP are vi =(

ai
bi

)
, i = 1, . . . ,m and vm+1 =

(
0
1

)
, all in Rn+1.

Suppose triangle algorithm for CHMP gives a witness p′ =

(
x
α

)
. Then,

A(−x/α) < b.

In other words, triangle algorithm gives complete answer when testing
the feasibility of Ax < b, not just a yes answer.
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Nonstandard Application of Triangle Algorithm:
Solving A Linear System

Consider solving Ax = b, with A invertible.
Suppose it is known that x = A−1b ≥ 0.
We can apply the Triangle Algorithm to test if

0 ∈ conv([A,−b]).

The algorithm produces ε-approximate solution

‖Axε − b‖ ≤ ε‖b‖.
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Incremental Triangle Algorithm: solving Ax = b

There exists t∗ ≥ 0 such that for any t ≥ t∗ the solution of A(x − te) = b
is nonnegative (e the vector of ones). Thus

0 ∈ conv([A,−(b + tu)]), u = Ae.

A convex hull problem is inherent to a linear system.

Incremental Triangle Algorithm: Given ε, and t (initially zero), test if

0 ∈ conv([A,−(b + tu)]).

If xt = A−1(b + tu) ≥ 0, Triangle Algorithm produces xε satisfying

‖Axε − b‖ ≤ ε‖b‖.

Otherwise, by the distance duality, the algorithm computes a witness
certifying that xt 6≥ 0. Using the witness, we increment t and repeat.
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Numerical Experiments for Solving Ax = b

In several experiments performed by DIMACS REU student, MS stu-
dents, a Postdoc: generating different systems, including those from
finite difference discretization, Incremental Triangle Algorithm has out-
performed Jaobi, Gauss-Seidel, SOR, and AOR, taking much fewer it-
erations than these methods.

(Rutgers) Triangle Algorithm July 26, 2016 33 / 57



Numerical Experiments for Solving Ax = b

In several experiments performed by DIMACS REU student, MS stu-
dents, a Postdoc: generating different systems, including those from
finite difference discretization, Incremental Triangle Algorithm has out-
performed Jaobi, Gauss-Seidel, SOR, and AOR, taking much fewer it-
erations than these methods.

(Rutgers) Triangle Algorithm July 26, 2016 33 / 57



Nonstandard Application of Triangle Algorithm:
Solving Google PageRank Matrix

The problem is solving Ax = x , where x ≥ 0, eT x = 1, for some square
matrix A with nonnegative entries, usually huge but sparse.

Usually solved as an eigenvalue problem via the power method.

Triangle Algorithm required fewer iterations than the power method.

In some examples triangle algorithm used only one iteration to compute
solutions to absolute accuracy 10−10. In particular, in an example (from
Stanford) where the dimension of A was approximately 300,000.
(Rutgers MS thesis of Hao Shen (2014-2015) includes details.)
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Separation of Convex Sets

Definition
Given two compact convex subsets K ,K ′ of Rm, we say
H = {x : hT x = a} is a separating hyperplane if

hT x < a, ∀x ∈ K , hT x < a, ∀x ∈ K ′.

Definition

δ∗ = d(K ,K ′) = min{d(p,p′) : p ∈ K ,p′ ∈ K ′} = d(p∗,p′∗).

Fact
Then δ∗ = 0 if and only if K ∩ K ′ 6= ∅.
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Four Problems Associated to A Pair of Convex Sets

(1) Test if K and K ′ intersect: Find (p,p′) ∈ K × K ′ with d(p,p′) small.
If K and K ′ do not intersect:
(2) Find a separating hyperplane
(3) Estimate δ∗ = d(K ,K ′).
(4) Find near-optimal pair of parallel supporting hyperplanes.

K K ′

H1

H ′1

p

p′
p∗ p′∗

H ′∗H∗ H

Figure: (p∗,p′∗) optimal pair, (H∗,H ′∗) optimal support; (p,p′) a pair whose
orthogonal bisector separator H; (H1,H ′1) a supporting pair.
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Computing Approximate Intersection Point

Definition
Suppose δ∗ = 0. We say a pair (p,p′) ∈ K × K ′ is an ε-approximation
solution if

d(p,p′) ≤ εd(p, v), for some v ∈ K ,

or

d(p,p′) ≤ εd(p′, v ′), for some v ′ ∈ K ′.

