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Introduction

Every configuration p = (p1, . . . , pn) in Rn defines EDM
D = (dij = ||pi − pj ||2). For example,

1

2

3

4

5

D =


0 1 4 2 2
1 0 1 1 1
4 1 0 2 2
2 1 2 0 4
2 1 2 4 0


Suppose a subset E of the entries of D is given. Does E uniquely
determine D?

1

2

3

45

D =


0 1 4 2
1 0 1 1 1
4 1 0 2

1 2 0
2 1 0

.

for all 0 ≤ x ≤ 4

.
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EDM Completions

I Given a symmetric partial matrix A and a graph G . Let
aij : {i , j} ∈ E (G ) be specified, or fixed, and aij : {i , j} 6∈ E (G )
be unspecified, or free.

I D is an EDM completion of A if D is an EDM and dij = aij for
all {i , j} ∈ E (G ).

I A free entry dij is universally linked if dij is constant in all EDM
completions of A.

I If all free entries dij are universally linked, then D is the unique
completion of A.

I The set {dij =: {i , j} 6∈ E (G ) for all EDM completions D } is
called Cayley configuration space (CCS) of A.

I CCS is a spectrahedron, i.e., intersection of psd cone with an
affine space.
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Example

Consider D =


0 1 4 2 2
1 0 1 1 1
4 1 0 2 2
2 1 2 0 4
2 1 2 4 0

. Let the free elements of D be

{1, 4}, {3, 5} and {4, 5}.

I The CCS of D is d14 = 2, d35 = 2 and 0 ≤ d45 ≤ 4.

I Thus d14 and d35 are universally linked, while d45 is not
universally linked.

I The embedding dimension of EDM D = dim of affine span of
its generating points.

I emb dim of D for d45 = 0 or 4 is 2, while it is 3 for 0 < d45 < 4.
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Bar-and-Joint Frameworks

1

2

3

4

5

D =


0 1 4 2 + y14 2
1 0 1 1 1
4 1 0 2 2 + y35

2 + y14 1 2 0 4 + y45

2 1 2 + y35 4 + y45 0



I Think of the edges of G as rigid bars, and of the nodes of G as
joints. Thus we have a bar-and-joint framework (G , p).

I Note that this (G , p) folds across the {1, 3} edge.

I The CCS of D is y14 = 0, y35 = 0 and −4 ≤ y45 ≤ 0.

I {k , l} is universally linked iff its CCS is contained in the
hyperplane ykl = 0 in Rm̄, m̄ = num. of missing edges of G .
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Universal Rigidity, Dimensional rigidity and Affine

Motions

I Given framework (G , p), let H be the adjacency matrix of G .

I (G , p) is universally rigid if H ◦ Dp = H ◦ Dq implies that
Dp = Dq. (◦) denotes Hadamard product.

I (G , p) is dimensionally rigid if 6 ∃ (G , q): H ◦ Dp = H ◦ Dq and
embedd (Dq) > embedd (Dp).

I (G , p) has an affine motion if ∃ (G , q): (i) H ◦ Dp = H ◦ Dq,
(ii) Dp 6= Dq and (iii) qi = Api + b for i = 1, . . . , n.
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Geometric Characterizations

I Thus (G , p) is universally rigid iff its CCS = {0}.

I Thus (G , p) is dimensionally rigid iff 0 is in relint of its CCS.

I Thus (G , p) has no affine motion iff affine hull of minimal
face(0) = {0}.

I Theorem [A 2005] (G , p) is universally rigid iff it is both
dimensionally rigid and has no affine motions.
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Example1 2

34

y13

y24

D =


0 4 5 + y13 1
4 0 1 5 + y24

5 + y13 1 0 4
1 5 + y24 4 0



Obviously
(G , p) is not dimensionally rigid. It has an affine motion, and neither
{1, 3} nor {2, 4} is universally linked.
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Stress Matrix Ω

I A stress of framework (G , p) is ω : E (G )→ R such that∑
j

ωij(p
i − pj) = 0.

I A stress matrix Ω of framework (G , p) is:

Ωij =


−ωij if {i , j} ∈ E (G )
0 if {i , j} ∈ E (G )∑

k:{i ,k}∈E(G) ωik if i = j

I If (G , p) is r -dimensional, then rank Ω ≤ n − 1− r .

