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... thanks ...
I take it that my job today is to give you some feeling for what a 
programming language perspective on DP might be.  
As a PL person, I come to the area of DP almost entirely as an outsider: the 
algorithmic techniques and underlying mathematics are very different from 
what I use in my day to day life.  But I do recognize one thing: there are a 
lot of programs here, a lot of proofs about those programs, and a lot of 
common structure to those proofs.  
Let me illustrate with a little story.



In the middle ages, written communication was the sole province 
of a handful of experts.  Writing was hard and every instance of a 
document had to be laboriously copied out by hand.



and thus we seeth that  query Q

 be differentially private.  ∴

Let’s look a little more closely at what this man is writing.  He’s 
just written out a proof that his favorite query is differentially 
private.  But you can see the expression on his face is a bit grim.  
This is because he knows that tomorrow his boss is going to 
suggest a slight variation of the query, and he’s going to have to 
write out his proof all over again.

And he’s not the only person that’s unhappy.



This is the owner of the database.  She’s angry because she has 
just spent all day checking the poor monk’s previous proof and 
convincing herself that it’s safe to run it against her very secret 
database.  

And it’s not just that!  Besides this query...



... she’s got stacks of other queries from other monks that she also needs 
to check!

So clearly, we’ve got a fundamental scaling problem here.  We need to do 
something to help all these people not to have to work so hard to write 
their queries and especially so that the data owner doesn’t have to work so 
hard to check that they are safe!

And when you put it this way, it’s equally clear that this is a job for...



Programming languages, of course!

That is, we need to find good ways of automating this process.



PL for DP
• Goal:  

• Provide tools for expressing queries so that their 
privacy can be mechanically verified

• Tools:  
• compositionality

• little languages

• type systems

• proof checkers

XXXXXXX

... different people focus on different points in the design space.  Note that point 
(1) is truly critical, since otherwise the database owner becomes a bottleneck in 
the whole process.  Point (2) is important too, but if we have an approach that 
makes database queriers have to work a little harder in return for being able to 
express more interesting queries, that might be a good tradeoff.

XXXXX  ...



Dynamic tracking
   - least work
   - medium benefit
   - very flexible

Static analysis
   - little work
   - high benefit
   - less flexible

Machine-checked proof
   - lots of work
   - high benefit
   - very flexible

here’s a map of the territory we’re going to cover



Outline
• Dynamic approaches (PINQ,  Airavat)

• Static checking (Fuzz, DFuzz)

• Machine-checked proof (CertiPriv)

• Other PL work

• Other systems work br
ie

fly
...

... spectrum of levels of ambition...

I’ve tried to cover a lot of ground -- almost certainly more than I 
can get to in an hour -- but I’ve tried to front-load some of the 
most interesting parts, and if I end up skimming some things at 
the end at least they’ll be here in the slides for people to refer to 
later if they want.



Any questions?



Dynamic tracking



PINQ

Frank McSherry, Privacy Integrated Queries, SIGMOD, 2009 
Frank McSherry, Privacy Integrated Queries, Communications of the ACM, 2010
Frank McSherry and Ratul Mahajan, Differentially-Private Network Trace Analysis, SIGCOMM 2010,

... how familiar is it in this community?  (How many people here 
feel they have a good understanding of how PINQ works?)



Privacy INtegrated Queries
• Common platform for differentially private data 

analyses.
• Provides interface to data that looks very much like LINQ (C#’s 

“language-integrated queries”)

• All access through the interface is guaranteed to be differentially 
private

• (Non-privacy-expert) data analysts write arbitrary 
LINQ code against data sets in C#.



var data = new PINQueryable<SearchRecord>(... ...);

var users = from record in data
                 where record.Query == argv[0]
                 groupby record.IPAddress;

Console.WriteLine(argv[0] + “:” + users.Count(0.1));



How it works...
• Each private data source is wrapped in a 
PINQueriable object, which is responsible 
for...
• mediating accesses to the underlying data

• remembering how much privacy budget is left

• deducting from the budget whenever an aggregation 
operator is applied to this PINQueriable object (or 
any other one derived from it)

• denying access once the budget is exhausted



Aggregation operations
• NoisyCount

• arguments: a PINQueriable and a desired accuracy for 
the count

• calculates how much privacy budget must be 
expended to produce an answer with this accuracy
• asks PINQueriable to deduct this much

• returns count plus appropriate Laplace noise 

• Similarly: NoisySum, NoisyAverage, etc.



Transformations
• Each transformation method...

• maps a PINQueriable to one or more new 
PINQueriables... 

