
Exact adaptive parallel algorithms for data depth
problems

Vera Rosta
Department of Mathematics and Statistics

McGill University, Montreal

joint work with

Komei Fukuda
School of Computer Science

McGill University, Montreal

1

Data Depth is an Interdisciplinary Problem

Equivalent formulations, partial solutions, exploiting

results in different fields are necessary to solve it. The

fields I will refer to as necessary are:

Statistics
Non-parametric Statistics

Convex Geometry
Computational Geometry
Combinatorial Abstraction of Geometry

Complexity Theory

Combinatorial Optimization
Mathematical Programming

High-dimensional Geometric Computing
Parallel Computing
Implementation, Software

2

Subject of Statistics: measures of central location,
ranks

Non-parametric Statistics, data analysis without

assumptions about the underlying probability distribution.

Different notions of data depths (location) by

Tukey (1975), Oja (1983), Liu (1990), Donoho and Gasko

(1992), Singh (1992), Rousseeuw and Hubert (1999)

Since non-parametric methods are distribution free,

instead of probability measures, these new location

measures are often geometrical.

For multidimensional data this becomes a non-trivial

Geometric Computation problem.

Not enough to have theoretical algorithms,

Implementations are necessary, to be able to compute

confidence intervals, hypothesis tests etc, based on these

new rank and location measures.

3

Given a set S ⊂ R
d of n datapoints, the location depth

(Tukey 1975) of a point p relative to S: min number of
data points in any halfspace containing p.

p
p

Tukey median: a point with max possible depth.

Efficient algorithms exist if d = 2, for computing the set

of points with location depth at least k, the k depth

regions, and the Tukey median.

(Matousek, Shamir, Steiger, Langerman, Millner, Streinu,

Rousseeuw, Struyfs, Naor).

Some of these results are extended to d = 3.

There are no implemented deterministic algorithms to
compute location depths related measures in higher
than 3 dimensions.

4

Complexity:

Johnson and Preparata (1978): Computation of the
location depth of a given point is NP-complete.

(There is no hope for polynomial-time algorithm)

Amaldi-Kahn (1995): It is NP-hard to approximate the

location depth of a point. (This problem does not admit a

polynomial-time approximation scheme, unless P=NP)

Hardness results are related to the worst case, (in

actual problems it might be rare).

The complexity of adaptive algorithms depend on the
problem at hand, more relevant for statistical

computations.

5

We present the first adaptive, deterministic, highly
parallelizable algorithms in any dimension to

a) compute the location depth of a point in R
d,

b) construction of the location depths regions
boundary,

using a new memory efficient, output sensitive, highly
paralellizable enumeration algorithm for hyperplane
arrangements, which is being modified to be adaptive,

to reduce complexity depending on the problem at hand.

6

Data S = {p1, p2, . . . , pn} in R
d. Embedd in R

d+1.

Primal: p̂i = (pi, 1) ∈ R
d+1, i = 1, 2, . . . , n

Dual arrangement AS: < p̂i, x̂ >= 0, i = 1, 2, . . . , n.

xd+1

4

h4 1 2
3

5

6

primal

x1

h

xd+1=1

(+,-,-,+,+,-)

h2

For any x̂ ∈ R
d+1, define the sign vector

σ(x̂) ∈ {+, 0,−}n as the vector whose ith component is

the sign of < p̂i, x̂ >.

FS = {σ(x̂) : x̂ ∈ R
d+1}, (faces of the arrangement AS).

CS : set of cells, (full dimensional faces, sign vectors with

no zero components).

7

The following is the basic duality.

Proposition 0.1 For each X ∈ {+, 0,−}n, X ∈ FS if

and only if there is an oriented hyperplane h in R
d such

that X+ ⊆ h+, X0 ⊆ h and X− ⊆ h−.

xd+1

4

h4 1 2
3

5

6

primal

x1

h

xd+1=1

(+,-,-,+,+,-)

h2

For any sign vector X ,

X+ the positive support {i : Xi = +}, zero support X0,

negative support X− and support X := X+ ∪ X−.

Remark: X ∈ FS iff −X ∈ FS , where

−X+ = X−,−X− = X+,−X0 = X0.

