Universal Linkage and the Uniqueness of EDM Completions

A.Y. Alfakih

Dept of Math and Statistics
University of Windsor
DIMACS DGTA16, July 2016

Introduction

Every configuration $p=\left(p^{1}, \ldots, p^{n}\right)$ in \mathbb{R}^{n} defines EDM
$\left.D=\underset{0}{\left(d_{i j}\right.}=\left\|p^{i}-p^{j}\right\|^{2}\right)$. For example,
$\begin{array}{lll}0 & 0^{2} & 0 \\ 1 & & 3\end{array}$
4

Introduction

Every configuration $p=\left(p^{1}, \ldots, p^{n}\right)$ in \mathbb{R}^{n} defines EDM $D=\left(d_{i j}=\left\|p^{i}-p^{j}\right\|^{2}\right)$. For example,
$\begin{array}{ll}\circ & 0^{2} \\ 1 & \\ & \\ & 0 \\ & 4\end{array}$

$$
D=\left[\begin{array}{lllll}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{array}\right]
$$

Introduction

Every configuration $p=\left(p^{1}, \ldots, p^{n}\right)$ in \mathbb{R}^{n} defines EDM $D=\underset{05}{\left(d_{i j}=\left\|p^{i}-p^{j}\right\|^{2}\right) \text {. For example, }, ~\left(p^{2}\right.}$
$\begin{array}{ll}0 & 0^{2} \\ 1 & \\ & \\ & 0 \\ & 4\end{array}$

$$
D=\left[\begin{array}{lllll}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{array}\right]
$$

Suppose a subset E of the entries of D is given. Does E uniquely determine D ?

Introduction

Every configuration $p=\left(p^{1}, \ldots, p^{n}\right)$ in \mathbb{R}^{n} defines EDM $D=\underset{05}{\left(d_{i j}=\left\|p^{i}-p^{j}\right\|^{2}\right) \text {. For example, }, ~\left(p^{1}\right.}$
$\begin{array}{lll}\circ & 0^{2} & 0 \\ 1 & & 3 \\ & & \\ & & 0 \\ & & \end{array}$

$$
D=\left[\begin{array}{lllll}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{array}\right]
$$

Suppose a subset E of the entries of D is given. Does E uniquely determine D ?

$$
D=\left[\begin{array}{lllll}
0 & 1 & 4 & & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & \\
& 1 & 2 & 0 & \\
2 & 1 & & & 0
\end{array}\right]
$$

Introduction

Every configuration $p=\left(p^{1}, \ldots, p^{n}\right)$ in \mathbb{R}^{n} defines EDM $D=\underset{05}{\left(d_{i j}=\left\|p^{i}-p^{j}\right\|^{2}\right) \text {. For example, }, ~\left(p^{1}\right.}$

$$
\begin{array}{lll}
\circ & 0^{2} & \circ \\
1 & & 3 \\
& 0 & \\
& 4 &
\end{array}
$$

$$
D=\left[\begin{array}{lllll}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{array}\right]
$$

Suppose a subset E of the entries of D is given. Does E uniquely determine D ?
$\begin{array}{lll}0 & 0^{2} & 0 \\ 1 & & 3\end{array}$

$$
D=\left[\begin{array}{lllll}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 0 \\
2 & 1 & 2 & 0 & 0
\end{array}\right]
$$

Introduction

Every configuration $p=\left(p^{1}, \ldots, p^{n}\right)$ in \mathbb{R}^{n} defines EDM $D=\underset{05}{\left(d_{i j}=\left\|p^{i}-p^{j}\right\|^{2}\right) \text {. For example, }, ~\left(p^{1}\right.}$
$\begin{array}{lll}\circ & 0^{2} & 0 \\ 1 & & 3 \\ & & \\ & & 0 \\ & & \end{array}$

$$
D=\left[\begin{array}{lllll}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & 4 \\
2 & 1 & 2 & 4 & 0
\end{array}\right]
$$

Suppose a subset E of the entries of D is given. Does E uniquely determine D ?

$$
D=\left[\begin{array}{lllll}
0 & 1 & 4 & 2 & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2 \\
2 & 1 & 2 & 0 & x \\
2 & 1 & 2 & x & 0
\end{array}\right] .
$$

for all $0 \leq x \leq 4$.

EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{i j}:\{i, j\} \in E(G)$ be specified, or fixed, and $a_{i j}:\{i, j\} \notin E(G)$ be unspecified, or free.

EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{i j}:\{i, j\} \in E(G)$ be specified, or fixed, and $a_{i j}:\{i, j\} \notin E(G)$ be unspecified, or free.
- D is an EDM completion of A if D is an EDM and $d_{i j}=a_{i j}$ for all $\{i, j\} \in E(G)$.

EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{i j}:\{i, j\} \in E(G)$ be specified, or fixed, and $a_{i j}:\{i, j\} \notin E(G)$ be unspecified, or free.
- D is an EDM completion of A if D is an EDM and $d_{i j}=a_{i j}$ for all $\{i, j\} \in E(G)$.
- A free entry $d_{i j}$ is universally linked if $d_{i j}$ is constant in all EDM completions of A.

EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{i j}:\{i, j\} \in E(G)$ be specified, or fixed, and $a_{i j}:\{i, j\} \notin E(G)$ be unspecified, or free.
- D is an EDM completion of A if D is an EDM and $d_{i j}=a_{i j}$ for all $\{i, j\} \in E(G)$.
- A free entry $d_{i j}$ is universally linked if $d_{i j}$ is constant in all EDM completions of A.
- If all free entries $d_{i j}$ are universally linked, then D is the unique completion of A.

EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{i j}:\{i, j\} \in E(G)$ be specified, or fixed, and $a_{i j}:\{i, j\} \notin E(G)$ be unspecified, or free.
- D is an EDM completion of A if D is an EDM and $d_{i j}=a_{i j}$ for all $\{i, j\} \in E(G)$.
- A free entry $d_{i j}$ is universally linked if $d_{i j}$ is constant in all EDM completions of A.
- If all free entries $d_{i j}$ are universally linked, then D is the unique completion of A.
- The set $\left\{d_{i j}=:\{i, j\} \notin E(G)\right.$ for all EDM completions $\left.D\right\}$ is called Cayley configuration space (CCS) of A.

EDM Completions

- Given a symmetric partial matrix A and a graph G. Let $a_{i j}:\{i, j\} \in E(G)$ be specified, or fixed, and $a_{i j}:\{i, j\} \notin E(G)$ be unspecified, or free.
- D is an EDM completion of A if D is an EDM and $d_{i j}=a_{i j}$ for all $\{i, j\} \in E(G)$.
- A free entry $d_{i j}$ is universally linked if $d_{i j}$ is constant in all EDM completions of A.
- If all free entries $d_{i j}$ are universally linked, then D is the unique completion of A.
- The set $\left\{d_{i j}=:\{i, j\} \notin E(G)\right.$ for all EDM completions $\left.D\right\}$ is called Cayley configuration space (CCS) of A.
- CCS is a spectrahedron, i.e., intersection of psd cone with an affine space.

Example

Consider $D=\left[\begin{array}{lllll}0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0\end{array}\right]$. Let the free elements of D be
$\{1,4\},\{3,5\}$ and $\{4,5\}$.

Example

Consider $D=\left[\begin{array}{lllll}0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0\end{array}\right]$. Let the free elements of D be
$\{1,4\},\{3,5\}$ and $\{4,5\}$.

- The CCS of D is $d_{14}=2, d_{35}=2$ and $0 \leq d_{45} \leq 4$.

Example

Consider $D=\left[\begin{array}{lllll}0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0\end{array}\right]$. Let the free elements of D be
$\{1,4\},\{3,5\}$ and $\{4,5\}$.

- The CCS of D is $d_{14}=2, d_{35}=2$ and $0 \leq d_{45} \leq 4$.
- Thus d_{14} and d_{35} are universally linked, while d_{45} is not universally linked.

