
1

FUNCTIONAL SAMPLESFUNCTIONAL SAMPLES
AND BOOTSTRAP FOR AND BOOTSTRAP FOR 

PREDICTING OF SOPREDICTING OF SO22 LEVELSLEVELS

B.M. Fernández de Castro

S. Guillas

W. González Manteiga



2

Bosq (2000): theoretical study of linear processes with values in 

function spaces.

Besse and Cardot (1996): traffic study

Besse et al. (2000): climatic variation El Niño

Damon and Guillas (2002): ozone levels

Our work: ground level Sulfur Dioxide (SO2) around a power plant.

INTRODUCTIONINTRODUCTION
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The power plant has an 
Atmospheric Pollution 
Supplementary Control 
System.

Prediction tools are 
necessary to make these 
systems effective.

An indicator of Air Quality is 
the SO2 level.

INTRODUCTIONINTRODUCTION

The legislation in use in Spain forces to control air quality.
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INTRODUCTIONINTRODUCTION
Major Concern: prevent air quality level episodesprevent air quality level episodes.

Legislation in use in Spain (Real Decreto 1073/2002) forces to control 

hourly average SO2 values.

The power plant needs at least half an hour ahead predictions.

We will look at the time series of SO2 values as observations of the 

continuous-time stochastic process which models the SO2 levels.
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INTRODUCTIONINTRODUCTION

nX

1nX +

Our interest are half an hour predictions.

The communication system at the power plant gives us a new 

datum every 5 minutes.

We will consider random variables with values in                in 

the following way:
[ ]( )2 0,6H L=

( ) (6 )nX t x n t= +
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1. Methodology

1. ARH

2. Functional Kernel

3. Bootstrap
• Data Depth

• Bootstrap for kernel based predictions

• Bootstrap for ARH predictions

2. Application

1. Historical Matrix

2. Results

3. Comparison

4. Conclusion
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Consider the statistical model:

Where is the function to be estimated.

We will forecast future values of the continuous-time 

stochastic process, using the information contained in a infinite 

number of variables of the past:
( ),x t t T≤

( ),x t t T≥

We will consider random variables with values in:

[ ]( )2 0,6H L=

Let be a strong Hilbertian white noise ⇒

⇒ i.i.d. H-valued random variables with

( )1n n nX Xρ ε−= +

nε

:H Hρ →

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
ARHARH FKFK BOOTSTRATBOOTSTRAT

2 20,  0 ,  n n H
E E nε ε σ= < = < ∞ ∈Z
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Our procedures use the following empirical Lp-errors, for p=1, 2:

And:

n: sample size

1
6

1 1

1 1ˆ ˆ
6p
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n pj j

t tL t j
X X X X
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− = − 

 
∑ ∑

1,...,61

1ˆ ˆsup
n

j j
t tL jt

X X X X
n∞
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Autoregressive Autoregressive HilbertianHilbertian Model (ARH)Model (ARH)

is a bounded linear operator on H.

Steps:

0. Withdraw mean from the process.

1. Using PCA, compute empirical estimators of eigenelements of C.

2. Project the relation in the subspace spanned by kn
eigenvectors.

3. Get a consistent estimator        using the projected relation.

kknn SelectionSelection: : We use cross-validation.

ρ

D Cρ=

nρ

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
ARHARH FKFK BOOTSTRATBOOTSTRAT
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Functional Kernel Model (FK)Functional Kernel Model (FK)

It may be too restrictive to consider only linear operators.

Besse, et al. (2000) proposed to extend the Nadaraya-Watson 

kernel regression estimator to the functional context.

Then       can be estimated by:

K Gaussian kernel, hn bandwidth, n sample size, x in H.

hhnn Selection: Selection: Global and Local bandwidths using cross-validation.

1
1
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ˆ ( )
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X x
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BootstrapBootstrap

It is interesting to provide an idea of the range of the forecasts.

In the context of dependent Hilbert space valued random variables: 

Politis and Romano (1994): confidence regions for parameters.

We are looking for confidence regions for predictions.

We extend two different bootstrap methods for real valued time 

series (Cao, 1999) to functional data.

Let        be the curves in the sample and       the curves for which we 

want to forecast        .

At point      we will draw p bootstrap one step ahead forecasts:

iX iY

1iY +

mY

1,1 1,,...,m m pY Y∗ ∗
+ +

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
ARHARH FKFK BOOTSTRATBOOTSTRAT
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Data DepthData Depth

We use Fraiman and Muniz (2001) concept of data depth for functional data.

They measure the nearness of a sample of curves to their median.

A sample of functional data:                            from the same distribution.

For each sample point t:

The empirical univariate depth:

They propose to look at the integrated index:

The median is the curve with the maximum index.

We can order our curves using this index.

1( ),..., ( )pX t X t

, ( )
1

1( ) 1
j

p

p t X t x
j

F x
p ≤

=

= ∑

, ,
1( ) 1 ( )
2p t p tD x F x= − −

( ), ( )
b

i p t ia
I D X x dt= ∫
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Bootstrap for Kernel based predictionsBootstrap for Kernel based predictions
We propose a resampling method based on the bootstrap for 

prediction of a general stationary process (no parametric 

dependence structure is known).

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
ARHARH FKFK BOOTSTRATBOOTSTRAT

AlgorithmAlgorithm

For each point

1. Construct the sample blocks of length 2:

2. Compute probabilities

Where h is the bandwidth (global or local).

mY

{ }1, , 1,...,j j jB X X j n+= =

1

ˆ

j m

j n
i m

i

X Y
K

h
p

X Y
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 

∑
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METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
ARHARH FKFK BOOTSTRATBOOTSTRAT

3. Randomly toss p blocks with those probabilities. Extract from 

them the second element.