Definition
Given (p,p′) ∈ K × K ′, we say it is a witness pair if the orthogonal
bisecting hyperplane of the line segment pp′ separates K and K ′.
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Triangle Algorithm I (Testing if K and K ′ intersect)

The algorithm computes (p,p′) ∈ K × K ′ such that
d(p,p′) is within a prescribed precision,

or d(p,p′) is a witness pair.
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Pivot Points

Definition
Given a pair (p,p′) ∈ K × K ′,
we say v ∈ K is a p′-pivot for p if

d(p, v) ≥ d(p′, v).

We say v ′ ∈ K ′ is a p-pivot for p′ if

d(p′, v ′) ≥ d(p, v ′).

p′ v

p

p v ′

p′

Figure: v is p′-pivot for p (left); v ′ is p-pivot for p′ (right).
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Voronoi Diagrams

Consider the Voronoi diagram of the two points set {p,p′},
(p,p′) ∈ K × K ′ and the corresponding Voronoi cells:
V (p) = {x : d(x ,p) < d(x ,p′)}, V (p′) = {x : d(x ,p′) < d(x ,p)}.
Let H be the orthogonal bisecting hyperplane of the line pp′.
H intersects K ⇐⇒ there exists v ∈ K that is a p′-pivot for p,
H intersects K ′ ⇐⇒ there exists v ′ ∈ K ′ that is a p-pivot for p′.

Hp p′

v ′
v

Figure: In the Figure, the point v and v ′ are pivots for p′ and p, respectively.
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A New Separating Hyperplane Theorem

Theorem
(Krein-Milman) Let K be a compact convex subset of Rm. Then K is
the convex hull of its extreme points. In notation, K = conv(ex(K )).
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A New Separating Hyperplane Theorem

Theorem
(Distance Duality ) Let K ,K ′ be compact convex subsets in Rm, with
ex(K ) and ex(K ′) as their corresponding set of extreme points. Let S
be a subset of K containing ex(K ), and S′ a subset of K ′ containing
ex(K ′). Then, K ∩ K ′ 6= ∅ if and only if for each (p,p′) ∈ K × K ′, either
there exists v ∈ S such that d(p′, v) ≥ d(p, v), or there exists v ′ ∈ S′

such that d(p, v ′) ≥ d(p′, v ′).

An alternative description of the Distance Duality is the following.

Theorem
(Distance Duality ) Let K ,K ′ be compact convex subsets in Rm, with
ex(K ) and ex(K ′) as their corresponding set of extreme points. Then,
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Iterative Step in Triangle Algorithm I

Each iteration of Triangle Algorithm I computes for given pair (p,p′) ∈
K × K ′, either v ∈ K that is a p′-pivot for p; or v ′ ∈ K ′, a p-pivot for p′.
These are equivalent to checking if

2vT (p′ − p) ≥ ‖p′‖2 − ‖p‖2, 2v ′T (p − p′) ≥ ‖p‖2 − ‖p′‖2.

These can be computed by solving the convex programs:

max{(p′ − p)T v : v ∈ K}, max{(p − p′)T v ′ : v ′ ∈ K ′}.

Let TK ,TK ′ be the arithmetic complexities of solving these problems,
respectively.
Thus the worst-case complexity in each iteration is

T = max{TK ,TK ′}.
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Triangle Algorithm I

Triangle Algorithm I ((p0,p′0) ∈ K × K ′, ε ∈ (0,1))
Step 0. Set p = v = p0, p′ = v ′ = p′0.
Step 1. If d(p,p′) ≤ εd(p, v), or d(p,p′) ≤ εd(p′, v ′), stop.
Step 2. Test if there exists v ∈ K that is a p′-pivot for p, i.e.

2vT (p′ − p) ≥ ‖p′‖2 − ‖p‖2

(e.g. by solving max{(p′ − p)T v : v ∈ K}). If such pivot
exists, set p ← nearest(p′; pv), and go to Step 1.
Step 3. Test if there exists v ′ ∈ K ′ that is a p-pivot for p′,
i.e.