Example

Consider $D=\left[\begin{array}{lllll}0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0\end{array}\right]$. Let the free elements of D be
$\{1,4\},\{3,5\}$ and $\{4,5\}$.

- The CCS of D is $d_{14}=2, d_{35}=2$ and $0 \leq d_{45} \leq 4$.
- Thus d_{14} and d_{35} are universally linked, while d_{45} is not universally linked.
- The embedding dimension of EDM $D=\operatorname{dim}$ of affine span of its generating points.

Example

Consider $D=\left[\begin{array}{lllll}0 & 1 & 4 & 2 & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2 \\ 2 & 1 & 2 & 0 & 4 \\ 2 & 1 & 2 & 4 & 0\end{array}\right]$. Let the free elements of D be
$\{1,4\},\{3,5\}$ and $\{4,5\}$.

- The CCS of D is $d_{14}=2, d_{35}=2$ and $0 \leq d_{45} \leq 4$.
- Thus d_{14} and d_{35} are universally linked, while d_{45} is not universally linked.
- The embedding dimension of EDM $D=\operatorname{dim}$ of affine span of its generating points.
- emb dim of D for $d_{45}=0$ or 4 is 2 , while it is 3 for $0<d_{45}<4$.

Bar-and-Joint Frameworks

| | $\circ 5$ | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| \circ | \circ^{2} | \circ | $\quad D=\left[\begin{array}{ccccc}0 & 1 & 4 & 2+y_{14} & 2 \\ 1 & 0 & 1 & 1 & 1 \\ 4 & 1 & 0 & 2 & 2+y_{35} \\ 1 & & 3 & 0 & 4+y_{45} \\ & \circ & & y_{14} & 1 \\ 2 & 1 & 2+y_{35} & 4+y_{45} & 0\end{array}\right], ~$ |

Bar-and-Joint Frameworks

$$
D=\left[\begin{array}{ccccc}
0 & 1 & 4 & 2+y_{14} & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2+y_{35} \\
2+y_{14} & 1 & 2 & 0 & 4+y_{45} \\
2 & 1 & 2+y_{35} & 4+y_{45} & 0
\end{array}\right]
$$

- Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).

Bar-and-Joint Frameworks

$$
D=\left[\begin{array}{ccccc}
0 & 1 & 4 & 2+y_{14} & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2+y_{35} \\
2+y_{14} & 1 & 2 & 0 & 4+y_{45} \\
2 & 1 & 2+y_{35} & 4+y_{45} & 0
\end{array}\right]
$$

- Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).
- Note that this (G, p) folds across the $\{1,3\}$ edge.

Bar-and-Joint Frameworks

$$
D=\left[\begin{array}{ccccc}
0 & 1 & 4 & 2+y_{14} & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2+y_{35} \\
2+y_{14} & 1 & 2 & 0 & 4+y_{45} \\
2 & 1 & 2+y_{35} & 4+y_{45} & 0
\end{array}\right]
$$

- Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).
- Note that this (G, p) folds across the $\{1,3\}$ edge.
- The CCS of D is $y_{14}=0, y_{35}=0$ and $-4 \leq y_{45} \leq 0$.

Bar-and-Joint Frameworks

$$
D=\left[\begin{array}{ccccc}
0 & 1 & 4 & 2+y_{14} & 2 \\
1 & 0 & 1 & 1 & 1 \\
4 & 1 & 0 & 2 & 2+y_{35} \\
2+y_{14} & 1 & 2 & 0 & 4+y_{45} \\
2 & 1 & 2+y_{35} & 4+y_{45} & 0
\end{array}\right]
$$

- Think of the edges of G as rigid bars, and of the nodes of G as joints. Thus we have a bar-and-joint framework (G, p).
- Note that this (G, p) folds across the $\{1,3\}$ edge.
- The CCS of D is $y_{14}=0, y_{35}=0$ and $-4 \leq y_{45} \leq 0$.
- $\{k, l\}$ is universally linked iff its CCS is contained in the hyperplane $y_{k l}=0$ in $\mathbb{R}^{\bar{m}}, \bar{m}=$ num. of missing edges of G.

