Universal Linkage and the Uniqueness of EDM Completions

A.Y. Alfakih

Dept of Math and Statistics University of Windsor

DIMACS DGTA16, July 2016

Every configuration $p = (p^1, ..., p^n)$ in \mathbb{R}^n defines EDM $D = (d_{ij} = ||p^i - p^j||^2)$. For example, •5

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

.

.

Eve	ery cor	nfigurat	ion $p = (p^1,$	\ldots, p^n) in 1	\mathbb{R}^n defi	nes	ED	М			
<i>D</i> =	= (<i>d</i> _{ij} ●5	$= p^{i} $	$-p^{j} ^{2}$). For	example,	<i>D</i> =	0	1	4	2	2 -	1
	0				1	0	1	1	1		
•	•2	•			D =	4	1	0	2	2	
T		3			2	1	2	0	4		
	• 4					2	1	2	4	0_	

Suppose a subset E of the entries of D is given. Does E uniquely determine D?

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

.

Every configuration $p = (p^1, ..., p^n)$ in \mathbb{R}^n defines EDM $D = (d_{ij} = ||p^i - p^j||^2)$. For example, $0 = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$

Suppose a subset E of the entries of D is given. Does E uniquely determine D?

.

$$D = \begin{bmatrix} 0 & 1 & 4 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & \\ 1 & 2 & 0 & \\ 2 & 1 & & 0 \end{bmatrix}$$

Every configuration $p = (p^1, \ldots, p^n)$ in \mathbb{R}^n defines EDM $D = (\underset{\bullet}{d_{ij}} = ||p^i - p^j||^2).$ For example, $D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$ $\bullet_1 \bullet_2^2 \bullet_3$ 0

Suppose a subset E of the entries of D is given. Does E uniquely determine D?

Suppose a subset *E* of the entries of *D* is given. Does *E* uniquely determine *D*?
• • 2 • 3
$$D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 0 \\ 2 & 1 & 2 & 0 & 0 \end{bmatrix}$$
.

Every configuration $p = (p^1, \dots, p^n)$ in \mathbb{R}^n defines EDM $D = (d_{ij} = ||p^i - p^j||^2)$. For example, $0 = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$

Suppose a subset E of the entries of D is given. Does E uniquely determine D?

$$D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & x \\ 2 & 1 & 2 & x & 0 \end{bmatrix}.$$

for all $0 \le x \le 4$.

Given a symmetric partial matrix A and a graph G. Let a_{ij} : {i,j} ∈ E(G) be specified, or fixed, and a_{ij} : {i,j} ∉ E(G) be unspecified, or free.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Given a symmetric partial matrix A and a graph G. Let a_{ij} : {i,j} ∈ E(G) be specified, or fixed, and a_{ij} : {i,j} ∉ E(G) be unspecified, or free.
- ▶ D is an EDM completion of A if D is an EDM and d_{ij} = a_{ij} for all {i, j} ∈ E(G).

- Given a symmetric partial matrix A and a graph G. Let a_{ij} : {i, j} ∈ E(G) be specified, or fixed, and a_{ij} : {i, j} ∉ E(G) be unspecified, or free.
- ► D is an EDM completion of A if D is an EDM and d_{ij} = a_{ij} for all {i, j} ∈ E(G).
- ► A free entry d_{ij} is universally linked if d_{ij} is constant in all EDM completions of A.

- Given a symmetric partial matrix A and a graph G. Let a_{ij} : {i,j} ∈ E(G) be specified, or fixed, and a_{ij} : {i,j} ∉ E(G) be unspecified, or free.
- ▶ D is an EDM completion of A if D is an EDM and d_{ij} = a_{ij} for all {i, j} ∈ E(G).
- ► A free entry d_{ij} is universally linked if d_{ij} is constant in all EDM completions of A.
- ► If all free entries d_{ij} are universally linked, then D is the unique completion of A.

