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Abstract

This paper deals with preference representation and aggregation imeaanial
domains. We assume that the set of alternatives is defined as the cartesiact pf
finite domains and that agents’ preferences are represented byalimsteadditive
decomposable (GAI) utility functions. GAI functions allow an efficient esganta-
tion of interactions between attributes while preserving some decomposabilitg of
model. We address the preference aggregation problem and cormsideal<rite-
ria to define the notion of compromise solution (maxmin, minmaxregret, weighted
Tchebycheff distance). For each of them, we propose a fast proeéal the exact
determination of the optimal compromise solution in the product set. This proce-
dure relies on a ranking algorithm enumerating solutions according to thefsine
agents individual utilities until a boundary condition is reached. We praédelts
of numerical experiments to highlight the practical efficiency of our piace.
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1 Introduction

The development of decision support systems and web recadensystems has stressed
the need for models that can handle users preferences d@odp@reference-based rec-

ommendation tasks. In this respect, current works in peefe¥ modeling and decision

theory aim at developing compact preference models acigevigood trade-off between

two conflicting aspects: i) the need for models flexible erotaydescribe sophisticated

decision behaviors; and ii) the practical necessity of kegphe elicitation effort at an
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admissible level as well as the need for fast procedureslve goeference-based opti-
mization problems on large sets of alternatives. As an el@rgt us mention interactive

decision support systems on the web where the preferretd@olmust be found among

a combinatorial set of possibilities. This kind of applioat motivates the current in-

terest for qualitative preference models and compact septations like CP-nets [3, 4]
and mCP-nets [18], their extension to the multiagent caseh $wdels are deliberately
simple and flexible enough to be integrated efficiently ieiattive recommendation sys-
tems; the preferences of the agents must be captured uding éew questions so as to
perform a fast preference-based search over the posshis.it

In other applications (e.g. configuration system, fairdkoon of resources, combi-
natorial auctions), more time can be spent in the elicitastage in order to get a finer
description of preferences. In such cases, utilities agmifstantly outperform qualitative
models due to their higher descriptive power [2]. Moreotleg,use of cardinal utilities in
the multiagent setting allows to escape the framework obwis impossibility theorem
which considerably restricts aggregation possibilitieg] |

In the literature, different quantitative models basedtilitias have been developed to
take into account different preference structures. The mimkely used model assumes a
special kind of independence among attributes called “alytteferential independence”
which ensures that the preferences are representable bgdaive utility [14]. Such
decomposability makes the elicitation process very fadtsample. However, in practice,
preferential independence may fail to hold as it rules oytiateraction among attributes.
Some generalizations have thus been investigated. Fanicetility independencen
every attribute leads to a more sophisticated form cattatlilinear utilities[1]. The latter
are more general than additive utilities but they still catncope with many interactions
between attributes. To increase the descriptive power df suodels, GAl (generalized
additive independence) decompositions have been inteatbyg [10], that allow more
general interactions between attributes [1] while presgrsome decomposability. Such
a decomposition has been used to endow CP-nets with utilitgtions (UCP-nets) both
under uncertainty [2] and under certainty [5].

In the same direction [11, 6] propose a general proceduredesa GAI utilities in
decision under risk. This one is directed by the structura gfaphical model called
a GAl-network and consists in a sequence of questions im@lsimple lotteries that
capture efficiently the basic features of the agent’s aktittowards risk. Recently the
elicitation of GAlI models has been investigated in the ceindé decision making under
certainty. [12] thus proposes elicitation proceduresinglyon simple comparisons of
outcomes (e.g. questions involve only a subset of attrébateoutcomes varying in only
few attributes). They also suggest efficient choice procesito find the GAl-optimal
element in a product set, using classical propagation tqaba used in the Bayesian net
literature.