Universal Rigidity, Dimensional rigidity and Affine Motions

- Given framework (G, p), let H be the adjacency matrix of G.

Universal Rigidity, Dimensional rigidity and Affine Motions

- Given framework (G, p), let H be the adjacency matrix of G.
- (G, p) is universally rigid if $H \circ D_{p}=H \circ D_{q}$ implies that $D_{p}=D_{q}$. (०) denotes Hadamard product.

Universal Rigidity, Dimensional rigidity and Affine Motions

- Given framework (G, p), let H be the adjacency matrix of G.
- (G, p) is universally rigid if $H \circ D_{p}=H \circ D_{q}$ implies that $D_{p}=D_{q}$. (o) denotes Hadamard product.
- (G, p) is dimensionally rigid if $\nexists(G, q): H \circ D_{p}=H \circ D_{q}$ and embedd $\left(D_{q}\right)>$ embedd $\left(D_{p}\right)$.

Universal Rigidity, Dimensional rigidity and Affine Motions

- Given framework (G, p), let H be the adjacency matrix of G.
- (G, p) is universally rigid if $H \circ D_{p}=H \circ D_{q}$ implies that $D_{p}=D_{q}$. (o) denotes Hadamard product.
- (G, p) is dimensionally rigid if $\nexists(G, q): H \circ D_{p}=H \circ D_{q}$ and embedd $\left(D_{q}\right)>$ embedd $\left(D_{p}\right)$.
- (G, p) has an affine motion if $\exists(G, q)$: (i) $H \circ D_{p}=H \circ D_{q}$, (ii) $D_{p} \neq D_{q}$ and (iii) $q^{i}=A p^{i}+b$ for $i=1, \ldots, n$.

Geometric Characterizations

- Thus (G, p) is universally rigid iff its $C C S=\{0\}$.

Geometric Characterizations

- Thus (G, p) is universally rigid iff its $C C S=\{0\}$.
- Thus (G, p) is dimensionally rigid iff 0 is in relint of its CCS.

Geometric Characterizations

- Thus (G, p) is universally rigid iff its $C C S=\{0\}$.
- Thus (G, p) is dimensionally rigid iff 0 is in relint of its CCS.
- Thus (G, p) has no affine motion iff affine hull of minimal face $(0)=\{0\}$.

Geometric Characterizations

- Thus (G, p) is universally rigid iff its $C C S=\{0\}$.
- Thus (G, p) is dimensionally rigid iff 0 is in relint of its CCS.
- Thus (G, p) has no affine motion iff affine hull of minimal face $(0)=\{0\}$.
- Theorem [A 2005] (G, p) is universally rigid iff it is both dimensionally rigid and has no affine motions.

 $$
D=\left[\begin{array}{cccc} 0 & 4 & 5+y_{13} & 1 \\ 4 & 0 & 1 & 5+y_{24} \\ 5+y_{13} & 1 & 0 & 4 \\ 1 & 5+y_{24} & 4 & 0 \end{array}\right]
$$

Obviously
(G, p) is not dimensionally rigid. It has an affine motion, and neither $\{1,3\}$ nor $\{2,4\}$ is universally linked.

Stress Matrix Ω

- A stress of framework (G, p) is $\omega: E(G) \rightarrow \mathbb{R}$ such that

$$
\sum_{j} \omega_{i j}\left(p^{i}-p^{j}\right)=0
$$

Stress Matrix Ω

- A stress of framework (G, p) is $\omega: E(G) \rightarrow \mathbb{R}$ such that

$$
\sum_{j} \omega_{i j}\left(p^{i}-p^{j}\right)=0
$$

- A stress matrix Ω of framework (G, p) is:

$$
\Omega_{i j}= \begin{cases}-\omega_{i j} & \text { if }\{i, j\} \in E(G) \\ 0 & \text { if }\{i, j\} \in E(\bar{G}) \\ \sum_{k:\{i, k\} \in E(G)} \omega_{i k} & \text { if } i=j\end{cases}
$$

