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Euclidean distance matrices

Theorem (Schoenberg, 1935)

M is an Euclidean distance matrix if and only if diag(M) = 0 and
[M1,i + M1,j −Mi,j ]2≤i,j≤n is positive semidefinite.

Allows us to express certain distance geometry problems as semidefinite
programs

→ Which convex sets can be “represented” using semidefinite programming?
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Semidefinite representation

Feasible set of a semidefinite program:{
X � 0 (positive semidefinite constraint)

A(X ) = b (linear constraints)

Convex set C has a semidefinite representation of size d if:

C = π(Sd
+ ∩ L)

Sd
+ = d × d positive semidefinite matrices

L = affine subspace

π = linear map

Sd
+L

π

C
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Examples of semidefinite representations

Examples:

EDMn+1 has SDP representation of size n

Disk in R2 has a SDP representation of size 2

x2 + y2 ≤ 1 ⇔
[

1− x y
y 1 + x

]
� 0

Square [−1, 1]2 has a SDP representation of size 3

[−1, 1]2 =

(x1, x2) ∈ R2 : ∃u ∈ R

 1 x1 x2

x1 1 u
x2 u 1

 � 0


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Existential question vs. complexity question

Existential question: Which convex sets admit a semidefinite
representation?

Helton-Nie conjecture: Any convex set defined using polynomial
inequalities has a semidefinite representation

Complexity question: Given a convex set C , what is smallest semidefinite
representation of C?

→ Positive semidefinite rank
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Importance of lifting

Ben-Tal and Nemirovski: Regular polygon with 2n sides can be described using
only ≈ n inequalities!

Lift = “inverse” of elimination (cf. Pablo’s talk)
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Lifts of polytopes and ranks of matrices

P polytope in Rd

Slack matrix of P: Nonnegative matrix M of size #facets(P)×#vertices(P):

Mi ,j = hi − gT
i vj

where

gT
i x ≤ hi are the facet inequalities of P

vj are the vertices of P

gTi x ≤ hi

hi − gTi vj

vj
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Positive semidefinite rank

M ∈ Rp×q with nonnegative entries

Positive semidefinite factorization:

Mij = Tr(AiBj), where Ai ,Bj ∈ Sk
+

rankpsd(M) = size of smallest psd factorization

Ai

Bj

Tr(AiBj)
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Example

Consider Mij = (i − j)2 for 1 ≤ i , j ≤ n:

M =


0 1 4 9 16
1 0 1 4 9
4 1 0 1 4
9 4 1 0 1

16 9 4 1 0



rankpsd(M) = 2 (independent of n): Let

Ai =

[
1 i
i i2

]
=

[
1
i

] [
1
i

]T
and Bj =

[
j2 −j
−j 1

]
=

[
−j
1

] [
−j
1

]T
.

One can verify that Mij = Tr(AjBj).
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SDP representations and psd rank

Theorem (Gouveia, Parrilo, Thomas, 2011)

Let P be polytope with slack matrix M. The smallest semidefinite
representation of P has size exactly rankpsd(M).

P
Polytope Slack matrix

M
rankpsd(M)

Works for more generally for convex sets (slack matrix is infinite)
Proof based on duality for semidefinite programming

Example:

Slack matrix of square [−1, 1]2 has
positive semidefinite rank 3.
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Properties of rankpsd

Satisfies the usual properties one would expect for a rank (invariance under
scaling, subadditivity, etc.)

[Fawzi, Gouveia, Parrilo, Robinson, Thomas, Positive semidefinite rank, Math. Prog.,

2015]

Connection with problems in information theory

NP-hard to compute [Shitov, 2016]
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Linear programming (LP) lifts

Polytope P has LP lift of size d if it can be written as

P = π(Rd
+ ∩ L)

where L affine subspace and π linear map

Nonnegative factorization of M of size d :

Mij = aTi bj where ai , bj ∈ Rd
+

rank+(M) := size of smallest nonnegative factorization of M

Theorem (Yannakakis, 1991)

Let P be polytope with slack matrix M. The smallest LP lift of P has size
exactly rank+(M).
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LP lifts vs. SDP lifts

Example The square P = [−1, 1]2:

SDP lifts: P has an SDP lift of size 3:

[−1, 1]2 =

(x1, x2) ∈ R2 : ∃u ∈ R

 1 x1 x2

x1 1 u
x2 u 1

 � 0



SDP lift of size 3.

LP lifts: Can show that any LP lift of [−1, 1]2 must have size 4.

Stable set polytope for perfect graphs: SDP lift of linear size (Lovász) but no
currently known LP lift of polynomial size
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LP lifts vs. SDP lifts

Question: How powerful are SDP lifts compared to LP lifts?

Theorem (Fawzi, Saunderson, Parrilo, 2015)

There is a family of polytopes Pd ⊂ R2d such that

rankpsd(Pd)

rank+(Pd)
≤ O

(
log d

d

)
→ 0.

Pd = trigonometric cyclic polytope (generalization of regular polygons)

Construction uses tools from Fourier analysis + sparse sums of squares
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Conclusion

Semidefinite representations of convex sets

Connection with matrix factorization

Linear programming vs. semidefinite programming lifts for polytopes

For more information: [Fawzi, Gouveia, Parrilo, Robinson, Thomas,
Positive semidefinite rank, Math. Prog., 2015]

Thank you!
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