
Real-time Computation of Data Depth Using the
Graphics Pipeline

Suresh Venkatasubramanian

AT&T Labs–Research

Real-time Computation of Data Depth – p.1/28



The Interplay Between Analysis and Visualization

Most methods for computing data depth solve the problem, and then
visualize the answers.

Much of data analysis is exploratory and interactive.

Not only do we need fast solutions, we need ways of interacting with
(possibly very large) data.

Can we combine analysis and visualization?

Modern video cards have immense untapped computing potential.

There is a growing trend in graphics and scientific computing to treat the
video card as a fast co-processor.

Real-time Computation of Data Depth – p.2/28



Graphics Cards Can Compute !

A graphics card takes a stream of objects (points, lines, triangles), and renders
them on a screen.

Graphics Card

Each pixel in the screen can be viewed as a small processing unit.

glBlend a = a ⊕ b

z-test a = min(a, b)

Real-time Computation of Data Depth – p.3/28



The Pipeline And Data Analysis, or Who Cares ?

The interactive nature of data analysis makes speed a crucial consideration.

Visualization is a key component: the use of graphics cards is natural.

Demonstrable performance gain in areas like scientific computing.

Serious efforts are underway to make the computations robust.

The graphics card as a streaming co-processor is becoming common in diverse
areas (graphics,robotics,numerical analysis, physical simulation, geometry).

Real-time Computation of Data Depth – p.4/28



Overview Of This Talk

A brief overview of the graphics pipeline

How do we write programs for the graphics pipeline ?

The architecture of a card.

Computing various data depth measures in hardware

A simple algorithm for location depth.

Implementation in hardware.

Error Analysis and Performance

Extensions to simplicial depth, Oja depth, colored location depth, and other
depth measures.

Joint work with Shankar Krishnan (AT&T) and Nabil Mustafa (Duke)

Real-time Computation of Data Depth – p.5/28



The Graphics Pipeline

Real-time Computation of Data Depth – p.6/28



An Example OpenGL Program

#include <gl.h>
...
glLight(..) // Set lighting
glOrtho(..)// Set viewpoint

// Now draw objects
glColor(1,0,0);
glBegin(GL_TRIANGLES)
glVertex(x1,y1,z1)
...
glEnd()

gcc triangle.cc -lGL

Real-time Computation of Data Depth – p.7/28



Processing Objects in the GPU: Step 1

Fragments

CPU GPU

Lighting

Color

Vertices

Viewpoint
Calculations

and color
transforms

Lighting

Rasterization

The Fixed-Function Pipeline
Real-time Computation of Data Depth – p.8/28



Processing fragments in the GPU: Step 2

−Test

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

� � � � � �

Stencil
Test

Depth
Testα

? ? ?

Texture
Memory

Fragments

Blending

Frame buffer GPU Display

The Fixed-Function Pipeline

Real-time Computation of Data Depth – p.9/28



So where’s the computation ?

Stencil test
if (buffer.stencil = K) continue
else drop fragment.

Depth test
if (frag.depth < buffer.depth) continue
else drop fragment.

Blending operations
buffer.color = buffer.color op fragment.color

– General arithmetic and boolean function for blending.
– General comparison functions.
– Convolution and histogramming operators.

Each pixel executes the same program in “parallel”

Real-time Computation of Data Depth – p.10/28



Programable Pipelines

Fragments

Viewpoint
Calculations

and color
transforms

Lighting

Rasterization

Vertex program Fragment program

Vertex program executes on each vertex.

Fragment program executes on each fragment.

Real-time Computation of Data Depth – p.11/28



Why is it so fast?

The processor is highly optimized for streaming operations

On a per-unit area basis, far more computational (ALU) units than a
standard CPU.

Because of FIFO nature of computation, almost non-existent memory latency.

Immense spatial parallelism: each pixel can be thought of as a tiny parallel
processor (all executing the same program).

Cost Model:

Each rendering pass is a “unit-cost” operation.

Reading data back into main memory is expensive.

Objective is to minimize the number of passes.

Akin to standard notions of stream computations.

In each pass, only a fixed set of operations can be performed

Real-time Computation of Data Depth – p.12/28



Data Depth Computation

Real-time Computation of Data Depth – p.13/28



Halfspace Depth: Primal and Dual

Depth of point in primal ≡ Minimum depth of line in dual

Real-time Computation of Data Depth – p.14/28



Template For Hardware-Based Approach

1. Construct dual arrangement. For each point in the dual, determine its depth.

2. For each point on a line in the dual, draw it in the primal plane with an
associated value equal to its depth

3. At each point in primal, retain the smallest value encountered.

Real-time Computation of Data Depth – p.15/28



Step 1: Computing Dual Depth

Draw trapezoid for each line.