Stress Matrix Ω

- A stress of framework (G, p) is $\omega: E(G) \rightarrow \mathbb{R}$ such that

$$
\sum_{j} \omega_{i j}\left(p^{i}-p^{j}\right)=0
$$

- A stress matrix Ω of framework (G, p) is:

$$
\Omega_{i j}= \begin{cases}-\omega_{i j} & \text { if }\{i, j\} \in E(G) \\ 0 & \text { if }\{i, j\} \in E(\bar{G}) \\ \sum_{k:\{i, k\} \in E(G)} \omega_{i k} & \text { if } i=j\end{cases}
$$

- If (G, p) is r-dimensional, then rank $\Omega \leq n-1-r$.

Stress Matrix Ω

- A stress of framework (G, p) is $\omega: E(G) \rightarrow \mathbb{R}$ such that

$$
\sum_{j} \omega_{i j}\left(p^{i}-p^{j}\right)=0
$$

- A stress matrix Ω of framework (G, p) is:

$$
\Omega_{i j}= \begin{cases}-\omega_{i j} & \text { if }\{i, j\} \in E(G) \\ 0 & \text { if }\{i, j\} \in E(\bar{G}) \\ \sum_{k:\{i, k\} \in E(G)} \omega_{i k} & \text { if } i=j\end{cases}
$$

- If (G, p) is r-dimensional, then rank $\Omega \leq n-1-r$.
- Ω is optimal dual variable in a certain Semidefinite programming problem.
- Theorem[A. '05, Connelly '82]: Let Ω be a stress matrix of r-dimensional framework $(G, p), r \leq n-2$. If Ω is psd and of rank $n-r-1$, then (G, p) is dimensionally rigid.
- Theorem[A. '05, Connelly '82]: Let Ω be a stress matrix of r-dimensional framework $(G, p), r \leq n-2$. If Ω is psd and of rank $n-r-1$, then (G, p) is dimensionally rigid.
- Theorem[A and Yinyu Ye '13]: Let Ω be a stress matrix of r-dimensional framework $(G, p) . r \leq n-2$. If rank $\Omega=n-r-1$ and if p is in general position, then (G, p) has no affine motion.
- Theorem[A. '05, Connelly '82]: Let Ω be a stress matrix of r-dimensional framework $(G, p), r \leq n-2$. If Ω is psd and of rank $n-r-1$, then (G, p) is dimensionally rigid.
- Theorem[A and Yinyu Ye '13]: Let Ω be a stress matrix of r-dimensional framework $(G, p) . r \leq n-2$. If rank $\Omega=n-r-1$ and if p is in general position, then (G, p) has no affine motion.
- Theorem[A and Nguyen '13]: Let Ω be a stress matrix of r-dimensional framework $(G, p) . r \leq n-2$. If rank $\Omega=n-r-1$ and if for each vertex i, the set $\left\{p^{i}\right\} \cup\left\{p^{j}:\{i, j\} \in E(G)\right\}$ is in general position, then (G, p) has no affine motion.

Main Results

- Let $E^{i j}: 1$ in $i j$ th and $j i$ th entries and 0s elsewhere.

Main Results

- Let $E^{i j}: 1$ in $i j$ th and $j i$ th entries and 0s elsewhere.
- Let Ω be non-zero psd stress matrix of r-dimensional (G, p), $r \leq n-2$.

Main Results

- Let $E^{i j}: 1$ in $i j$ th and $j i$ th entries and $0 s$ elsewhere.
- Let Ω be non-zero psd stress matrix of r-dimensional (G, p), $r \leq n-2$.
- Theorem [A. '16] If $\nexists y_{k l} \neq 0$:

$$
\Omega\left(\sum_{\{i, j\} \in E(\bar{G})} y_{i j} E^{i j}\right)=0,
$$

then $\{k, l\}$ is universally linked.

