Real-time Computation of Data Depth Using the
Graphics Pipeline

Suresh Venkatasubramanian

AT&T Labs—Research

Real-time Computation of Data Depth — p.1/28
ATeT P pih—p

The Interplay Between Analysis and Visualization

® Most methods for computing data depth solve the problem, and then
visualize the answers.

® Much of data analysis is exploratory and interactive.

® Not only do we need fast solutions, we need ways of interacting with
(possibly very large) data.

Can we combine analysis and visualization? I

® Modern video cards have immense untapped computing potential.

® There is a growing trend in graphics and scientific computing to treat the
video card as a fast co-processor.

ATel Real-time Computation of Data Depth — p.2/28

Graphics Cards Can Compute !

A graphics card takes a stream of objects (points, lines, triangles), and renders

them on a screen.

Graphics Card

Each pixel in the screen can be viewed as a small processing unit.

ATeT

glBlend

a=a®dPb

z-test

a = min(a, b)

Real-time Computation of Data Depth — p.3/28

The Pipeline And Data Analysis, or Who Cares ?

The interactive nature of data analysis makes speed a crucial consideration.
Visualization is a key component: the use of graphics cards is natural.
Demonstrable performance gain in areas like scientific computing.

Serious efforts are underway to make the computations robust.

© oo 0 @

The graphics card as a streaming co-processor is becoming common in diverse
areas (graphics,robotics,numerical analysis, physical simulation, geometry).

ATel Real-time Computation of Data Depth — p.4/28

Overview Of This Talk

A brief overview of the graphics pipeline

® How do we write programs for the graphics pipeline ?

® The architecture of a card.

Computing various data depth measures in hardware

® A simple algorithm for location depth.
® I[mplementation in hardware.

® Error Analysis and Performance
>

Extensions to simplicial depth, Oja depth, colored location depth, and other
depth measures.

‘ Joint work with Shankar Krishnan (AT&T) and Nabil Mustafa (Duke) I

ATeT Real-time Computation of Data Depth — p.5/28

The Graphics Pipeline

Real-time Computation of Data Depth — p.6/28
ATST P pi—p

An Example OpenGL Program
#i ncl ude <gl. h>

glLight(..) // Set |ighting
glOrtho(..)// Set viewpoint

// Now draw obj ects
gl Color (1,0, 0);

gl Begi n(G._TRI ANGLES)
gl Vertex(x1,vyl, z1)

gl End()

gcc triangle.cc -1 G

ATel Real-time Computation of Data Depth — p.7/28

Processing Objects in the GPU: Step 1

Viewpoint
Calculations

Vertices |
| Rasterization | —»
. : " . L
Color \ Lighting o
/ and color Fragments
9 | transforms
Lighting I
CPU ' GPU
= The Fixed-Function Pipeline

ATel Real-time Computation of Data Depth — p.8/28

Processing fragments in the GPU: Step 2

Fragments
| |
| - .
| - .

Texture
Memory

4
Stencil Depth

o -Test Test Test
p .* plending

Frame buffer GPU ' Display

ATeT

The Fixed-Function Pipeline

Real-time Computation of Data Depth — p.9/28

So where’s the computation ?

® Stencil test
if (buffer.stencil = K) continue
else drop fragment.

® Depth test
if (frag.depth < buffer.depth) continue
else drop fragment.

#® Blending operations
buffer.color = buffer.color op fragment.color

— General arithmetic and boolean function for blending.
— General comparison functions.
— Convolution and histogramming operators.

Each pixel executes the same program in “parallel” I

Real-time Computation of Data Depth — p.10/28

=

ATel

Programable Pipelines

Viewpoint
Calculations

—» | Rasterization —_—

Lighting
and color
tfransforms

Fragments

Vertex program Fragment program

® Vertex program executes on each vertex.

® Fragment program executes on each fragment.

Real-time Computation of Data Depth — p.11/28
ATsl P pin—p

Why is it so fast?

The processor is highly optimized for streaming operations

On a per-unit area basis, far more computational (ALU) units than a
standard CPU.

Because of FIFO nature of computation, almost non-existent memory latency.

Immense spatial parallelism: each pixel can be thought of as a tiny parallel
processor (all executing the same program).

Cost Model:

K

e o @

=

ATel

Each rendering pass is a “unit-cost” operation.
Reading data back into main memory is expensive.
Objective is to minimize the number of passes.

Akin to standard notions of stream computations.

‘ In each pass, only a fixed set of operations can be performed I

Real-time Computation of Data Depth — p.12/28

Data Depth Computation

Real-time Computation of Data Depth — p.13/28
ATST P pi—p

Halfspace Depth: Primal and Dual

‘ Depth of point in primal = Minimum depth of line in dual I

-

ATeT Real-time Computation of Data Depth — p.14/28

Template For Hardware-Based Approach

1. Construct dual arrangement. For each point in the dual, determine its depth.

2. For each point on a line in the dual, draw it in the primal plane with an
associated value equal to its depth

3. At each point in primal, retain the smallest value encountered.

Real-time Computation of Data Depth — p.15/28

ATel

Step 1: Computing Dual Depth

® Draw trapezoid for each line.
9
9
9

Real-time Computation of Data Depth — p.16/28
ATST P pi—p

Step 1: Computing Dual Depth

® Draw trapezoid for each line.