- Given a symmetric partial matrix A and a graph G. Let a_{ij} : {i,j} ∈ E(G) be specified, or fixed, and a_{ij} : {i,j} ∉ E(G) be unspecified, or free.
- ▶ D is an EDM completion of A if D is an EDM and d_{ij} = a_{ij} for all {i, j} ∈ E(G).
- ► A free entry d_{ij} is universally linked if d_{ij} is constant in all EDM completions of A.
- ► If all free entries d_{ij} are universally linked, then D is the unique completion of A.
- The set {d_{ij} =: {i, j} ∉ E(G) for all EDM completions D } is called Cayley configuration space (CCS) of A.

- Given a symmetric partial matrix A and a graph G. Let a_{ij} : {i,j} ∈ E(G) be specified, or fixed, and a_{ij} : {i,j} ∉ E(G) be unspecified, or free.
- ▶ D is an EDM completion of A if D is an EDM and d_{ij} = a_{ij} for all {i, j} ∈ E(G).
- ► A free entry d_{ij} is universally linked if d_{ij} is constant in all EDM completions of A.
- ► If all free entries d_{ij} are universally linked, then D is the unique completion of A.
- The set {d_{ij} =: {i, j} ∉ E(G) for all EDM completions D } is called Cayley configuration space (CCS) of A.
- CCS is a spectrahedron, i.e., intersection of psd cone with an affine space.

Consider
$$D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$$

{1, 4}, {3, 5} and {4, 5}.

. Let the free elements of \boldsymbol{D} be

Consider
$$D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$$
. Let the free elements of D be $\{1,4\}, \{3,5\}$ and $\{4,5\}$.
The CCS of D is $d_{14} = 2$, $d_{35} = 2$ and $0 \le d_{45} \le 4$.

Consider
$$D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$$
. Let the free elements of D be $\{1,4\},\{3,5\}$ and $\{4,5\}$.

• The CCS of D is $d_{14} = 2$, $d_{35} = 2$ and $0 \le d_{45} \le 4$.

Thus d₁₄ and d₃₅ are universally linked, while d₄₅ is not universally linked.

Consider
$$D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$$
. Let the free elements of D be $\{1, 4\}, \{3, 5\}$ and $\{4, 5\}$.

• The CCS of D is $d_{14} = 2$, $d_{35} = 2$ and $0 \le d_{45} \le 4$.

- Thus d₁₄ and d₃₅ are universally linked, while d₄₅ is not universally linked.
- The embedding dimension of EDM D = dim of affine span of its generating points.

Consider
$$D = \begin{bmatrix} 0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0 \end{bmatrix}$$
. Let the free elements of D be $\{1, 4\}, \{3, 5\}$ and $\{4, 5\}$.

• The CCS of D is $d_{14} = 2$, $d_{35} = 2$ and $0 \le d_{45} \le 4$.

- Thus d₁₄ and d₃₅ are universally linked, while d₄₅ is not universally linked.
- The embedding dimension of EDM D = dim of affine span of its generating points.
- emb dim of D for $d_{45} = 0$ or 4 is 2, while it is 3 for $0 < d_{45} < 4$.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).

Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).

▶ Note that this (*G*, *p*) folds across the {1,3} edge.

Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).

- ▶ Note that this (*G*, *p*) folds across the {1,3} edge.
- The CCS of D is $y_{14} = 0$, $y_{35} = 0$ and $-4 \le y_{45} \le 0$.

- Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).
- ▶ Note that this (*G*, *p*) folds across the {1,3} edge.
- The CCS of D is $y_{14} = 0$, $y_{35} = 0$ and $-4 \le y_{45} \le 0$.
- ► {k, l} is universally linked iff its CCS is contained in the hyperplane y_{kl} = 0 in ℝ^{m̄}, m̄ = num. of missing edges of G.

• Given framework (G, p), let H be the adjacency matrix of G.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Given framework (G, p), let H be the adjacency matrix of G.

 (G, p) is universally rigid if H ∘ D_p = H ∘ D_q implies that D_p = D_q. (∘) denotes Hadamard product.

- Given framework (G, p), let H be the adjacency matrix of G.
- (G, p) is universally rigid if H ∘ D_p = H ∘ D_q implies that D_p = D_q. (∘) denotes Hadamard product.
- (G, p) is dimensionally rigid if A (G, q): H ∘ D_p = H ∘ D_q and embedd (D_q) > embedd (D_p).