Main Results

- Let $E^{i j}: 1$ in $i j$ th and $j i$ th entries and $0 s$ elsewhere.
- Let Ω be non-zero psd stress matrix of r-dimensional (G, p), $r \leq n-2$.
- Theorem [A. '16] If $\nexists y_{k l} \neq 0$:

$$
\Omega\left(\sum_{\{i, j\} \in E(\bar{G})} y_{i j} E^{i j}\right)=0,
$$

then $\{k, I\}$ is universally linked.

- Theorem [A. '16] If $\nexists \mathrm{y}=\left(y_{i j}\right) \neq 0$:

$$
\Omega\left(\sum_{\{i, j\} \in E(\bar{G})} y_{i j} E^{i j}\right)=0,
$$

then (G, p) is universally rigid.

Characterizing EDMs

- e is the vector of all 1s.
- Theorem[Schoenberg '35, Young and Householder '38]: Let D be a real symmetric matrix with zero diagonal. Then D is EDM iff

$$
\mathcal{T}(D)=-\frac{1}{2}\left(I-\frac{e e^{T}}{n}\right) D\left(I-\frac{e e^{T}}{n}\right) \succeq 0 .
$$

Moreover, the embedding dimension of D is equal to rank $\mathcal{T}(D)$.

Characterizing EDMs

- e is the vector of all 1s.
- Theorem[Schoenberg '35, Young and Householder '38]: Let D be a real symmetric matrix with zero diagonal. Then D is EDM iff

$$
\mathcal{T}(D)=-\frac{1}{2}\left(I-\frac{e e^{T}}{n}\right) D\left(I-\frac{e e^{T}}{n}\right) \succeq 0 .
$$

Moreover, the embedding dimension of D is equal to rank $\mathcal{T}(D)$.

- $B=\mathcal{T}(D)$ is the Gram matrix of the generating points of D.
- B is not invariant under translations. Thus impose $B e=0$.

Characterizing CCS

- Let V be $n \times(n-1)$ matrix: $V^{T} e=0$ and $V^{T} V=I$.

Characterizing CCS

- Let V be $n \times(n-1)$ matrix: $V^{T} e=0$ and $V^{T} V=I$.
- Let $X=V^{T} B V=-V D V^{T} / 2$ or $B=V X V^{T}$. Thus X is called the projected Gram matrix of D.

Characterizing CCS

- Let V be $n \times(n-1)$ matrix: $V^{\top} e=0$ and $V^{\top} V=I$.
- Let $X=V^{T} B V=-V D V^{T} / 2$ or $B=V X V^{T}$. Thus X is called the projected Gram matrix of D.
- Thus there is a one-to-one correspondence between $n \times n$ EDMs D and psd matrices of order $n-1$.

Characterizing CCS

- Let V be $n \times(n-1)$ matrix: $V^{\top} e=0$ and $V^{\top} V=I$.
- Let $X=V^{T} B V=-V D V^{T} / 2$ or $B=V X V^{T}$. Thus X is called the projected Gram matrix of D.
- Thus there is a one-to-one correspondence between $n \times n$ EDMs D and psd matrices of order $n-1$.
- The CCS of (G, p) is given by

$$
\left\{y=\left(y_{i j}\right): X+\sum_{i j:\{i, j\} \notin E(G)} y_{i j} M^{i j} \succeq 0\right\}
$$

where X is the projected Gram matrix of (G, p) and $M^{i j}$ s are universal matrices.