2v ′T (p − p′) ≥ ‖p‖2 − ‖p′‖2.

(e.g. by solving max{(p − p′)T v ′ : v ′ ∈ K ′}). If such pivot
exists, set p′ ← nearest(p; p′v ′), and go to Step 1.
Step 4. Output (p,p′) as a witness pair, stop (K ∩ K ′ = ∅).
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Triangle Algorithm I

When δ∗ = 0, the number of iterations to get ε-approximate solution is

O
(

1
ε2

)
.

When δ∗ > 0, the number of iterations of Triangle Algorithm I to compute
a witness pair (p,p′) ∈ K × K ′ is

O
((

ρ∗
δ∗

)2)
,

ρ∗ = max{∆0,∆
′
0}, ∆0 = diam(K ), ∆′0 = diam(K ′).
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Testing Separation of Convex Sets

Definition
Suppose δ∗ > 0. We say a witness pair (p,p′) ∈ K × K ′ is an
ε-approximation solution if

d(p,p′)− δ∗ ≤ εd(p, v), for some v ∈ K ,

or

d(p,p′)− δ∗ ≤ εd(p′, v ′), for some v ′ ∈ K ′.

Definition
Suppose δ∗ > 0. We say a pair of hyperplanes (H,H ′) supports
(K ,K ′), if they are parallel, H supports K and and H ′ supports K ′.
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Testing Separation of Convex Sets

Definition
Suppose δ∗ > 0. We say a witness pair (p,p′) ∈ K × K ′ gives an
ε-approximate supporting hyperplane, if it is an ε-approximate solution
and there exists a pair or supporting hyperplane (H,H ′), parallel to the
orthogonal bisecting hyperplane of (p,p′), satisfying

δ∗ − d(H,H ′) ≤ εd(p, v), for some v ∈ K ,

or
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Triangle Algorithm II (Start With a Witness Pair)

Given a witness pair (p,p′) ∈ K × K ′, it computes an ε-approximate
solution, i.e. such that d(p,p′) approximates δ∗ = d(K ,K ′).

Since (p,p′) is a witness-pair, there is no pivot for p, or a pivot for p′.

However, if d(p,p′) does not sufficiently approximate δ∗, we will make
use of weak-pivot, to defined.
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Algorithm for Approximation of Distance

1
2δ − δv ′1

2δ − δv δv δv ′

ρ′

HvHv ′

p p′

v H

v ′
ρ

o

Figure: Depiction of the orthogonal bisector hyperplane H to pp′ and parallel
supporting hyperplanes Hv and Hv ′ that separate K and K ′.

δv + δv ′ = d(Hv ,Hv ′) < δ∗ < d(p,p′).
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Algorithm for Approximation of Distance

Theorem

Suppose (p,p′) ∈ K ×K ′ is a witness pair. Let the orthogonal bisecting
hyperplane to the line pp′ be H = {x : hT x = (p − p′)T x = a}. Let
v = argmin{hT x : x ∈ K}, v ′ = argmax{hT x : x ∈ K ′},

Hv = {x : hT x = hT v}, Hv ′ = {x : hT x = hT v ′}.

Then Hv and Hv ′ are supporting hyperplane to K and K ′, respectively.

Also, if δv = d(v ,H), δv ′ = d(v ′,H), δ = δv + δv ′ , we have

d(Hv ,Hv ′) = δ =
hT v − hT v ′

‖h‖
,

δ ≤ δ∗ ≤ δ = d(p,p′).
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Triangle Algorithm II

Definition
Given a witness pair (p,p′) ∈ K × K ′, let H be the orthogonal bisecting
hyperplane of pp′. We shall say v ∈ K is a weak p′-pivot for p if

d(p,H) > d(v ,H).

Similarly, we shall say v ′ ∈ K ′ is a weak p-pivot for p′ if

d(p′,H) > d(v ′,H).