- Given framework (G, p), let H be the adjacency matrix of G.
- (G, p) is universally rigid if H ∘ D_p = H ∘ D_q implies that D_p = D_q. (∘) denotes Hadamard product.
- (G, p) is dimensionally rigid if A (G, q): H ∘ D_p = H ∘ D_q and embedd (D_q) > embedd (D_p).
- (G, p) has an affine motion if ∃ (G, q): (i) H ∘ D_p = H ∘ D_q,
 (ii) D_p ≠ D_q and (iii) qⁱ = Apⁱ + b for i = 1,..., n.

(日) (同) (三) (三) (三) (○) (○)

• Thus (G, p) is universally rigid iff its $CCS = \{0\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Thus (G, p) is universally rigid iff its $CCS = \{0\}$.
- ▶ Thus (G, p) is dimensionally rigid iff 0 is in relint of its CCS.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Thus (G, p) is universally rigid iff its $CCS = \{0\}$.
- ▶ Thus (G, p) is dimensionally rigid iff 0 is in relint of its CCS.

► Thus (G, p) has no affine motion iff affine hull of minimal face(0) = {0}.

- Thus (G, p) is universally rigid iff its $CCS = \{0\}$.
- Thus (G, p) is dimensionally rigid iff 0 is in relint of its CCS.
- ► Thus (G, p) has no affine motion iff affine hull of minimal face(0) = {0}.
- ► Theorem [A 2005] (G, p) is universally rigid iff it is both dimensionally rigid and has no affine motions.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ ● ○ ● ○ ●

(G, p) is not dimensionally rigid. It has an affine motion, and neither $\{1, 3\}$ nor $\{2, 4\}$ is universally linked.

Stress Matrix Ω

▶ A stress of framework (G, p) is $\omega : E(G) \to \mathbb{R}$ such that

$$\sum_j \omega_{ij}(p^i - p^j) = 0.$$

Stress Matrix Ω

▶ A stress of framework (G, p) is $\omega : E(G) \to \mathbb{R}$ such that

$$\sum_{j}\omega_{ij}(p^{i}-p^{j})=0.$$

• A stress matrix Ω of framework (G, p) is:

$$\Omega_{ij} = \begin{cases} -\omega_{ij} & \text{if } \{i,j\} \in E(G) \\ 0 & \text{if } \{i,j\} \in E(\overline{G}) \\ \sum_{k:\{i,k\} \in E(G)} \omega_{ik} & \text{if } i = j \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Stress Matrix Ω

▶ A stress of framework (G, p) is $\omega : E(G) \to \mathbb{R}$ such that

$$\sum_j \omega_{ij}(p^i - p^j) = 0.$$

• A stress matrix Ω of framework (G, p) is:

$$\Omega_{ij} = \begin{cases} -\omega_{ij} & \text{if } \{i,j\} \in E(G) \\ 0 & \text{if } \{i,j\} \in E(\overline{G}) \\ \sum_{k:\{i,k\} \in E(G)} \omega_{ik} & \text{if } i = j \end{cases}$$

< ロ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

• If (G, p) is *r*-dimensional, then rank $\Omega \leq n - 1 - r$.

Stress Matrix Ω

▶ A stress of framework (G, p) is $\omega : E(G) \to \mathbb{R}$ such that

$$\sum_j \omega_{ij}(p^i - p^j) = 0.$$

• A stress matrix Ω of framework (G, p) is:

$$\Omega_{ij} = \begin{cases} -\omega_{ij} & \text{if } \{i,j\} \in E(G) \\ 0 & \text{if } \{i,j\} \in E(\overline{G}) \\ \sum_{k:\{i,k\} \in E(G)} \omega_{ik} & \text{if } i = j \end{cases}$$

- If (G, p) is *r*-dimensional, then rank $\Omega \leq n 1 r$.
- Ω is optimal dual variable in a certain Semidefinite programming problem.