4. The sequence of replications:

5. Order the replications using F-M depth:

6. The median is the curve with maximum value:

7. Chose the % of replications less distant to the median

8. Draw the envelope generated by the selected curves.

1,1 1,,...,m m pY Y∗ ∗
+ +

1,1:1 1, :,...,m m p pY Y∗ ∗
+ +

1,1:1mY
∗
+
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Bootstrap for ARH predictionsBootstrap for ARH predictions

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
ARHARH FKFK BOOTSTRATBOOTSTRAT

We use the dependence structure given by the ARH model.

AlgorithmAlgorithm
1. Compute the forward residuals for i=2,…,n+1

And their corrected version

Using:

2. Make PCA in the following manner:

3. For each coordinate cl derive its empirical distribution:

1ˆˆí i ia X Xρ −= −

ˆ ˆi ia a a′ = −
1

2

1 ˆ
n

i
i

a a
n

+

=

= ∑

1 1ˆ ...
n n

i i
i k ka c V c V′ = + +

, 1,...,lc
n nF l k=
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METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
ARHARH FKFK BOOTSTRATBOOTSTRAT

4. Using that distribution generate 

5. Construct bootstrap residuals:

6. Generate bootstrap replications, i=1,…, p:

7. Order the replications using F-M depth:

8. The median is the curve with maximum value:

9. Chose the % of replications less distant to the median

10. Draw the envelope generated by the selected curves.

1,1:1 1, :,...,m m p pY Y∗ ∗
+ +

1,1:1mY
∗
+

lc
∗

1 1ˆ ...
n ni k ka c V c V∗ ∗ ∗= + +

1, ˆ ˆm i m iY Y aρ∗ ∗
+ = +



17

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
HISTORICAL MATRIXHISTORICAL MATRIX RESULTSRESULTS

García Jurado et al. (1995) introduced the notion of HISTORICAL HISTORICAL 

MATRIXMATRIX in the context of real valued time series.

Fernández de Castro et al. (2003) has used that idea to build 

training sets for neural networks.

We adapt the historical matrix to functional data.

We must fill the historical matrix with vectors of the form:

where:

1( , )n nX X +

1 6( ,..., )n n nX X X=
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METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
HISTORICAL MATRIXHISTORICAL MATRIX RESULTSRESULTS

Matrix of levelsMatrix of levels

An “ordinary” classification can be done, based on the last real value 

of         .

We use 10 classes in this matrix.
1nX +

Matrix of shapesMatrix of shapes

A “functional” classification based on shapes of data.

We establish 5 classes.

We compute:

And we look at the sign:

2 1 6 5
1 1 1 1( ,..., )n n n nX X X X+ + + +− −

At least one + 
and one -

Change

else(0,0,0,0,0)(-,-,-,-,-)(+,+,+,+,+)

Anything elsePlateausDecreaseIncrease
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METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
HISTORICAL MATRIXHISTORICAL MATRIX RESULTSRESULTS
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1L L∞2L

31.7418.7515.24ARH, HM-shape
31.6719.6516.57ARH, HM-levels
27.6017.3615.26FK global bandwidth, HM-shape
26.9616.7814.61FK local bandwidth, HM-shape
28.5218.6516.66FK global bandwidth, HM-levels
28.1218.2716.14FK local bandwidth, HM-levels

ErrorModel

Prediction errors at F4 station on April, 22th 2002

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
HISTORICAL MATRIXHISTORICAL MATRIX RESULTSRESULTS
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1L L∞2L

32.0020.4217.55ARH, HM-shape
37.2025.8523.49ARH, HM-levels
40.1526.0423.13FK global bandwidth, HM-shape
41.7626.7023.63FK local bandwidth, HM-shape
45.3830.0326.76FK global bandwidth, HM-levels
49.9132.8829.15FK local bandwidth, HM-levels

ErrorModel

Prediction errors at F4 station on April, 22th 2002.

Episode period: 14:00 – 22:30

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
HISTORICAL MATRIXHISTORICAL MATRIX RESULTSRESULTS
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Bootstrap Results

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
HISTORICAL MATRIXHISTORICAL MATRIX RESULTSRESULTS
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Bootstrap Results

METHODOLOGYMETHODOLOGY APPLICATIONAPPLICATION
HISTORICAL MATRIXHISTORICAL MATRIX RESULTSRESULTS
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COMPARISONCOMPARISON

We compared our forecasts to those obtained by two methods used in 

the past: 

neural networks (Fernández de Castro et al., 2003)

semi-parametric models (García Jurado et al., 1995)

We contrasted the 30 minutes ahead forecasts every five minutes.
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COMPARISONCOMPARISON
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COMPARISONCOMPARISON

1650.8525.30Semi-paremetric
1156.6427.57Neural Network
1372.5731.14ARH, HM-shape
1303.0125.41FK global bandwidth, HM-shape
1305.7624.12FK local bandwidth,HM-shape

MSEMAE
ErrorModel

30 minutes ahead prediction errors at F4 station on April 22, 2002
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CONCLUSIONCONCLUSION

Proposed a new way of building an historical matrix focusing on 

functional data: classifying our data according to the shape. 

We examined the predictions of the ARH and the functional kernel

model, with global and local bandwidths.

These functional models appeared to be a very competitive option to 

solve our problem.

We exposed some ideas to use bootstrap techniques with such 

functional data.

Using the concept of functional depth to establish an order between our 

bootstrap replications, we build a region of predicted curves, following 

the idea of confidence intervals for real data.
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