• that, when later aggregated, will forward the privacy 
cost to the original object... 

• after applying an appropriate scale factor (i.e., after 
taking account of the sensitivity of the 
transformation).



Transformations
• Where: takes a predicate and returns a new PINQueriable 

wrapping the subset of the data satisfying the predicate

• GroupBy: takes a function mapping records to key values, and 
results in a list of groups: for each observed key, the group of 
records that map to that key

• Join: takes two data sets, key selection functions for each, and 
returns the list of all pairs of elements whose keys match (to 
prevent blowup in the size of the output, each input data set is 
first grouped by its join keys, so that each join key becomes a 
primary key)

• Partition: like GroupBy, but must be explicitly provided with a 
list of candidate keys; its result is a list of PINQueryable 
objects, one for each candidate key, containing the (possibly 
empty) subset of records with this key.



Evaluation
• Advantages of the PINQ approach:

• Simple to implement and explain

• Flexible: wide range of DP queries can be expressed

• Limitation: No static checking ➞ privacy 
budget violations only detected at the end

• may waste time or privacy if a long-running privacy-demanding 
computation needs more budget than is available



Airavat

Roy, Setty, Kilzer, Shmatikov, & Witchel. Airavat: Security and privacy for MapReduce. NSDI, 2010

(Thanks to Roy for slides!)



Airavat

Framework for privacy-preserving MapReduce 
computations with untrusted code.

Airavat is the elephant of the clouds (Indian mythology).

Untrusted 
ProgramProtected

Data

Airavat
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map(k1,v1) ! list(k2,v2)
reduce(k2, list(v2)) ! list(v2)

Data 1

Data 2

Data 3

Data 4

Output

Background: MapReduce
22

Map phase Reduce phase



iPad

Tablet PC

iPad

Laptop

MapReduce example
23

Map(input)!{ if (input has iPad) print (iPad, 1) }

Reduce(key, list(v))!{ print (key + “,”+ SUM(v)) }

(iPad,  2)

Counts no. of
iPads sold

(ipad,1)

(ipad,1)
SUM

Map phase Reduce phase



Programming model
24

MapReduce 
program for 
data mining 

Split MapReduce into untrusted mapper + trusted reducer

Data Data
No need to audit Airavat

Untrusted 
Mapper Trusted 

Reducer

Limited set of stock reducers



Programming model
25

MapReduce 
program for 
data mining 

Data Data
No need to audit Airavat

Untrusted 
Mapper Trusted 

Reducer

Need to confine the mappers !

Guarantee: Protect the privacy of data providers



Airavat mechanisms
26

Prevent leaks through
storage channels like network 
connections, files…

ReduceMap

Mandatory access control Differential privacy 

Prevent leaks through 
the output of the 
computation 

Output

Data



Enforcing differential privacy
27

! Malicious mappers may output values outside the range
! If a mapper produces a value outside the range, it is 

replaced by a value inside the range
!User not notified… otherwise possible information leak

Data 1

Data 2

Data 3

Data 4

Range 
enforcer

Noise

Mapper
Reducer

Range 
enforcer

Mapper

Ensures that code is not more 
sensitive than declared



Static Analysis



Motivation
• Want to know in advance how much privacy 

a query will use 
• Dynamic tracking of privacy depletion gives us no 

well-grounded way of looking at a program and 
predicting its privacy cost 

(either as an author of the program or as a database owner)

XXXXXX   improve this!



Fuzz

Reed and Pierce, Distance makes the types grow stronger: A calculus for differential privacy. ICFP 2010.

See also:  Palamidessi and Stronati: Differential Privacy for Relational Algebra: Improving the Sensitivity 
Bounds via Constraint Systems, QAPL 2012



Fuzz
• Higher-order functional language (ML-like)

• Static type system features
• sensitivity tracking based on linear logic

• internalized type of probability distributions

• Differential privacy guaranteed by 
typechecking





Quick example



Punchline



Metrics

[In “classic DP,” there are basically only two interesting types: real numbers 
and databases. We would like to introduce other base types, and type 
operators to build new types from old ones. To do this, we need to extend 
the notion of “distance” to these new types.]

[Now we can straightforwardly generalize the definition of c-sensitivity to 
arbitrary types.]



Base type



Sets



Scaling



Pairs



Examples



Another metric for pairs

[& lets us combine outputs of c-sensitive functions even if they depend on 
common inputs.]



Functions

...

[We have already established that the presence of !r means that having 1-
sensitive functions suffices to ex- press c-sensitive functions for all c, so we 
need not specially define an entire family of c-sensitive function type 
constructors: ]



Disjoint unions



Booleans



Lists



Sorting



But wait, there’s more...