Theorem[A. '05, Connelly '82]: Let Ω be a stress matrix of r-dimensional framework (G, p), r ≤ n − 2. If Ω is psd and of rank n − r − 1, then (G, p) is dimensionally rigid.

- Theorem[A. '05, Connelly '82]: Let Ω be a stress matrix of r-dimensional framework (G, p), r ≤ n − 2. If Ω is psd and of rank n − r − 1, then (G, p) is dimensionally rigid.
- Theorem[A and Yinyu Ye '13]: Let Ω be a stress matrix of r-dimensional framework (G, p). r ≤ n − 2. If rank Ω = n − r − 1 and if p is in general position, then (G, p) has no affine motion.

(日) (同) (三) (三) (三) (○) (○)

- Theorem[A. '05, Connelly '82]: Let Ω be a stress matrix of r-dimensional framework (G, p), r ≤ n − 2. If Ω is psd and of rank n − r − 1, then (G, p) is dimensionally rigid.
- Theorem[A and Yinyu Ye '13]: Let Ω be a stress matrix of r-dimensional framework (G, p). r ≤ n − 2. If rank Ω = n − r − 1 and if p is in general position, then (G, p) has no affine motion.
- Theorem[A and Nguyen '13]: Let Ω be a stress matrix of r-dimensional framework (G, p). r ≤ n 2. If rank
 Ω = n r 1 and if for each vertex i, the set
 {pⁱ} ∪ {p^j : {i,j} ∈ E(G)} is in general position, then (G, p) has no affine motion.

(日) (同) (三) (三) (三) (○) (○)

• Let E^{ij} : 1 in *ij*th and *ji*th entries and 0s elsewhere.

- Let E^{ij} : 1 in *ij*th and *ji*th entries and 0s elsewhere.
- Let Ω be non-zero psd stress matrix of r-dimensional (G, p), r ≤ n − 2.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Let E^{ij} : 1 in *ij*th and *ji*th entries and 0s elsewhere.
- Let Ω be non-zero psd stress matrix of r-dimensional (G, p), r ≤ n − 2.
- Theorem [A. '16] If $\not\exists y_{kl} \neq 0$:

$$\Omega(\sum_{\{i,j\}\in E(\overline{G})}y_{ij}E^{ij})=0,$$

then $\{k, l\}$ is universally linked.

- ▶ Let *E^{ij}*: 1 in *ij*th and *ji*th entries and 0s elsewhere.
- Let Ω be non-zero psd stress matrix of r-dimensional (G, p), r ≤ n − 2.
- Theorem [A. '16] If $\not\exists y_{kl} \neq 0$:

$$\Omega(\sum_{\{i,j\}\in E(\overline{G})}y_{ij}E^{ij})=0,$$

then $\{k, l\}$ is universally linked.

• Theorem [A. '16] If $\not\exists y=(y_{ij}) \neq 0$:

$$\Omega(\sum_{\{i,j\}\in E(\overline{G})}y_{ij}E^{ij})=0,$$

then (G, p) is universally rigid.

Characterizing EDMs

- *e* is the vector of all 1s.
- Theorem[Schoenberg '35, Young and Householder '38]: Let D be a real symmetric matrix with zero diagonal. Then D is EDM iff

$$\mathcal{T}(D) = -\frac{1}{2}(I - \frac{ee^{T}}{n})D(I - \frac{ee^{T}}{n}) \succeq 0.$$

Moreover, the embedding dimension of D is equal to rank $\mathcal{T}(D)$.

Characterizing EDMs

- *e* is the vector of all 1s.
- Theorem[Schoenberg '35, Young and Householder '38]: Let D be a real symmetric matrix with zero diagonal. Then D is EDM iff

$$\mathcal{T}(D) = -\frac{1}{2}(I - \frac{ee^{T}}{n})D(I - \frac{ee^{T}}{n}) \succeq 0.$$

Moreover, the embedding dimension of D is equal to rank $\mathcal{T}(D)$.

- $B = \mathcal{T}(D)$ is the Gram matrix of the generating points of D.
- *B* is not invariant under translations. Thus impose Be = 0.