In this paper, we address group decision making problemisnifes contexts and we
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focus on the determination of a good compromise solutiowéen agents. As usual in
works on preferences, we assume that the alternatives tonygared belong to a product
set the size of which prevents exhaustive enumeration. Bz that a GAI utility has
been elicited for each agent and we tackle the problem obpaihg efficient choices
for the group of agents. The paper is organized as followsSdation 2, we discuss
individual and collective preference representation eAfecalling some elements about
GAI models and their graphical representation we considepus aggregation criteria
to define the notion of compromise between agents. In Se8tiave provide efficient
algorithms to determine the best compromise solution fergtoup of agents. Finally
Section 4 reports numerical results obtained on multiagggtegation problems.

2 GAI utilities: from individual preference modeling to
collective decision making

Before describing GAI models, we shall introduce some naati Throughout the paper,
>~ denotes an agent’s preference relation (a weak order) ovee setY. = =~ y means
thatz is at least as good gs - refers to the asymmetric part gfand~ to the symmetric
one. In practice is often described by a set of attributes. For simplicityassume that
X is the product set of their domains, although extensiongt@al subsets are possible.
In the rest of the paper, uppercase letters (possibly sipbsdy such asi, B, X; denote
attributes as well as their domains. Unless otherwise moeeti, (possibly superscripted)
lowercase letters denote values of the attribute with timeesappercase letterse, z!
(resp.z;, z}) are thus values ok (resp.X;). Subsection 2.1 concerns the representation
of the preference of a single agent. We will consider the iagént decision problem in
Subsection 2.2.

2.1 Individual Preference Modeling

Under mild hypotheses [8], it can be shown thais representable by a utility, i.e., there
exists a functionu : X — R such thatr - y < u(z) > u(y) forall z,y € X. As
preferences are specific to each individual, utilities nimestlicited for each agent, which
is impossible due to the combinatorial natureXf Moreover, in a recommendation
system with multiple regular users, storing explicitly fach user the utility of every
element ofY’ is prohibitive.

Fortunately, agent’s preferences usually have an unaeristructure induced by in-
dependencies among attributes that substantially dexsdhse elicitation effort and the
memory needed to store preferences. The simplest caseamethtwhen preferences
overX = X; x --- x X,, are representable by an additive utilityz) = >""" | u;(x;)

3
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foranyx = (x1,...,x,) € X. This model only requires to stoig(a) for anya € X;,

i = 1,...,n. However, such decomposition in not always convenient leza rules
out interactions between attributes. When agents prefesesai@ more complex, a more
elaborate model is needed as shown below:

Example 1 Consider a seft’ of menuse = (x1, z9, x3), With main courser; € X; =
{meat)), fish(F")}, drink o € X, = {red wine(R), white winé}/)} and dessert
r3€ X3 = {cakd (), sorbetsS)}.

First case. Assume the agent's preferences are well represented by ativaddility «
characterized by the following marginal utilities:; (M) = 4; u,(F) = 0; ua(R) = 2;
uy(W) = 0; us(C) = 1; uz(S) = 0. Then the utilities of the* possible menus
follow:

u(zM) =u(M,R,C) =7, u(z®) = u(M, R, S) =6;
u(z®) = u(M,W,C) =5; u(zW) = u(M,W,S) = 4,
u(z®)) = u(F,R,C) =3; u(z) = u(F,R,S) =2;
u(z) = u(F,W,C) =1, u(z®) = u(F,W,8) =0;

which yields the following ordering:

2 = @ 20w g0 ) 6) o (7)o 2(8),

Second case. Assume that another agent’s ranking ist") >~ z? = z(7 » 2®
2@ = 2@ = 20) — 20 This can be explained by: i) a high priority granted to
matching wine with main course (red wine for meat, white one fbi);fis) at a lower
level of priority, meat is preferred to fish; and iii) cake iseferred to sorbet (ceteris
paribus).