Probability distributions

[The definition measures how multiplicatively far apart two distributions are 
in the worst case, as is required by differential privacy.]



Typing relation

[To have a hypothesis x :r τ while constructing an ex- pression e is to have 
permission to be r-sensitive to variation in the input x: the output of e is 
allowed to vary by rs if the value substituted for x varies by s. ]

[in the second case the guarantee is that, if each xi varies by si, then the 

result of evaluating e only varies by 
!

i risi. More carefully...]



Metric preservation



DFuzz

Gaboardi, Haeberlen, Hsu, Narayan, and Pierce, Linear Dependent Types for Differential Privacy, 
POPL 2013

Talk
 to 

the 
auth

ors 

this
 week!



Motivation
• Primitives of Fuzz are similar to PINQ in 

expressiveness
• But many useful programs are not understood by the 

typechecker

• Main shortcoming: Cannot track data-
dependent function sensitivity

!"

FIX:  L should be list



Plan
• Enrich type system of Fuzz with indexed types 

capable of tracking such data dependencies

• Ongoing work
• Paper to appear in POPL 2013

• Prototype implementation underway

• Main challenge: Constraint solving

TODO: Figure out what the k-means type means!!





Status
• Prototype implementation underway

• Main issue: constraint solving
• (hopefully using an SMT solver such as Z3)



Machine-Checked Proofs



Limitations (of language-based approaches)

• Each of the above approaches offers a fairly 
limited set of primitive datatypes (lists, 
bags, ...) and differentially private operations 
over them
• The “reasons why” an algorithm is DP must be fairly 

straightforward

• Meanwhile, the algorithms community is 
continually generating clever new DP 
algorithms (often over other forms of data, 
e.g. graphs, streams)...



Possible approaches
• Add new primitives

• Drop the demand that privacy proofs be 
generated automatically
• this leads to...



CertiPriv

Barthe, Köpf, Olmedo, Béguelin, Probabilistic Relational Reasoning for Differential Privacy, POPL 
2012

, 



CertiPriv
• Allows reasoning about approximate quantitative 

properties of randomized computations

• Built from first principles and fully  formalized in COQ 

• Machine-checked proofs of differential privacy

• Correctness of Laplacian and Exponential 
mechanisms

• State-of-art graph and streaming algorithms



DP for Interactive 
Systems

Tschantz, Kaynar, Datta, Formal Verification of Differential Privacy for Interactive Systems, MFPS 2011.

(Thanks to Anupam Datta for slides!)



62

Interac*ve,model

,

Database

queries

sani)zed
answers

queries

Sani)zer

answers

Differen*al,privacy,is,a,defini*on,for,the,func*ons,used,in,the,sani*zer.



System Model
• Bounded Memory
• Cannot represent real numbers
• Need discrete versions of privacy mechanisms

• Interactive I/O with environment
• Answers queries over time
• Also receiving new data points

• Probabilistic



Interaction Model
• Interleaving of data points, queries, and responses
• Mutable set of data points
• Adversary sees interleaving of queries and 

responses
• Differential noninterference generalizes both 

classical DP and classical noninterference from 
information-flow security

• Related to Pan Privacy [Dwork, Naor, Pitassi, Rothblum] 
• Maintains privacy for interactive systems under continual 

observation, even when the system’s internal state is 
observed



Proof Technique
• Use local properties to imply the global 

property of differential privacy
• Use a refinement lemma to relate abstract 

models to concrete implementations
• Decompose verification into two problems:
• Prove that sanitization functions have differential 

privacy using absorbing Markov chains
• Prove that system correctly store data points and use 

sanitization functions using unwinding

• Partially automated



Some other work in PL



Continuity"of Programs

Chaudhuri, Gulwani, and Lublinerman. Continuity analysis of programs. POPL 2010
Chaudhuri, Gulwani, and Lublinerman. Continuity and robustness of programs. CACM, 2012.

• Observes that many everyday programs are
•  continuous (i.e., arbitrarily small changes to their 

inputs only cause arbitrarily small changes to their 
outputs) 

• or Lipschitz continuous (i.e., when their inputs change, 
their outputs change at most proportionally). 