Real-time Computation of Data Depth – p.16/28



Step 1: Computing Dual Depth

Draw trapezoid for each line.

Increment counter at each
touched pixel.

Real-time Computation of Data Depth – p.16/28



Step 1: Computing Dual Depth

Draw trapezoid for each line.

Increment counter at each
touched pixel.

Draw next line.

Real-time Computation of Data Depth – p.16/28



Step 1: Computing Dual Depth

Draw trapezoid for each line.

Increment counter at each
touched pixel.

Draw next line.

Increment counter as before.

Real-time Computation of Data Depth – p.16/28



Step 1: Computing Dual Depth

Draw trapezoid for each line.

Increment counter at each
touched pixel.

Draw next line.

Increment counter as before.

Repeat for all lines.

Real-time Computation of Data Depth – p.16/28



Step 1: Computing Dual Depth

Draw trapezoid for each line.

Increment counter at each
touched pixel.

Draw next line.

Increment counter as before.

Repeat for all lines.

At end of Step 1, all pixels in dual have correct depth

Real-time Computation of Data Depth – p.16/28



Step 2: Drawing In The Primal Plane

For all points lying on dual
lines...

Real-time Computation of Data Depth – p.17/28



Step 2: Drawing In The Primal Plane

5

For all points lying on dual
lines...

Draw primal line with dual
depth value.

Real-time Computation of Data Depth – p.17/28



Step 2: Drawing In The Primal Plane

5

3

For all points lying on dual
lines...

Draw primal line with dual
depth value.

Repeat...

Real-time Computation of Data Depth – p.17/28



Step 2: Drawing In The Primal Plane

5

4

3

For all points lying on dual
lines...

Draw primal line with dual
depth value.

Repeat...

Real-time Computation of Data Depth – p.17/28



Step 2: Drawing In The Primal Plane

For all points lying on dual
lines...

Draw primal line with dual
depth value.

Repeat...

Update pixel with minimum
value seen.

Real-time Computation of Data Depth – p.17/28



Step 2: Drawing In The Primal Plane

For all points lying on dual
lines...

Draw primal line with dual
depth value.

Repeat...

Update pixel with minimum
value seen.

At end of Step 2, all pixels in primal have correct depth

Real-time Computation of Data Depth – p.17/28



Bounded Duals

The screen has bounded size ! (typically [−1, 1]2)

If two points are almost above each other in the primal, the dual point is near ∞.

Solution: use multiple duals.

Definition. A point is bounded if it lies in the range [−1, 1] × [−2, 2].

Theorem. There exists two dual mappings D1,D2 such that each intersection point in the dual
arrangement is bounded in one of them.

Proof Sketch: Each dual covers a different portion of the space of directions S1.

Real-time Computation of Data Depth – p.18/28



Pixelization Error

The screen has bounded resolution !. No exact solution is possible.

A Grid Algorithm:
For a given point set P , determine grid resolution W needed to compute an
answer correctly.

In general, the desired grid resolution is a simple function of the input point
set.

The higher the grid resolution, the slower the running time.

Real-time Computation of Data Depth – p.19/28



Levels of Detail

Because of the relative speed of computation, we can compute a fast approximate
answer, and refine the answer by zooming into regions of interest.

Real-time Computation of Data Depth – p.20/28



Running Time

Step 1 can be performed in two passes (one for each dual).

One readback is required to obtain the dual depth values.

Step 2 can also be performed in one pass. However, W 2 objects are rendered
(which could be much larger than n).

Size Running time (s)
50 0.6
100 0.9
500 1.9
1000 2.5
5000 6.3
10000 11.1

Real-time Computation of Data Depth – p.21/28



Running Time

Step 1 can be performed in two passes (one for each dual).

One readback is required to obtain the dual depth values.

Step 2 can also be performed in one pass. However, W 2 objects are rendered
(which could be much larger than n).

Size Running time (s)
50 0.6
100 0.9
500 1.9
1000 2.5 (1.9)
5000 6.3 (3.2)
10000 11.1 (4.5)

Real-time Computation of Data Depth – p.21/28



Movie

Real-time Computation of Data Depth – p.22/28



Other Depth Measures

Real-time Computation of Data Depth – p.23/28



Can We Build Upon This ?

Various algorithm modules can be implemented in hardware:

Envelope calculations.

Dual mappings.

Distance fields
Voronoi Diagrams
Power Diagrams
General Metrics

Median (and k-selection in general)
Can be used to extract levels from an arrangement.