Although not irrational, such preferences are not repreable by an additive utility
becauser = 10 = wu (M) > u(F) whereasz™ = 20 = w(F) > u(M).
However, this does not rule out less disaggregated formsdifiad decompositions such
as: u(zr) = wuya(xy,x2) + us(zs). For exampleu; o(M, R) = 6, uyo( F,W) = 4,
u2(M, W) =2, u12(F,R) = 0, u3(C") = 1, uz(S) = 0 would represent;.

Third case. Assume that the ranking of a third agent i§? = (1) = (0 = £(®

z@® = 20 = 20) = 2 Her preference system is actually a refinement of the pusvio
one. She prefers cake to sorbet when the main course is fishebopposite obtains when
the main course is meat.

In this case, using similar arguments, it can be shown thaptaeious decomposition
does not fit anymore due to the interaction between attribdteand X;. However it is
interesting to remark that preferences can still be repntse by a decomposable utility

4
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of the form:u(x) = uy o(x1, x2) + w1 3(x1, x3), Setting for instance:

ulyg(M,R) :6; U172(F,W) :4; U172(M,W) :2; ULQ(F,R) :0,
ul,g(M,C) =0; ULQ(M,S) =1; ULQ(F,O) =1; ULQ(F,S) =0.

Such a decomposition over overlapping factors is called ad&domposition [1]. It
includes additive and multilinear decompositions as spexses, but it is much more
flexible since it does not make any assumption on the kind tefactions between at-
tributes. GAI decompositions can be defined more formallfipbsws:

Definition 1 (GAl decomposition) Let X = [];_, X;. LetZ,,..., Z; be some subsets
of N = {1,...,n} suchthatV = Ut_, Z,. For everyi, let X, = [1;cz, X;. Utility u(-)
representing; is GAl-decomposable w.r.t. theé,,’s iff there exist functions; : X, — R
such that:

u(z) =S8 ui(xy), forall z = (zy,...,2,) € X,
wherez ;, denotes the tuple constituted by thes, j € Z,.

GAIl decompositions can be represented by graphical stestue callGAI networks
[11] which are essentially similar to the junction graphedifor Bayesian networks [13,
7]

Definition 2 (GAI network) Let X = H?:l X;. LetZ,..., 7, be a covering ofV =
{1,...,n}. Assume thal is representable by a GAI utility(z) = Y | w;(zz,) for
all x € X. Then a GAIl network representing-) is an undirected graplt- = (V, F),
satisfying the following properties:

1. V= {XZU o ,XZk};

2. Forevery( Xz, Xz,) € E,ZiNZ; # 0. ForeveryX g, Xz s.t.Z;NZ; = T;; # 0,
there exists a path G- linking Xz, and X, s.t. all of its nodes contain all the
indices of7;; (Running intersection property).

Nodes ofi” are calledcliques Every edgeé X ;,, Xz,) € E is labeled byX7,, = X7z,
and is called aseparatar

Cliques are drawn as ellipses and separators as rectangtbss paper, we shall only
be interested in GAl trees, i.e., in singly-connected GAivoeks. As mentioned in [11],
this is not restrictive as general GAI nets can always be deshpito GAl trees. For any
GAI decomposition, by Definition 2 the cliques of the GAI netk should be the sets of
variables of the subutilities. For instanceuifa, b, c,d, e, f,g) = ui(a,b) + us(c,e) +
ug(b, ¢, d) + uq(b,d, f) + us(b, g) then, as shown in Figure 1, the cliques a#g3, C'E,
BCD, BDF, BG. By property 2 of Definition 2 the set of edges of a GAI network
can be determined by any algorithm preserving the runnitegsection property (see the
Bayesian network literature [7]).
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C|—(CE)
BBDB

Figure 1: A GAl tree

2.2 Collective Decision Making

We consider now a multiagent decision problem involvingtake {1, ..., m} of agents.
We assume that, for each agent 4, a GAI utility v/ representing her preferences over
X has been elicited. For simplicity, we assume that each agenie same absolute util-
ity scale, so as to have commensurability. Then, a classi@glof defining the best com-
promise solution for the group of agents is to define an oletitity «(x) which gives, for
anyz € X, the value ofr for the group. Thus we considefz) = h(u'(z),...,u™(x))
whereh is an aggregation function implicitly defining the type ofngaromise seek in
X. The best compromise solution is obtained by optimizingver X. When# is non-
decreasing in each componemtpptimal solutions are weakly Pareto-optimal (i.e. there
is no other solution improving the satisfaction of all theatg). Moreover, it is strictly
increasing in each component theiptimal solutions are Pareto-optimal (i.e. there is no
other solution improving the satisfaction of an agent withdecreasing the satisfaction
of another).