® Increment counter at each
touched pixel.

9
9

Real-time Computation of Data Depth — p.16/28
ATST P pi—p

Step 1: Computing Dual Depth

® Draw trapezoid for each line.

® Increment counter at each
touched pixel.

°

Draw next line.

°

Real-time Computation of Data Depth — p.16/28
ATST P pi—p

Step 1: Computing Dual Depth

#® Draw trapezoid for each line.

® Increment counter at each
touched pixel.

°

Draw next line.

°

Increment counter as before.

Real-time Computation of Data Depth — p.16/28
ATST P pi—p

Step 1: Computing Dual Depth

#® Draw trapezoid for each line.

® Increment counter at each
touched pixel.

°

Draw next line.

°

Increment counter as before.

°

Repeat for all lines.

Real-time Computation of Data Depth — p.16/28
ATST P pi—p

Step 1: Computing Dual Depth

#® Draw trapezoid for each line.

® Increment counter at each
touched pixel.

°

Draw next line.

°

Increment counter as before.

°

Repeat for all lines.

At end of Step 1, all pixels in dual have correct depth I

Real-time Computation of Data Depth — p.16/28
ATST P pi—p

Step 2: Drawing In The Primal Plane

#® For all points lying on dual
lines...

9
9

Real-ti i -p.
ATeT eal-time Computation of Data Depth — p.17/28

Step 2: Drawing In The Primal Plane

#® For all points lying on dual
lines...

® Draw primal line with dual

5 depth value.
9

Real-time Computation of Data Depth — p.17/28
ATST P pi—p

Step 2: Drawing In The Primal Plane

#® For all points lying on dual
lines...

® Draw primal line with dual

5 depth value.
® Repeat...

Real-time Computation of Data Depth — p.17/28
ATST P pi—p

Step 2: Drawing In The Primal Plane

#® For all points lying on dual
lines...

® Draw primal line with dual

5 depth value.
® Repeat...

4

3

Real-time Computation of Data Depth — p.17/28
ATsT P pi—p

Step 2: Drawing In The Primal Plane

#® For all points lying on dual
lines...

® Draw primal line with dual
depth value.

® Repeat...

® Update pixel with minimum
value seen.

Real-time Computation of Data Depth — p.17/28
ATsT P pi—p

Step 2: Drawing In The Primal Plane

9

For all points lying on dual
lines...

Draw primal line with dual
depth value.

Repeat...

Update pixel with minimum
value seen.

‘ At end of Step 2, all pixels in primal have correct depth I

ATel

Real-time Computation of Data Depth — p.17/28

Bounded Duals

The screen has bounded size ! (typically [—1, 1]?)

If two points are almost above each other in the primal, the dual point is near oc.

Solution: use multiple duals. I

Definition. A point is bounded if it lies in the range [—1, 1] x [—2, 2].

Theorem. There exists two dual mappings D1, D5 such that each intersection point in the dual
arrangement is bounded in one of them.

Proof Sketch: Each dual covers a different portion of the space of directions S*.
L]

=

ATeT Real-time Computation of Data Depth — p.18/28

Pixelization Error

The screen has bounded resolution !. No exact solution is possible.

A Grid Algorithm:
For a given point set P, determine grid resolution W needed to compute an
answer correctly.

® [n general, the desired grid resolution is a simple function of the input point
set.

® The higher the grid resolution, the slower the running time.

ATel Real-time Computation of Data Depth — p.19/28

Levels of Detail

Because of the relative speed of computation, we can compute a fast approximate
answer, and refine the answer by zooming into regions of interest.

Real-time Computation of Data Depth — p.20/28
ATsT P pi—p

Running Time

® Step 1 can be performed in two passes (one for each dual).

® One readback is required to obtain the dual depth values.

® Step 2 can also be performed in one pass. However, W? objects are rendered
(which could be much larger than n).

Size | Running time (s)
50 0.6
100 | 0.9
500 | 1.9
1000 | 2.5
5000 | 6.3
10000 | 11.1

=

ATeT Real-time Computation of Data Depth — p.21/28

Running Time

® Step 1 can be performed in two passes (one for each dual).

® One readback is required to obtain the dual depth values.

® Step 2 can also be performed in one pass. However, W? objects are rendered
(which could be much larger than n).

Size | Running time (s)

50 0.6
100 | 0.9
500 | 1.9

1000 | 2.5 (1.9)
5000 | 6.3 (3.2)
10000 | 11.1 (4.5)

-

ATeT Real-time Computation of Data Depth — p.21/28

Movie

3

Real-time Computation of Data Depth — p.22/28
ATST P pi—p

Other Depth Measures

Real-time Computation of Data Depth — p.23/28
ATST P pi—p

Can We Build Upon This ?

Various algorithm modules can be implemented in hardware:
® Envelope calculations.
#® Dual mappings.