• Proposes a mostly-automatic framework for 
verifying that a program is continuous or 
Lipschitz



DP in Process Calculi"

Xu, Modular Reasoning about Differential Privacy in a Probabilistic Process Calculus, manuscript 2012

• Consider a probabilistic process calculus as a 
specification formalism for concurrent 
systems
• Framework for reasoning about differential privacy in 

this setting

• Illustrate ideas on an anonymity-preservation 
property for (an extension of) the Crowds 
protocol



(Some!) Related Work in 
Systems

Let me turn now to some related work in the systems area, where by 
“systems” I mean work where the main focus is on building 
something that actually works in practice.  Not surprisingly, there is 
a lot to say in this domain, some of it strongly overlapping with the 
PL topics I’ve already mentioned (which makes sense, since 
programming languages also need to be implemented), some not.  I 
can’t talk about everything that’s going on, but let me sketch a few 
pieces of work some of whose authors are here this week.  (Sorry if 
I’ve missed some!)



Covert Channels

Haeberlen,  Pierce, and Narayan, Differential Privacy Under Fire.  USENIX Security, 2011

(Thanks to Andreas Haeberlen for slides!)

Talk
 to 

the 
auth

ors 

this
 week!



noisy sum, foreach r in db, of {
  if (r.name=="Bob" && r.hasRating("Porn"))
    then { 
      loop(1 second);
    };
  return 0
}

b=1;                 

Covert-channel attacks

• The above query...
• ... is differentially private (sensitivity zero!)
• ... takes 1 second longer if the database contains Bob's data
• Result:  Adversary learns private information with certainty!

• Other channels that can be exploited:
• Global state
• Privacy budget (!)

b



The attacks work in practice
• Both PINQ and Airavat are vulnerable

• What went wrong?
• The authors were aware of this attack vector
• Both papers discuss some ideas for possible 

defenses
• But neither system has a defense that is fully 

effective



Threat model

• Too many channels!! Is it hopeless?
• Reasonable assumption: Querier is remote
• This leaves just two channels:

• The actual answer to the query
• The time until the answer arrives

Memory
consumption

Electromagnetic
radiation

Power

Cache
usage

Sound

Light

Query completion
time

Answer

Query

Short-range channels



Approach
• Close the remaining channels completely through a 

combination of systems and PL techniques

• Language design rules out state attacks etc.
• Example: Simply don't allow global variables!

• Special runtime to close the timing channel



Plugging the timing channel
• How to avoid leaking information via query 

completion time?
• Could treat time as an additional output
• But: Unclear how to determine sensitivity

• Approach: Make timing predictable
• If time does not depend on the contents of the 

database, it cannot leak information



Timeouts and default values
• Querier specifies for each “microquery”:

• a timeout T, and
• a default value d

• Each time the microquery processes a row:
• If completed in less than T, wait
• If not yet complete at T, abort and proceed to next 

row



Predictable transactions
• Isolation: Microquery must not interfere with 

the rest of the computation in any way
• E.g. by triggering garbage collector, changing runtime 

state, ...
• Preemptability: Must be able to abort 

microqueries at any time
• Even in the middle of memory allocation, ...

• Bounded deallocation: Must be able to free 
any allocated resources within bounded time
• Example: Microquery allocates lots of memory, 

acquires locks...



TODO

• talk about going to epsilon-delta DP



Dangers of Floating Point

• Duh...

Ilya Mironov, On Significance of the Least Significant Bits For Differential Privacy, CCS 2012

float  ≠  

See ta
lk th

is w
eek!



Distributed DP

Narayan and Haeberlen, Differentially private join queries over distributed databases, OSDI 2012

(Thanks to Andreas for slide!)

See ta
lk th

is w
eek!



© 2012 Andreas Haeberlen DIMACS workshop (October 26, 2012)

DJoin

" A differentially private query processor for 
distributed databases

" First practical solution that supports joins (with 
some restrictions)

" Based on two novel primitives
" BN-PSI-CA: Differentially private set intersection cardinality
" DCR: Denoise-combine-renoise

" Not fast enough for interactive use, but may be 
sufficient for offline data analysis

81



GUPT: Privacy Preserving Data Analysis 
Made Easy

Mohan, Thakurta, Shi, Song, and Culler. GUPT: privacy preserving data analysis made easy. SIGMOD 
2012

Talk
 to 

auth
ors 

this
 week!



Also: a new model of data sensitivity that degrades privacy of data 
over time. Enables efficient allocation of different levels of privacy for 
different applications while guaranteeing an overall constant level of 
privacy and maximizing utility 





Winding Up...



Challenges
• Balancing expressiveness and automation

• Bullet-proof implementations

• Extending the tools with a broader range of 
data structures (graphs, streams) and DP 
algorithms 

•Realistic examples!



Thank you!

 http://privacy.cis.upenn.edu

Any questions?