• Let V be $n \times (n-1)$ matrix: $V^T e = 0$ and $V^T V = I$.

- Let V be $n \times (n-1)$ matrix: $V^T e = 0$ and $V^T V = I$.
- Let $X = V^T B V = -V D V^T / 2$ or $B = V X V^T$. Thus X is called the projected Gram matrix of D.

- Let V be $n \times (n-1)$ matrix: $V^T e = 0$ and $V^T V = I$.
- Let X = V^TBV = −VDV^T/2 or B = VXV^T. Thus X is called the projected Gram matrix of D.

► Thus there is a one-to-one correspondence between n × n EDMs D and psd matrices of order n − 1.

- Let V be $n \times (n-1)$ matrix: $V^T e = 0$ and $V^T V = I$.
- Let X = V^TBV = −VDV^T/2 or B = VXV^T. Thus X is called the projected Gram matrix of D.
- ► Thus there is a one-to-one correspondence between n × n EDMs D and psd matrices of order n − 1.
- ▶ The CCS of (*G*, *p*) is given by

$$\{y = (y_{ij}): X + \sum_{ij:\{i,j\}\notin E(G)} y_{ij}M^{ij} \succeq 0\},\$$

where X is the projected Gram matrix of (G, p) and M^{ij} s are universal matrices.

Facial Structure of CCS

• Let $\mathcal{X}(y) = X + \sum_{ij:\{i,j\}\notin E(G)} y_{ij} M^{ij}$. Thus CCS is given by

$$\mathcal{F} = \{ y : \mathcal{X}(y) \succeq 0 \}.$$

Facial Structure of CCS

► Let $\mathcal{X}(y) = X + \sum_{ij:\{i,j\}\notin E(G)} y_{ij}M^{ij}$. Thus CCS is given by $\mathcal{F} = \{y : \mathcal{X}(y) \succeq 0\}.$

Theorem: Let U be the matrix whose columns form an orthonormal basis of null (X(y)). Let Ω be a non-zero psd stress matrix of (G, p). Then

 $\begin{array}{lll} \min \mathsf{face}(y) &=& \{x \in \mathcal{F} : \operatorname{null}(\mathcal{X}(y)) \subseteq \operatorname{null}(\mathcal{X}(x))\}\\ \mathsf{relint}(\min \mathsf{face})(y) &=& \{x \in \mathcal{F} : \operatorname{null}(\mathcal{X}(y)) = \operatorname{null}(\mathcal{X}(x))\}\\ \mathsf{aff}(\min \mathsf{face})(y) &=& \{x \in \mathbb{R}^{\bar{m}} : \mathcal{X}(x) \cup = 0\}\\ \Omega V \mathcal{X}(x) V^{\mathcal{T}} &=& 0 \text{ for all } x \in \mathcal{F}. \end{array}$

Strong Arnold Property (SAP)

Given graph G, let A be an n × n symmetric matrix A such that A_{ij} = 0 for all {i, j} ∈ E(G). Then A satisfies SAP if Y = 0 is the only symmetric matrix satisfying: (i) Y_{ij} = 0 if i = j or {i, j} ∈ E(G) and (ii) AY = 0.

Strong Arnold Property (SAP)

- Given graph G, let A be an n × n symmetric matrix A such that A_{ij} = 0 for all {i, j} ∈ E(G). Then A satisfies SAP if Y = 0 is the only symmetric matrix satisfying: (i) Y_{ij} = 0 if i = j or {i, j} ∈ E(G) and (ii) AY = 0.
- Thus our sufficient condition for universal rigidity is equivalent to the assertion that stress matrix Ω satisfies SAP.

Given graph G, let rank Ω = k and let
 S_k = {A is symm : rank A = k}. Further, let T_Ω be the tangent space to S_k at Ω.

Given graph G, let rank Ω = k and let
 S_k = {A is symm : rank A = k}. Further, let T_Ω be the tangent space to S_k at Ω.