If his linear, thenu is the sum of GAI utilities and, as such, is itself a GAI uyiliThen
the problem reduces to a monoagent decision problem withlau@iy. However, linear
aggregation functions are not good candidates as they radytdechoose a solution hav-
ing a very ill-balanced utility profile. For example, consich problem with 3 agents and
assume that’ = {z,y, z,w} with u!(z) = 0,v?(x) = v3(z) = 100, v*(y) = 0,u'(y) =
ud(y) = 100, u3(z) = 0,ul(2) = u*(z) = 100, u!(w) = v*(w) = u?(w) = 65. All
solutions exceptv are unacceptable for at least one agent. Thus the only possible
compromise solution; yet it cannot be obtained by maxingahinear combination (with
positive coefficients) of agent utilities. To find better gqmomise solutions, the following
non-linear criteria seem more adequate:

The maximin criterion: u(z) = minjec 4 v/ (x), to be maximized ovek’. This criterion
amounts to maximize the satisfaction of the least satisfiedia

The minimax Regret criterion: u(z) = max;c47/(z), wherer! = u(z?) — v’(z), and
x! = Argmax,. v’ (z) (i.e. 27 denotes the optimal solution for ageit This criterion is

to be minimized overy. It represents the maximal regret among agents, the reqodt
agent;j being defined as the utility gap betweeandz’.

The Tchebycheff criterion: u(z) = max;c 4 w;r7 (x) wherew; are positive coefficients.
This criterion is to be minimized ovet'. It represents the distance (w.r.t. a weighted

6
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Tchebycheff norm) between two utility profilegu'(z),...,u"(z)) obtained with so-
lution z, and the ideal utility profilgu!(z'), ..., u™(2™)) corresponding to a fictitious
ideal situation (generally not feasible) in which all ageate optimally satisfied simulta-
neously. This ideal point is an upper bound of the set of Bareh-dominated solutions.
Tchebycheff criterion is a standard tool for generating poymise solutions in multiob-
jective optimization [19]. It can be seen as a sophisticaticthe minimax regret criterion
using coefficient defined by; = w,/(u(x?)—u’) wherew; is the weight attached to agent
j andul = minge 4 u*(27). The terml/(u(2?) — u!) is a normalization factor. It can be
used as a correcting factor when the range of utility valuesched to solutions signif-
icantly varies from an agent to another. It can also be usefidn the agents’utilities
are not commensurate. The weights allow to modulate theri@pce of agents and to
control the type of compromise. As shown in [20], any Pargitnoal solution can be
obtained by optimizing the Tchebycheff criterion with apriate choices ab;.

The above aggregation functions are weakly increasinty @ach component, which
only ensures weak-Pareto optimality. However, they migttllghtly modified to become
strictly increasing (so as to generate Pareto-optimatisnis). For example, itis sufficient
to add (resp. subtract)y",_, u'(z) for maximization (resp. minimizationy, being an
arbitrarily small positive value. We discuss in the nextiggcthe optimization of each of
the above functions to determine the better compromiseisnkibetween agents.