Facial Structure of CCS

- Let $\mathcal{X}(y)=X+\sum_{i j:\{i, j\} \notin E(G)} y_{i j} M^{i j}$. Thus CCS is given by

$$
\mathcal{F}=\{y: \mathcal{X}(y) \succeq 0\} .
$$

Facial Structure of CCS

- Let $\mathcal{X}(y)=X+\sum_{i j:\{i, j\} \notin E(G)} y_{i j} M^{i j}$. Thus CCS is given by

$$
\mathcal{F}=\{y: \mathcal{X}(y) \succeq 0\} .
$$

- Theorem: Let U be the matrix whose columns form an orthonormal basis of null $(\mathcal{X}(y))$. Let Ω be a non-zero psd stress matrix of (G, p). Then

$$
\begin{aligned}
\operatorname{minface}(y) & =\{x \in \mathcal{F}: \operatorname{null}(\mathcal{X}(y)) \subseteq \operatorname{null}(\mathcal{X}(x))\} \\
\operatorname{relint}(\text { minface })(\mathrm{y}) & =\{x \in \mathcal{F}: \operatorname{null}(\mathcal{X}(y))=\operatorname{null}(\mathcal{X}(x))\} \\
\operatorname{aff}(\operatorname{minface})(\mathrm{y}) & =\left\{x \in \mathbb{R}^{\bar{m}}: \mathcal{X}(x) \cup=0\right\} \\
\Omega \vee \mathcal{X}(x) V^{T} & =0 \text { for all } x \in \mathcal{F} .
\end{aligned}
$$

Strong Arnold Property (SAP)

- Given graph G, let A be an $n \times n$ symmetric matrix A such that $A_{i j}=0$ for all $\{i, j\} \in E(\bar{G})$. Then A satisfies SAP if $Y=0$ is the only symmetric matrix satisfying: (i) $Y_{i j}=0$ if $i=j$ or $\{i, j\} \in E(G)$ and (ii) $A Y=0$.

Strong Arnold Property (SAP)

- Given graph G, let A be an $n \times n$ symmetric matrix A such that $A_{i j}=0$ for all $\{i, j\} \in E(\bar{G})$. Then A satisfies SAP if $Y=0$ is the only symmetric matrix satisfying: (i) $Y_{i j}=0$ if $i=j$ or $\{i, j\} \in E(G)$ and (ii) $A Y=0$.
- Thus our sufficient condition for universal rigidity is equivalent to the assertion that stress matrix Ω satisfies SAP.

Transversal Intersections

- Given graph G, let rank $\Omega=k$ and let $\mathcal{S}_{k}=\{A$ is symm : rank $A=k\}$. Further, let \mathcal{T}_{Ω} be the tangent space to \mathcal{S}_{k} at Ω.

Transversal Intersections

- Given graph G, let rank $\Omega=k$ and let $\mathcal{S}_{k}=\{A$ is symm : rank $A=k\}$. Further, let \mathcal{T}_{Ω} be the tangent space to \mathcal{S}_{k} at Ω.
- Let $\mathcal{L}=\left\{A\right.$ is symm: $A_{i j}=0$ if $\left.\{i, j\} \in E(\bar{G})\right\}$.

Transversal Intersections

- Given graph G, let rank $\Omega=k$ and let $\mathcal{S}_{k}=\{A$ is symm : rank $A=k\}$. Further, let \mathcal{T}_{Ω} be the tangent space to \mathcal{S}_{k} at Ω.
- Let $\mathcal{L}=\left\{A\right.$ is symm: $A_{i j}=0$ if $\left.\{i, j\} \in E(\bar{G})\right\}$.
- Thus $\Omega \in \mathcal{S}_{k} \cap \mathcal{L}$. We say \mathcal{S}_{k} transversally intersects \mathcal{L} at Ω if $\mathcal{T}_{\Omega}^{\perp} \cap \mathcal{S}_{k}^{\perp}=\{0\}$.

Transversal Intersections

- Given graph G, let rank $\Omega=k$ and let $\mathcal{S}_{k}=\{A$ is symm : rank $A=k\}$. Further, let \mathcal{T}_{Ω} be the tangent space to \mathcal{S}_{k} at Ω.
- Let $\mathcal{L}=\left\{A\right.$ is symm: $A_{i j}=0$ if $\left.\{i, j\} \in E(\bar{G})\right\}$.
- Thus $\Omega \in \mathcal{S}_{k} \cap \mathcal{L}$. We say \mathcal{S}_{k} transversally intersects \mathcal{L} at Ω if $\mathcal{T}_{\Omega}^{\perp} \cap \mathcal{S}_{k}^{\perp}=\{0\}$.
- Thus our sufficient condition for universal rigidity is equivalent to the assertion that \mathcal{S}_{k} transversally intersects \mathcal{L} at Ω.