8

Fp
S = {σ(x̂) : x̂ ∈ R

d+1 and < p̂, x̂ >= 1},

Ap
S = AS∩ < p̂, x̂ >= 1, Cp

S the set of cells of Ap
S .

xd+1

^

4 p

h2

1
2

3
5

6

primal

x2

x1

h

xd+1=1

<p,x>=1

(+,-,-,+,+,-)
hp

^

Computing the location depth of a point is equivalent to

finding a cell sign vector in the hyperplane arrangement

Ap
S with smallest number of positive signs.

(For each X ∈ {+, 0,−}n, X ∈ Fp
S if and only if there is

an oriented hyperplane h in R
d such that

X+ ∪ {p} ⊆ h+, X0 ⊆ h and X− ⊆ h−.)

9

Theorem: There is a search algorithm of time complexity

O(n LP(n, d) |Cp
S|) and space complexity O(n d) that

computes Cp
S for any given S and p.

This is a modified version of a reverse search algorithm of

Avis-Fukuda with an improved complexity. Here,

LP(n, d) denotes the time to solve an LP with n

inequalities in d variables.

Hyperplane arrangement algorithms have been used in the

past for data depth problems: 1) Johnson and Preparata

worked with hyperplane arrangement.

2) In computational geometry there is a so-called standard

hyperplane arrangement enumeration algorithm by

Edelsbrunner et al., that has been used to design algorithm

for computing regression depth (Mitchell-Sharir).

These have not been implemented, probably because the

memory requirement is O(nd),

10

Let C be any cell known at the beginning of
computation. (Can take a random point in R

d and check

its signature, or first using some heuristic to get a locally

best initial cell.)

The algorithm is defined by two functions:

1) adjacency oracle function Adj : determines the
neighbor cells of any given cell X .

Cell Graph (3 dimension, 7 hyperplanes, 64 cells)

The adjacency oracle Adj (X, j), index j ∈ {1, . . . , n},

returns the new cell if j is flippable, and NULL otherwise,

using the stored LP of size n × d.

(j is flippable in X if Xj 6= 0 and the vector obtained

from X by reversing the jth sign is again a cell.)

11

2) Local Search Function f , that maps any cell X in Cp
S

to an adjacent cell X ′ closer to the target cell C.

1

2

3

4

1

2

3

4

p*

p

Shoot a ray from an interior point of X to an interior

point of C. It will hit all hyperplanes separating X

and C. The first hyperplane hit by the ray is chosen and

its corresponding index is flipped, defining f(X) = X ′.

12

Once a finite local search f is fixed, we have a uniquely

defined directed spanning tree Tf of the cell graph of

Cp
S , rooted at C with edge set

{(X, f(X))|X ∈ Cp
S \ {C}}.

Search tree:

From any cell X ∈ Cp
S , there is a directed path to C with

at most n − 1 edges giving a maximum height n.

The algorithm is a procedure to visit all members of Cp
S

by tracing the spanning tree Tf from C, relying only

on the two functions f and Adj .

13

Cell enumeration (2 dimension, 7 hyperplanes, 29 cells)

Search Tree:

1

2

3 4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Cell Graph:

14

procedure BestCellSearch(Adj ,δ,C,f);

X := C; depth = |X+|; j := 0; // j: neighbor counter

repeat
while j < δ do

j := j + 1;

next := Adj (X, j);

if next 6= 0 and g(X) < depth then
if f(next) = X then // reverse traverse

X := next; j := 0;

if |X+| < depth then depth = |X+| endif
endif

endif
endwhile;

if X 6= C then // forward traverse

X ′ := X; X := f(X);

j := 0;

repeat j := j + 1 until Adj(X, j) = X ′ // restore j

endif
until X = C and j = δ;

output depth .

15

Remarks:

The interior point we select for each cell must be
uniquely defined: A y ≤ b where A is a n × d matrix.

max y0

subject to A y + e y0 ≤ b

y0 ≤ K

where e is the vector of all 1’s and K is any positive

number to make the LP bounded. Use a deterministic

algorithm, to find a unique solution to this LP.

16

The worst case complexity is O(n LP(n, d) |Cp
S|) which

is the time complexity to generate all cells. To speed up:

1) Let X be the current cell, and Y below X . (X is

between Y and C.) An index represent hyperplanes

separating Y and C, flipping (crossing) can be done only

once. (X+∩C−) ⊂ Y +, so |Y +| ≥ g(X) = |X+ ∩C−|.