3 Algorithms

3.1 The ranking approach for compromise search

Determining the optimal compromise solution among agesisgua function of type
u(x) = h(u'(z),...,u™(x)) is not trivial because we face two difficulties: the combina-
torial nature ofA’ and the possible non-decomposability of functio. is not linear).
For example, ifh = min (maximin utility), the determination of the best comproeis
solution is NP-hard as soon as there are- 3 attributes,n» > 2 agents, each having a
GAI utility function including at least one factor of sizeagter than or equal to 3. This
can be proved using a reduction from 3-SAT. Indeed, considenstance of 3-SAT with
n variables andn clauses. To each variable, we associate a Boolean atttlyuaed to
any claus&”; over variables we associate an agent with Boolean funatioRor instance
C; = zVyV -z will be represented by functiow (x,y,z) = 1— (1 —z)(1—y)z. Hence,
the optimal value of the maximin optimization problem oveér= X; x --- x X,, with
functionsu!, ..., u™ is 1 if and only if the initial 3-SAT problem is feasible. Sitaui re-
ductions might be proposed for minimax regret and Tchelychigeria which establish
the complexity of the search of a good compromise solutiamoviercome the problem
and be able to optimize a non-decomposable functiam X', we suggest resorting to a

7
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ranking approach based on the following 3-stage procedure:

Step 1: scalarization. we reformulate the problem as a monoagent problem, using an
overall criteriong(z) defined as a linear combination of individual utilities. 8ucfunc-

tion is easier to optimize thayi since, as the sum of GAI functions, it is also a GAI
function.

Step 2: ranking. we enumerate the solutions af from best to worst using function
g(x). Here, an efficient ranking algorithm exploiting the GAlwstture ofg to speed-up
enumeration is needed. This point will be the core of sulme&.2.

Step 3: stopping condition.we need to stop enumeration as early as possible due to the
size of setY. This can be done efficiently using the following propositio

Proposition 1 Consider two functiong and g defined fronR™ into R, to be minimized
overX, and such thaff (z) > g(x) for all z € X. Leta!, ..., 2* be the ordered sequence
of k-best solutions generated during Step 2 with functipif g(z*) > f(x*) with z* =
Argmin_, . f(«*) thenz* is optimal for f, i.e. f(z*) = min,ex f(z).

Proof. For anyi > k, we have, by constructionf(z') > g(z%) > g(z*). Since
g(z*) > f(z*) by hypothesis we gef(x?) > f(x*) which shows that no solution found
after stepk in the ranking can improve the current best solutitn O

This simple result can be applied to criteria introducechia previous section. The fol-
lowing table givesy, the GAI approximation to be used, for any criterificonsidered:

criterion f(z) g(x)

maximin —min; (v (x)) —1/m} ;v (x)
minimax regret max;(r/(x))  1/m ) rj(z)
Tchebycheff  max;(w;r/(z)) 1/m 3 w;r;(x)

Sincel/m )~ r;(x) only differs from—1/m >".«/(x) by a constant term, the same
ranking algorithm can be used for maximin and minimax regréeria. Tchebycheff
is just an extension using weighis and does not raise additional issues. Let us now
explain how to proceed to rank elementstofvith a GAI functiong (step 2).

3.2 Ranking using a GAI function

The ranking procedure we present in this subsection heaslilgs on another one de-
signed to answechoice queriesthat is, to find the preferred tuple ovat. To avoid
exhaustive pairwise comparisons which would be too praiaéddue to the combinato-
rial nature ofX’, both procedures take advantage of the structure of the @#&ark to
decompose the query problem into a sequence of local ogtiiois, hence keeping the

8
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computational cost of the overall ranking task at a very adihble level. We first briefly
present the choice algorithm and, then, derive the genen&ing procedure. The former
corresponds to solving:

zeX zeX

max u(xy,...,T,) :maXZui(:L’Zi). (1)

The optimum can be found efficiently by exploiting the foliog properties:

1. the max overXy,..., X, of u(Xy,...,X,), can be decomposed asaxy;, ...
maxy, u(X1,...,X,), and the order in which the max’s are performed is unim-
portant;

2. ifu(Xy,...,X,) can be decomposed &$) + ¢g() where f() does not depend on
X;, thenmaxy, [f() + g()] = f() + maxx, g();

3. in a GAl-net, the running intersection ensures that satdei contained in an outer
cliqgue( (i.e. a clique with at most one neighbor) but not contained’sneighbor
does not appear in the rest of the net.