• Let
$$\mathcal{L} = \{A \text{ is symm: } A_{ij} = 0 \text{ if}\{i, j\} \in E(\overline{G})\}.$$

- Given graph G, let rank Ω = k and let
 S_k = {A is symm : rank A = k}. Further, let T_Ω be the tangent space to S_k at Ω.
- Let $\mathcal{L} = \{A \text{ is symm: } A_{ij} = 0 \text{ if}\{i, j\} \in E(\overline{G})\}.$
- Thus Ω ∈ S_k ∩ L. We say S_k transversally intersects L at Ω if *T*[⊥]_Ω ∩ S[⊥]_k = {0}.

- Given graph G, let rank Ω = k and let
 S_k = {A is symm : rank A = k}. Further, let T_Ω be the tangent space to S_k at Ω.
- Let $\mathcal{L} = \{A \text{ is symm: } A_{ij} = 0 \text{ if}\{i, j\} \in E(\overline{G})\}.$
- Thus $\Omega \in S_k \cap \mathcal{L}$. We say S_k transversally intersects \mathcal{L} at Ω if $\mathcal{T}_{\Omega}^{\perp} \cap S_k^{\perp} = \{0\}.$
- Thus our sufficient condition for universal rigidity is equivalent to the assertion that S_k transversally intersects L at Ω.

(日) (同) (三) (三) (三) (○) (○)

SDP Non-degeneracy (Alizadeh et al '97)

Consider the pair of dual SDPs:

(P) $\max_{y} \quad 0^{T} y$ subject to $\mathcal{X}(y) = X + \sum_{ij:} y_{ij} M^{ij} \succeq 0$ (D) $\min_{Y} \quad \text{trace}(XY)$ subject to $\text{trace}(M^{ij}Y) = 0$ $Y \succeq 0.$

SDP Non-degeneracy (Alizadeh et al '97)

Consider the pair of dual SDPs:

(P)
$$\max_{y} \quad 0^{T} y$$

subject to $\mathcal{X}(y) = X + \sum_{ij:} y_{ij} M^{ij} \succeq 0$
(D) $\min_{Y} \quad \text{trace}(XY)$
subject to $\text{trace}(M^{ij}Y) = 0$
 $Y \succ 0.$

▶ Let $\mathcal{L}' = \text{span} \{ M^{ij} : \{i, j\} \in E(\overline{G}) \}$ and let \mathcal{T}_Y be the tangent space at Y to the set of symm matrices of order n - 1.

SDP Non-degeneracy (Alizadeh et al '97)

Consider the pair of dual SDPs:

(P)
$$\max_{y} \quad 0^{T} y$$

subject to $\mathcal{X}(y) = X + \sum_{ij:} y_{ij} M^{ij} \succeq 0$
(D) $\min_{Y} \quad \text{trace}(XY)$
subject to $\text{trace}(M^{ij}Y) = 0$
 $Y \succeq 0$

▶ Let $\mathcal{L}' = \text{span} \{ M^{ij} : \{i, j\} \in E(\overline{G}) \}$ and let \mathcal{T}_Y be the tangent space at Y to the set of symm matrices of order n - 1.

• Y is non-degenerate if $\mathcal{T}_Y^{\perp} \cap \mathcal{L}' = \{0\}.$

SDP Non-degeneracy (Alizadeh et al '97)

Consider the pair of dual SDPs:

(P)
$$\max_{y} \quad 0^{T} y$$

subject to $\mathcal{X}(y) = X + \sum_{ij:} y_{ij} M^{ij} \succeq 0$
(D) $\min_{Y} \quad \text{trace}(XY)$
subject to $\text{trace}(M^{ij}Y) = 0$
 $Y \succ 0.$

- ▶ Let $\mathcal{L}' = \text{span} \{ M^{ij} : \{i, j\} \in E(\overline{G}) \}$ and let \mathcal{T}_Y be the tangent space at Y to the set of symm matrices of order n 1.
- Y is non-degenerate if $\mathcal{T}_Y^{\perp} \cap \mathcal{L}' = \{0\}.$
- Theorem[Alizadeh et al '97]: If (D) has an optimal non-degenerate Y, then y in (P) is unique.

Thank You

◆□ → < □ → < Ξ → < Ξ → < Ξ → < ○ < ○</p>