Use branch and bound technique, with g(X) as bound

to obtain adaptive algorithm. If g(X) ≥ depth , the

current best depth, stop computing the enumeration of

cells below X .

2) Computation can be improved greatly if C is a good
initial cell. Random choice of a first cell, then local

heuristics to improve it locally, checking for a neighbor

with smaller number of + positive signs. Then move to

this neighbor checking its neighbor etc, until no local

improvement is made. Worth to do this local heuristic
search many times parallelly before starting the

deterministic algorithm. TSP uses similar speeding up.

17

3) Parallel computation. At any time the workload of

searching below a cell X can be given to another

processor. Memory is not shared, only the current best

depth , which should be updated centrally. Highly
parallelizable, with m processors the speed up is slighly

less than m times, and in higher dimensions it is actually

improved.

Tools
1) cddlib: polyhedral computation library of Fukuda,

with implementation of the two basic operations needed,

the linear programming solving and the ray shooting
operation.

Since all cddlib functions can be compiled with both
floating-point and rational (exact) arithmetics, this

code can also run in these arithmetics.

2) ZRAM: parallel computation library of Marzetta, for

reverse search, backtracking and branch and bound.

ZRAM, takes care of the reverse search mechanism, and

provides efficient parallelization at no additional cost.

18

Let S = {p1, p2, . . . pn} ⊂ R
d and let h be a hyperplane

in R
d. In the dual hyperplane arrangement AS , there is a

point ph corresponding to h.

The regression depth of the hyperplane h is the

minimum number of hyperplanes of the dual

hyperplane arrangement crossed by any ray starting at
the point ph.

(Introduced by Rousseeuw and Hubert)

Let U be the set of all unbounded cells in the hyperplane

arrangement AS . The regression depth of h:

minU∈U |σ(U) − σ(ph)|

(There is a signvector σ(ph) corresponding to the point

ph. A direction φ corresponds to an unbounded cell Uφ. A

ray starting at ph in the direction φ will cross as many

hyperplanes as there is difference in the signvector of Uφ

and ph. The cell enumeration algorithm can be modified

to enumerate all unbounded cells, then choose the best.)

19

Tukey median: a point in R
d with max possible depth

R.Liu is suggesting to sort the elements of the sample
according to their location depth. This can be done by

computing the location depth of each point in the sample

S, even parallel, then rank the sample points accordingly.

This can be disappointing as there is possibility that all

sample points have data depth 1, if the sample points are

in convex position.

Much harder is to compute the set of points in R
d with

location depth at least k and the Tukey median.

20

Maximum location depth

For univariate data the maximum location depth is

bn+1

2
c.

In d-dimension
d n

d+1
e ≤ maximum location depth ≤ bn+1

2
c.

Lower bound is obtained for the d-dimensional simplex.

Upper bound can be obtained with a centrally
symmetric dataset and if n odd , with one point in the

center.

21

Convex Geometry gives some theoretical background.

Helly’s Theorem: Suppose K is a family of at least d + 1

convex sets in R
d, and K is finite or each member of K is

compact. Then if each d + 1 member of K have a common

point, then there is a point common to all members of K.

Let S ⊂ R
d, |S| = n ≥ (d + 1)(k − 1) + 1.

K = {H |H closed halfspace, |H ∩ S | ≥ n − k + 1}.

If H ∈ K , then H is open halfspace, and |H ∩S| ≤ k−1.

| ∪d+1

i=1
Hi| ≤ (d + 1)(k − 1) ⇒ | ∩d+1

i=1
Hi| ≥ 1.

From Helly’s theorem it follows that if k ≤ d n
d+1

e

| ∩ K | ≥ 1 . Any point in the intersection has location

depth at least k.