Properties 2 and 3 suggest computing the max recursivelyr&tynfiaximizing over
the variables contained only in the outer cliques as onlyfantor is involved in these
computations, then adding the result to the factor of théja@ent clique, remove these
outer cliques and iterate until all cliques have been remoVéis leads to the following
algorithm:

Function Col | ect (cliqueC;, F)

01 for allC; in {cliques adjacent t@’; }\ F' in the GAl-net do

02 letS;; = C; N C; be the separator betweéh andC

03 letu; be defined or;; by Col | ect (Cj, {C})

04 substitutes;(zc;,) by ui(zc;) + uj(zs,;) forall zc,'s

05 done

06 if F # () then

07 letC; be the only cliques F and letS;; = C; N C}

08 letM;(xs,;) = Argmax{u;(yc,) : ys,; = zs,; y and let
ui(vs,;) = wi(M](zs,;)) forall zg,, in HXkeSZ-]- Xk

09 store matrix\/;" in separatoiS;; and returnu;

10 endif

This function recursively reduces Eq. (1) by removing onebg all the subutilities
(by extracting their max). Thus, calling functid@ol | ect on any clique returns the
value of the utility of the most preferred element. For ins& on the example of Figure 1,
applyingCol | ect (BCD, () results in the message propagations described in Figure 2,
where:
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ui(B) = max4 ui (A, B), My(B) = Argmax,u; (A, B)

u3(C) = maxg us(C, E), My (C) = Argmax,us(C, E)

ui(B) = maxg us(B, G), M5(B) = Argmax,us (B, G)
uy(B,D,F) =u4(B,D,F)+ u:(B)

w;(B,D)=maxp u)(B,D,F), My(B,D)=Argmax.u,(B,D,F)

u3(C)
ui(B) M(C)
Ml(B) I —

BD}-GBDE BB

M4<B7D) MS(B)
ui(B, D) uz(B)

Figure 2: The Collect phase

At the end of the collectmaxpgcp ui(B,C, D) = us(B,C, D) + ui(B) + u(C) +
us(B, D) corresponds to the maximum value of the utility function.t e ¢, d) be a
solution tomaxgep ui(B, C, D). Then(b, ¢, d) is obviously a projection oy x C' x D
of a most preferred element &f. But the corresponding utility |33(b ¢ d) + ul(b) +

u3(€)+uaq (b, d) which, in turn, is obtained aMl(b) Ms,(¢) andM, (b, d). Finally, My(b, d)
corresponds to utility valuey(b, ¢, d) + uZ(b), obtained atM;(b). Consequently, the
optimal tuple can be obtained by propagating recursivedyatitributes instantiations (the
M;’s) from cligue BC'D toward the outer cliques, as shown on Figure 3. This leadeeto t
following algorithm:

Function I nst anti at e(C;, F, zr)

01 if F = () then

02 letzy, = ArgmaX{u;(zc;) : zc; € [[x, co Xk}
03 else

04 letC; be the only cliques F' and Ieta:*cj =2xF
05 IetSZ-j =C;N Cj andDij = CZ\CJ

06 letzry, = ArgmaxX{ui(«y, ,yp,;)}

07 endif

08 let{C;,,...,C;, } ={cliques adjacent t6; } \ '
09 foreachyj varying from 1 tok do

10 letz’s =1 nstanti ate (Cy;, {Ci}, )

11 lety" be tuplex’s without the values of the attributes i),
12 return tuple(z, , 4", ..., y')

10
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[5DHGoE{BHES)
b,d b

Figure 3: The Instantiation phase

Function Opt i mal _choi ce(GAl-net)