Real-time Computation of Data Depth – p.24/28



Simplicial Depth

Count number of simplices not containing p and subtract from
(

n

3

)

. [RR96]

Sort points radially around p.

Real-time Computation of Data Depth – p.25/28



Simplicial Depth

Count number of simplices not containing p and subtract from
(

n

3

)

. [RR96]

Sort points radially around p.

Take horizontal line ` through p
and rotate anticlockwise till it hits a
point q

Real-time Computation of Data Depth – p.25/28



Simplicial Depth

Count number of simplices not containing p and subtract from
(

n

3

)

. [RR96]

Sort points radially around p.

Take horizontal line ` through p
and rotate anticlockwise till it hits a
point q

All pairs of points on either side of
` define simplices not containing p.

Real-time Computation of Data Depth – p.25/28



Simplicial Depth

Count number of simplices not containing p and subtract from
(

n

3

)

. [RR96]

Sort points radially around p.

Take horizontal line ` through p
and rotate anticlockwise till it hits a
point q

All pairs of points on either side of
` define simplices not containing p.

Real-time Computation of Data Depth – p.25/28



Simplicial Depth

Count number of simplices not containing p and subtract from
(

n

3

)

. [RR96]

Sort points radially around p.

Take horizontal line ` through p
and rotate anticlockwise till it hits a
point q

All pairs of points on either side of
` define simplices not containing p.

Real-time Computation of Data Depth – p.25/28



Simplicial Depth

Count number of simplices not containing p and subtract from
(

n

3

)

. [RR96]

Sort points radially around p.

Take horizontal line ` through p
and rotate anticlockwise till it hits a
point q

All pairs of points on either side of
` define simplices not containing p.

Repeat for all lines

Real-time Computation of Data Depth – p.25/28



Simplicial Depth

Count number of simplices not containing p and subtract from
(

n

3

)

. [RR96]

Sort points radially around p.

Take horizontal line ` through p
and rotate anticlockwise till it hits a
point q

All pairs of points on either side of
` define simplices not containing p.

Repeat for all lines

Real-time Computation of Data Depth – p.25/28



Simplicial Depth

Count number of simplices not containing p and subtract from
(

n

3

)

. [RR96]

Sort points radially around p.

Take horizontal line ` through p
and rotate anticlockwise till it hits a
point q

All pairs of points on either side of
` define simplices not containing p.

Repeat for all lines

Number of simplices one on side of ` can be computed from number of points on
one side of `.

Halfspace depth computation can be used to compute simplicial depth

Real-time Computation of Data Depth – p.25/28



Oja Depth

Definition (Oja Depth). Given a point set P , the Oja depth of a point q is the sum of the volumes
of all simplices of P ∪ {q} that contain q as a vertex.

Contribution to the depth of q by the pair p, p′ is precisely

d(q, l(p, p′) · d(p, p′)/2

Thus the depth of a point q can be written as

depth(q) =
∑

`∈L

w` · d(q, `)

This defines a weighted distance field, where each object ` has weight w`, and the
influence of ` is proportional to the distance from it.

All such distance fields can be computed in the graphics pipeline very efficiently.

Real-time Computation of Data Depth – p.26/28



Other Measures

Line of best fit

LMS estimator.

Best fit circle

Colored halfspace depth
Each point is colored, and the depth of a point is expressed in terms of
the number of unique colors.

Real-time Computation of Data Depth – p.27/28



Conclusions

Graphics cards provide a natural fast platform for many kinds of geometric
computations.

For visualization- and interaction-heavy problems, this is a viable approach.

When viewed from the perspective of streaming envelope computations,
different problems can be solved using similar methods.

Future Directions:

Other depth measures ? More sophisticated approaches that exploit the full
power of the pipeline ?

Underlying computational questions: What makes certain problems
streamable ?

Real-time Computation of Data Depth – p.28/28


	The Interplay Between Analysis and Visualization
	Graphics Cards Can Compute !
	The Pipeline And Data Analysis, or Who Cares ? 
	Overview Of This Talk
	underline {The Graphics Pipeline}
	An Example OpenGL Program
	Processing Objects in the GPU: Step 1
	Processing fragments in the GPU: Step 2
	So where's the computation ?
	Programable Pipelines
	Why is it so fast?
	underline {Data Depth Computation}
	Halfspace Depth: Primal and Dual
	Template For Hardware-Based Approach
	Step 1: Computing Dual Depth
	Step 2: Drawing In The Primal Plane
	Bounded Duals
	Pixelization Error
	Levels of Detail
	Running Time
	Movie
	underline {Other Depth Measures}
	Can We Build Upon This ? 
	Simplicial Depth
	Oja Depth
	Other Measures
	Conclusions