Hp p′

v

Hv

Figure: v is a weak p′-pivot for p, but not a p′-pivot.
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Triangle Algorithm II

Theorem
Let

∆0 = diam(K ), ∆′0 = diam(K ′),

ρ∗ = max{∆0,∆
′
0}.

The total arithmetic complexity of Triangle Algorithm II is

O
(

T
(
ρ∗
δ∗ε

)2

ln
ρ∗
δ∗

)
.

In particular, when K or K ′ is a singleton we have

O
(

T
(
ρ∗
δ∗ε

)2)
.
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Triangle Algorithm II

Triangle Algorithm II begins with a witness pair (p0,p′0). However, in
subsequent iterations the pair (pk ,p′k ) ∈ K × K ′ may or many not be a
witness pair.
Thus, the algorithm requires searching for a weak-pivot or a pivot to re-
duce the gap δk = d(pk ,p′k ) until the desired approximation is attained.
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Summary of Triangle Algorithms I and II

Let T be the worst-case complexity of computing a pivot for a point in K ,
or K ′. The total number of arithmetic operations in Triangle Algorithm I
to get an ε-approximate solution when δ∗ = 0, or a witness pair is

O
(

T
1
ε2

)
.

The total number of arithmetic operations in Triangle Algorithm II to get
an ε-approximate solution to δ∗ is

O
(

T
(
ρ∗
δ∗

)2)
.

And to get and ε-approximate supporting hyperplane is

O
(

T
(
ρ∗
δ∗

1
ε

)2

ln
ρ∗
δ∗

)
.
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Special Applications and Extensions

When K = conv(V ), V = {v1, . . . , vn}, K ′ = conv(V ′),
V ′ = {v ′1, . . . , v ′n′}). In particular, when one set is a single point.
This includes applications such as SVM. In this case

T = O(m(n + n′)), with preprocessing T = O(m + max{n,n′}).

CS Masters Thesis, Mayank Gupta, 2015-1016, extensive
computation and comparison with sequential minimal optimization
(SMO). The results are very good! Article to be released in near
future.

Applications in non-convex optimization.
Applications in combinatorial and graph problems.
Applications in conic programming.
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Approximation of An NP-Complete Problem

Decision Problem: Given a symmetric n×n matrix Q, does there exist
x ∈ S = {x : eT x = 1, x ≥ 0} such that xT Qx = 0?

This problem is NP-complete.

Let Z = {x : xT Qx = 0 : xT x ≤ 1}.

Let K = conv(Z ).

Let K ′ = S = {x : eT x = 1, x ≥ 0}.

Using the algorithmic separating hyperplane theorem in the corre-
sponding Triangle Algorithm, we can give a fully polynomial-time ap-
proximation scheme to either separate S from conv(Z ), hence proving
that either Z ∩ S is empty,

or to give an approximate point in conv(Z ) ∩ S.

In particular, in the later case when Z is convex, the algorithm gives an
approximate zero of Q in S.
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• “An Algorithmic Separating Hyperplane Theorem and Its Application,” 2014,
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• Solving Linear System of Equations Via A Convex Hull Algorithm, http://arxiv.org/abs/1210.7858
• On the Triangle Algorithm for Convex Hull Membership, 23rd Fall Workshop on Computational
Geometry, City College of New York, Oct 25, 2013, with Michael Saks (2-page abstract).
• Experiments with the Triangle Algorithm for Linear Systems, 23rd Fall Workshop on Computa-
tional Geometry, City College of New York, Oct 25, 2013, with Thomas Gibson (2-page abstract).
• Experimental Study of the Convex Hull Decision Problem via a New Geometric Algorithm, 23rd
Fall Workshop on Computational Geometry, City College of New York, Oct 25, 2013, with Meng
Li. (2-page abstract).
• “Randomized triangle algorithms for convex hull membership, 2-page Extended Abstract in 24nd
Annual Fall Workshop on Computational Geometry, Connecticut, 2014.
• A Geometric Polynomial-Time Algorithm for Bipartite Perfect Matching Problem, forthcoming.
• An Approximation to an NP-Complete Problem via The Triangle Algorithm, forthcoming.

• Finally, there remain many open problems.

(Rutgers) Triangle Algorithm July 26, 2016 57 / 57