SDP Non-degeneracy (Alizadeh et al '97)

- Consider the pair of dual SDPs:

```
(P) \(\max _{y} \quad 0^{T} y\)
subject to \(\mathcal{X}(y)=X+\sum_{i j:} y_{i j} M^{i j} \succeq 0\)
(D) \(\min _{Y} \quad \operatorname{trace}(X Y)\)
    subject to \(\operatorname{trace}\left(M^{i j} Y\right)=0\)
    \(Y \succeq 0\).
```


SDP Non-degeneracy (Alizadeh et al '97)

- Consider the pair of dual SDPs:

$$
\begin{array}{lll}
\text { (P) } \begin{array}{ll}
\max _{y} \\
\text { subject to }
\end{array} & 0^{T} y \\
& \mathcal{X}(y)=X+\sum_{i j} y_{i j} M^{i j} \succeq 0 \\
\text { (D) } \begin{array}{lll}
\min _{Y} & & \operatorname{trace}(X Y) \\
\text { subject to } & \operatorname{trace}\left(M^{i j} Y\right)=0 \\
& Y \succeq 0 .
\end{array} \\
& Y \succeq
\end{array}
$$

- Let $\mathcal{L}^{\prime}=\operatorname{span}\left\{M^{i j}:\{i, j\} \in E(\bar{G})\right\}$ and let \mathcal{T}_{Y} be the tangent space at Y to the set of symm matrices of order $n-1$.

SDP Non-degeneracy (Alizadeh et al '97)

- Consider the pair of dual SDPs:

$$
\begin{array}{lll}
\text { (P) } \begin{array}{ll}
\max _{y} \\
\text { subject to }
\end{array} & 0^{T} y \\
& \mathcal{X}(y)=X+\sum_{i j} y_{i j} M^{i j} \succeq 0 \\
\text { (D) } \begin{array}{lll}
\min _{Y} & & \operatorname{trace}(X Y) \\
\text { subject to } & \operatorname{trace}\left(M^{i j} Y\right)=0 \\
& Y \succeq 0 .
\end{array} \\
& Y \succeq
\end{array}
$$

- Let $\mathcal{L}^{\prime}=\operatorname{span}\left\{M^{i j}:\{i, j\} \in E(\bar{G})\right\}$ and let \mathcal{T}_{Y} be the tangent space at Y to the set of symm matrices of order $n-1$.
- Y is non-degenerate if $\mathcal{T}_{Y}^{\perp} \cap \mathcal{L}^{\prime}=\{0\}$.

SDP Non-degeneracy (Alizadeh et al '97)

- Consider the pair of dual SDPs:

$$
\begin{array}{lll}
\text { (P) } & \max _{y} & 0^{T} y \\
& \text { subject to } & \mathcal{X}(y)=X+\sum_{i j} y_{i j} M^{i j} \succeq 0 \\
\text { (D) } & \min _{Y} & \\
& \text { subject to } & \operatorname{trace}(X Y) \\
& \operatorname{trace}\left(M^{i j} Y\right)=0 \\
& Y \succeq 0 .
\end{array}
$$

- Let $\mathcal{L}^{\prime}=\operatorname{span}\left\{M^{i j}:\{i, j\} \in E(\bar{G})\right\}$ and let \mathcal{T}_{Y} be the tangent space at Y to the set of symm matrices of order $n-1$.
- Y is non-degenerate if $\mathcal{T}_{Y}^{\perp} \cap \mathcal{L}^{\prime}=\{0\}$.
- Theorem[Alizadeh et al '97]: If (D) has an optimal non-degenerate Y, then y in (P) is unique.

Thank You