I Ω is optimal dual variable in a certain Semidefinite
programming problem.
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I Theorem[A. ’05, Connelly ’82]: Let Ω be a stress matrix of
r -dimensional framework (G , p), r ≤ n − 2. If Ω is psd and of
rank n − r − 1, then (G , p) is dimensionally rigid.

I Theorem[A and Yinyu Ye ’13]: Let Ω be a stress matrix of
r -dimensional framework (G , p). r ≤ n − 2. If rank
Ω = n − r − 1 and if p is in general position, then (G , p) has
no affine motion.

I Theorem[A and Nguyen ’13]: Let Ω be a stress matrix of
r -dimensional framework (G , p). r ≤ n − 2. If rank
Ω = n − r − 1 and if for each vertex i , the set
{pi} ∪ {pj : {i , j} ∈ E (G )} is in general position, then (G , p)
has no affine motion.
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Characterizing EDMs

I e is the vector of all 1s.

I Theorem[Schoenberg ’35, Young and Householder ’38]: Let D
be a real symmetric matrix with zero diagonal. Then D is EDM
iff

T (D) = −1

2
(I − eeT

n
)D(I − eeT

n
) � 0.

Moreover, the embedding dimension of D is equal to rank
T (D).

I B = T (D) is the Gram matrix of the generating points of D.

I B is not invariant under translations. Thus impose Be = 0.
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Characterizing CCS

I Let V be n × (n − 1) matrix: V Te = 0 and V TV = I .

I Let X = V TBV = −VDV T/2 or B = VXV T . Thus X is called
the projected Gram matrix of D.

I Thus there is a one-to-one correspondence between n × n
EDMs D and psd matrices of order n − 1.

I The CCS of (G , p) is given by

{y = (yij) : X +
∑

ij :{i ,j}6∈E(G)

yijM
ij � 0},

where X is the projected Gram matrix of (G , p) and M ijs are
universal matrices.
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Facial Structure of CCS

I Let X (y) = X +
∑

ij :{i ,j}6∈E(G) yijM
ij . Thus CCS is given by

F = {y : X (y) � 0}.

I Theorem: Let U be the matrix whose columns form an
orthonormal basis of null (X (y)). Let Ω be a non-zero psd
stress matrix of (G , p). Then

minface(y) = {x ∈ F : null(X (y))⊆ null(X (x))}
relint(minface)(y) = {x ∈ F : null(X (y))= null(X (x))}

aff(minface)(y) = {x ∈ Rm̄ : X (x)U = 0}
ΩVX (x)V T = 0 for all x ∈ F .
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Strong Arnold Property (SAP)

I Given graph G , let A be an n× n symmetric matrix A such that
Aij = 0 for all {i , j} ∈ E (G ). Then A satisfies SAP if Y = 0 is
the only symmetric matrix satisfying: (i) Yij = 0 if i = j or
{i , j} ∈ E (G ) and (ii) AY = 0.

I Thus our sufficient condition for universal rigidity is equivalent
to the assertion that stress matrix Ω satisfies SAP.
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Transversal Intersections

I Given graph G , let rank Ω = k and let
Sk = {A is symm : rank A = k}. Further, let TΩ be the
tangent space to Sk at Ω.

I Let L = {A is symm: Aij = 0 if{i , j} ∈ E (G )}.
I Thus Ω ∈ Sk ∩ L. We say Sk transversally intersects L at Ω if
T ⊥

Ω ∩ S⊥
k = {0}.

I Thus our sufficient condition for universal rigidity is equivalent
to the assertion that Sk transversally intersects L at Ω.
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SDP Non-degeneracy (Alizadeh et al ’97 )

I Consider the pair of dual SDPs:

(P) maxy 0Ty
subject to X (y) = X +

∑
ij : yijM

ij � 0

(D) minY trace(XY )
subject to trace(M ijY ) = 0

Y � 0.

I Let L′ = span {M ij : {i , j} ∈ E (G )} and let TY be the tangent
space at Y to the set of symm matrices of order n − 1.

I Y is non-degenerate if T ⊥
Y ∩ L′ = {0}.

I Theorem[Alizadeh et al ’97]: If (D) has an optimal
non-degenerate Y , then y in (P) is unique.
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