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Every configuration p = (p*,...,p") in R" defines EDM
D = (d; = ||p’ — p!||?). For example,

of 01422

10111

0020 D=14 10 2 2

1 3 2120 4

0 212 40
4

Suppose a subset E of the entries of D is given. Does E uniquely
determine D?

01422
10111
D=|410 2 2
21 2 0 x
21 2 x 0

forall 0 < x < 4.
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» Given a symmetric partial matrix A and a graph G. Let
a; : {i,j} € E(G) be specified, or fixed, and a; : {/,j} & E(G)
be unspecified, or free.

» D is an EDM completion of A if D is an EDM and dj; = aj; for
all {i,j} € E(G).

» A free entry dj is universally linked if dj is constant in all EDM
completions of A.

» If all free entries dj; are universally linked, then D is the unique
completion of A.

» The set {d; =: {i,j} & E(G) for all EDM completions D } is
called Cayley configuration space (CCS) of A.

» CCS is a spectrahedron, i.e., intersection of psd cone with an
affine space.
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014 2 2
10111
Consider D=1| 4 1 0 2 2 |. Let the free elements of D be
2 1 2 0 4
21 2 40

{1,4},{3,5} and {4,5}.

>

>

The CCS of D is d14:2, d35 =2 and 0< d45 <4,

Thus dy4 and dss are universally linked, while dys is not
universally linked.

The embedding dimension of EDM D = dim of affine span of
its generating points.

emb dim of D for dys = 0 or 4 is 2, while it is 3 for 0 < ds5 < 4.
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» Think of the edges of G as rigid bars, and of the nodes of G as
joints. Thus we have a bar-and-joint framework (G, p).

» Note that this (G, p) folds across the {1,3} edge.
» The CCS of Dis y14 =0, y35 = 0 and —4 < yu5 < 0.

» {k, I} is universally linked iff its CCS is contained in the
hyperplane y,; = 0 in R™, m = num. of missing edges of G.
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Motions

» Given framework (G, p), let H be the adjacency matrix of G.

» (G, p) is universally rigid if Ho D, = H o D, implies that
D, = D,. (o) denotes Hadamard product.

» (G, p) is dimensionally rigid if A (G,q): Ho D, = Ho D, and
embedd (D,) > embedd (D,).

» (G, p) has an affine motion if 3 (G, q): (i) Ho D, = Ho Dy,
(i) D, # Dy and (iii) ¢ = Ap' + bfori=1,...,n.
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Geometric Characterizations

v

Thus (G, p) is universally rigid iff its CCS = {0}.

Thus (G, p) is dimensionally rigid iff 0 is in relint of its CCS.
Thus (G, p) has no affine motion iff affine hull of minimal
face(0) = {0}.

Theorem [A 2005] (G, p) is universally rigid iff it is both
dimensionally rigid and has no affine motions.
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Obviously
(G, p) is not dimensionally rigid. It has an affine motion, and neither
{1,3} nor {2,4} is universally linked.
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Stress Matrix 2

» A stress of framework (G, p) is w : E(G) — R such that

ZWU(Pi—Pj)ZO-

» A stress matrix Q of framework (G, p) is:

—wy if {i.j} € £(G)
Q;=¢{0 if {i,j} € E(G)

D okiikeE@G Wik Ti=]

» If (G, p) is r-dimensional, then rank Q < n—1—r.

» (Q is optimal dual variable in a certain Semidefinite
programming problem.
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» Theorem[A. '05, Connelly '82]: Let Q be a stress matrix of
r-dimensional framework (G, p), r < n—2. If Q is psd and of
rank n — r — 1, then (G, p) is dimensionally rigid.

» Theorem[A and Yinyu Ye '13]: Let Q be a stress matrix of
r-dimensional framework (G, p). r < n— 2. If rank
Q=n—r—1andif pisin general position, then (G, p) has
no affine motion.

» Theorem|[A and Nguyen '13]: Let Q be a stress matrix of
r-dimensional framework (G, p). r < n—2. If rank
Q =n—r—1 and if for each vertex i, the set
{p'} U{p/ : {i,j} € E(G)} is in general position, then (G, p)
has no affine motion.
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Main Results

Let E¥: 1 in ijth and jith entries and Os elsewhere.
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Let Q be non-zero psd stress matrix of r-dimensional (G, p),
r<n-—2.

Theorem [A. '16] If A yi # 0:

Q) yEN =0,

{iJY€E(G)

v

then {k, I} is universally linked.
Theorem [A. '16] If A y=(y;) # 0:

{ij}eE(G)

v

then (G, p) is universally rigid.
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Characterizing EDMs

» e is the vector of all 1s.

» Theorem[Schoenberg '35, Young and Householder '38]: Let D
be a real symmetric matrix with zero diagonal. Then D is EDM

iff
1 ee” ee’
D)=—=(——)D(I——) =0
T(D) = —5(1 = S)p( = =) =
Moreover, the embedding dimension of D is equal to rank
T(D).

» B =T(D) is the Gram matrix of the generating points of D.

» B is not invariant under translations. Thus impose Be = 0.
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Characterizing CCS

» Let V be nx (n—1) matrixx Vie=0and VTV = .
» Let X = VTBV = —VDVT/2 0or B= VXVT. Thus X is called
the projected Gram matrix of D.

» Thus there is a one-to-one correspondence between n x n
EDMs D and psd matrices of order n — 1.

» The CCS of (G, p) is given by

{y=0y): X+ >  yM =0}
i }EE(G)

where X is the projected Gram matrix of (G, p) and MYs are
universal matrices.
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Facial Structure of CCS

> Let X(y) = X + 2.0 1v¢6(0) yiMY. Thus CCS is given by
F={y:X(y) = 0}.
» Theorem: Let U be the matrix whose columns form an

orthonormal basis of null (X (y)). Let Q be a non-zero psd
stress matrix of (G, p). Then

minface(y) = {x &€ F :null(X(y))C null(X(x))}
relint(minface)(y) = {x & F :null(X(y))= null(X(x))}
aff(minface)(y) = {x € R": X(x)U =0}

QVX(x)VT = Oforall xe F.
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A; =0 for all {i,j} € E(G). Then A satisfies SAP if Y =0 is
the only symmetric matrix satisfying: (i) Y; =0 if i =j or
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» Thus our sufficient condition for universal rigidity is equivalent
to the assertion that stress matrix € satisfies SAP.
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» Given graph G, let rank Q = k and let
Sk = {Ais symm : rank A = k}. Further, let 7 be the
tangent space to Sy at €.

» Let £L={Aissymm: A; =0if{i,j} € E(G)}.

» Thus Q € S N L. We say Sy transversally intersects £ at 2 if
Ta NS = {0}.

» Thus our sufficient condition for universal rigidity is equivalent
to the assertion that Sy transversally intersects £ at Q.
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» Consider the pair of dual SDPs:

(P) max, 0Ty
subject to  X(y) =X+ yiMi =0
(D) miny trace(XY)
subject to trace(MYY) =10
Y = 0.

» Let £' = span {M7: {i,j} € E(G)} and let Ty be the tangent
space at Y to the set of symm matrices of order n — 1.

» Y is non-degenerate if 75 N L' = {0}.

» Theorem[Alizadeh et al '97]: If (D) has an optimal
non-degenerate Y, then y in (P) is unique.



Thank You