22

Proposition: Let S be a pointset of size n in R
d. Let Dk

denote the set of points with location depth at least k.

a) Dk is the intersection of all closed halfspaces

containing at least n − k + 1 points of S.

b) Dk+1 ⊂ Dk, Dk is convex set and D1 is the convex

hull of S.

c) Dk is not empty for all k ≤ d n
d+1

e.

d) Dk is bounded by hyperplanes containing at least d

points of S that span a (d − 1)-dimensional subspace.

d
n

d + 1
e ≤ maximum of location depth ≤ b

n + 1

2
c

23

D1

D2

D3

24

Previous results:

Location depth region boundary, called also contour, has

been computed by an algorithm by Miller et al., in the

plane.

d = 2: Computing a center point (Cole et al.),

computation of center, deepest location, and Dk

(Matoušek, Langerman-Steiger, Rousseeuw-Struyf, Miller

et al.).

d = 3: Computation of center, or just a center point

(Naor, Shamir).

Higher dimension:

Clarkson et al. approximation algorithm that finds an

approximate center in R
d, the iterative algorithm finds

with high probability a point with location depths O(n
d2).

25

Teng extended Johnson and Preparata complexity results:

The special case of testing whether a point is a center

point is still coNP-complete.

The problem of testing that the Tverberg depth of a point

is at least some fixed bound, or of testing whether the

point is a Tverberg point is NP-complete.

Amenta et al.: The related problem of testing whether a

hyperplane has regression depth at least n/(d + 1) is also

coNP-complete.

26

The proposition implies that Dk is a convex

polytope if it is not empty, bounded by a finite

number of hyperplanes. In order to have an efficient

algorithm it would be suitable to find a good

characterization of the bounding hyperplanes of Dk

as well.

k-th depth region boundary computation

a) Trivial way: Compute all possible candidates for

the boundary of k − th-regions by enumerating all

hyperplanes containing at least d points of S and

checking whether one of the closed halfspace

contains at least n − k + 1 points of S. This

computation is Θ(ndd3), even when the boundary

is simple.

27

b) Instead we suggest a more data sensitive method,

which hopefully works well for certain data.

Algorithm to compute the location depth contours and
the Tukey median

The depth regions computation is closely related to

efficient k-set enumeration.

In the k-set problem a hyperplane cleanly separates
k-points from the remaining n − k points for an n-point

set.

We construct the location depth regions iteratively using

the enumeration of all k-sets and their extreme points.

The algorithm is adaptive, highly parallelizable and

deterministic.

28

(i) For computing Dk+1 we enumerate the k-sets, these

are cells of the dual hyperplane arrangements, with k

negative (positive) signs in their signvectors.

(There is already an output sensitive algorithm to compute

this.)

(ii) Independently compute the vertex set of each k-set
cells in the dual arrangement. The vertices with k minuses

(plus’s) and at least d zero’s are the candidates for the

boundary of the k + 1-th regions in the primal.

(iii) For the boundary we can do LP redundancy
removal, whose complexity depends only on the actual

size n0, of the boundary, n LP of size d × n0.

(iv) To decide if Dk+1 is empty or not one LP is enough,

which can be solved easily even in very large scale

problem.

All these operations are highly parallelized and depend on

the problem at hand.

29

In the degenerate case it is possible that the boundary of

Dk−1 intersect the boundary of Dk. Then the cells not

appearing in the Dk−1 boundary have exactly k negatives,

representing k-sets. If Dk−1 has been already computed,

then to compute the boundary of Dk only the vertices of

those cells need to be computed, that have exactly k

minuses. This also means that Dk−1 boundary need to be

kept in memory, while Dk is computed.

30

Remark: Does not seem to exist at present a local

characterization for a given hyperplane being facet

inducing.

But we think that this is more efficient than the trivial

method, as it depends on the complexity of the boundary.

There is little known about this, but it would be reasonable

to expect to have simpler boundary as k is increasing.

31

Convex Geometry
Closely related to Helly’s theorem is the

Tverberg theorem. Let d and k be given natural

numbers. For any set A ⊂ R
d of at least

(d + 1)(k − 1) + 1 points there exist k pairwise disjoint

subsets A1, A2, . . . , Ak ⊂ A such that the

∩k
i=1conv(Ai) 6= ∅ (also called k-split).

Any point in the k-split, called Tverberg point, has

location depth at least k.

Radon’s theorem is a special case with k = 2.

k-split ⊂ Dk. (Dk is also called k-core)

d = 2: k-split = k-core,

d > 2: k-split 6= k-core

(Independent counter examples by Avis, Bárány and Onn

already in R
3)

32