® Distance fields
Voronoi Diagrams
Power Diagrams
» General Metrics
® Median (and k-selection in general)
Can be used to extract levels from an arrangement.

ATel Real-time Computation of Data Depth — p.24/28

Simplicial Depth

Count number of simplices not containing p and subtract from (7). [RR96]

ATel

® Sort points radially around p.

9
9
9

Real-time Computation of Data Depth — p.25/28

Simplicial Depth

Count number of simplices not containing p and subtract from (7). [RR96]

o ® Sort points radially around p.
® Take horizontal line ¢ through p

° and rotate anticlockwise till it hits a
point g

ATel Real-time Computation of Data Depth — p.25/28

Simplicial Depth

Count number of simplices not containing p and subtract from (7). [RR96]

. ® Sort points radially around p.

® Take horizontal line ¢ through p
and rotate anticlockwise till it hits a
point g

® All pairs of points on either side of
. o ¢ define simplices not containing p.

ATeT Real-time Computation of Data Depth — p.25/28

Simplicial Depth

Count number of simplices not containing p and subtract from (7). [RR96]

® Sort points radially around p.

® Take horizontal line ¢ through p
and rotate anticlockwise till it hits a
point g

® All pairs of points on either side of
. o ¢ define simplices not containing p.

ATeT Real-time Computation of Data Depth — p.25/28

Simplicial Depth

Count number of simplices not containing p and subtract from (7). [RR96]

® Sort points radially around p.

® Take horizontal line ¢ through p
and rotate anticlockwise till it hits a
point g

® All pairs of points on either side of
¢ define simplices not containing p.

ATeT Real-time Computation of Data Depth — p.25/28

Simplicial Depth

Count number of simplices not containing p and subtract from (7). [RR96]

® Sort points radially around p.

® Take horizontal line ¢ through p
and rotate anticlockwise till it hits a

® °
point g
. ® All pairs of points on either side of
. . ¢ define simplices not containing p.

® Repeat for all lines

ATeT Real-time Computation of Data Depth — p.25/28

Simplicial Depth

Count number of simplices not containing p and subtract from (7). [RR96]

® Sort points radially around p.

® Take horizontal line ¢ through p
and rotate anticlockwise till it hits a
point g

® All pairs of points on either side of
. ¢ define simplices not containing p.

® Repeat for all lines

ATeT Real-time Computation of Data Depth — p.25/28

Simplicial Depth

Count number of simplices not containing p and subtract from (7). [RR96]

® Sort points radially around p.

® Take horizontal line ¢ through p
and rotate anticlockwise till it hits a
point g

® All pairs of points on either side of
. ¢ define simplices not containing p.

® Repeat for all lines

Number of simplices one on side of ¢ can be computed from number of points on
one side of /.

Halfspace depth computation can be used to compute simplicial depth I
=

ATeT Real-time Computation of Data Depth — p.25/28

Oja Depth

Definition (Oja Depth). Given a point set P, the Oja depth of a point ¢ is the sum of the volumes
of all simplices of P U {q} that contain q as a vertex.

Contribution to the depth of ¢ by the pair p, p’ is precisely

d(q,l(p,p") - d(p,p’)/2

Thus the depth of a point ¢ can be written as

depth(q) =) "wy - d(q,¢)

el

This defines a weighted distance field, where each object ¢ has weight w,, and the
influence of ¢ is proportional to the distance from it.

All such distance fields can be computed in the graphics pipeline very efficiently.

=

-

ATeT Real-time Computation of Data Depth — p.26/28

Other Measures

Line of best fit
LMS estimator.
Best fit circle

Colored halfspace depth

Each point is colored, and the depth of a point is expressed in terms of
the number of unique colors.

e o0 @

ATel Real-time Computation of Data Depth — p.27/28

Conclusions

® Graphics cards provide a natural fast platform for many kinds of geometric
computations.

® For visualization- and interaction-heavy problems, this is a viable approach.
® When viewed from the perspective of streaming envelope computations,

different problems can be solved using similar methods.

Future Directions:

® Other depth measures ? More sophisticated approaches that exploit the full
power of the pipeline ?

® Underlying computational questions: What makes certain problems
streamable ?

-

ATeT Real-time Computation of Data Depth — p.28/28

	The Interplay Between Analysis and Visualization
	Graphics Cards Can Compute !
	The Pipeline And Data Analysis, or Who Cares ?
	Overview Of This Talk
	underline {The Graphics Pipeline}
	An Example OpenGL Program
	Processing Objects in the GPU: Step 1
	Processing fragments in the GPU: Step 2
	So where's the computation ?
	Programable Pipelines
	Why is it so fast?
	underline {Data Depth Computation}
	Halfspace Depth: Primal and Dual
	Template For Hardware-Based Approach
	Step 1: Computing Dual Depth
	Step 2: Drawing In The Primal Plane
	Bounded Duals
	Pixelization Error
	Levels of Detail
	Running Time
	Movie
	underline {Other Depth Measures}
	Can We Build Upon This ?
	Simplicial Depth
	Oja Depth
	Other Measures
	Conclusions