01 LetCy be any clique in the GAl-net

02 callCol | ect (Cy, 0) and letz* = | nst ant i at e(Cy,0,0,0)
03 return the optimal choice*

As for ranking, consider the example of Fig. 2. Assume Matti mal _choi ce
returnedz*=(a, b, ¢, d, ¢, f,§). Then, the next best tuple, say, differs fromz* by at
least one attribute, i.e. there exists a cligjesuch that the projection af* on C; differs
from that ofz*. As we do not know on whicly; the difference occurs, we can test all the
possibilities and partition the feasible space into:

Set 1:(B,C, D) # (b ¢, d)
Set 2:(B,C, D) = (b, ¢,d)
Set3:(B,C, D, F) = (b,¢,d,
Set4:(B,C,D,F,G) = (b, ¢

Set5:(B,C,D,E, F,G)=(b,¢,d,é, f,§) and(A,B) # (a, b)

The construction of the above sets follows the decompwosévocated by [16]: the
cliques in which the attributes are constrained to be difiefrom those ofc* are enu-
merated in the order in which the cliques are called by fumd@ol | ect within the call
toOpti mal _choi ce. Sets 1 to 5 above thus correspond to a collect phase enciognte
successively clique§B, C, D), (B, D, F), (B,G), (C, E) and(A, B). Finding the best
element in a given Set is essentially similar to finding thierogl choice except that lines
02 and 06 in functioh nst ant i at e need be modified to avoid some instantiations (like
(b, ¢,d)).

Assume now that the second best tuple, 8ay: (a2, b2, ¢,d2, ¢, f, ¢?), is the optimal
choice of Set 1. Then the next tuple?, is the best tuple that is different from bath
andz. It can be retrieved using the same processz?Ais in Set 1, we should substitute
Set 1 by the sets below to exclud&and, then, iterate the same process:

11
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A

Set1.1(B,C, D) & {(b,¢,d), (b, ¢,d?)}

Set 1.2(B,C, D) = (b, ¢ d2) and(B D,F) # (b, d2, f)
Set1.3(B,C,D,F) = (b ¢,d )and( ,G) £ (Vg%
Set 1.4:B,C, D, F,G) = (b é,d?,f,g) d(C,E) £ (é
Set1.5(B,C,D,E, F, G)—(bQ,é,dQ,é,f,g) and

This justifies the following algorithm:

Function k- best (GAIl-net, k)
01 letz* be the tuple resulting fror@pt i mal _choi ce
02 letS = {Setsi} as described above and lgtest = ()
03 for each Set, let opt(Seti) be the optimal choice in Set
04 fori=2tok do
05 let Setj be an arbitrary element of
{Setj € S : opt(Setj) > opt(Setp), Setp € S}
06 letz?, theith best element, bept(Set;j)
07 addz’ to kbest and remove Set from S
08 substitute Setin S by setsp {z'} as described above
10 returnkbest

4 Numerical Tests

To evaluate our approach in practice, we have performedigsts on various instances
of the multiattribute multiagent search problem. We haveréded computation times and
the number of solutions generated before returning thengbttompromise solution for
each of the three criteria discussed in the paper. The erpats were performed on a
3.2GHz PC with a Java program.

4.1 Testdata

To run the experiments, we generated synthetic data for d@&bmposable preferences.
All GAl decompositions involved 20 variables, with 10 subtiés u,(x ) of domain size
|zz,| randomly drawn between 2 to 4. It does not seem realistic hsider higher-order
interactions as far as human preference modeling is coadésuch complex interaction
might actually be very difficult to assess in practice). Eagh domain variables were
randomly selected from the set of all variables. For vagaltihat were not selected in any
subutility function, we created unary subutilities. Nexg created 5 different utility func-
tions for the structure previously generated, represgrttia preferences of 5 agents. For
each subutility function: of an agentj, we first generated its maximum valuewx(u?),

in the intervall0, 1]. Then we uniformly generated the utility values for all cgofia-
tions ofw; in the intervall0, max(w])]. This gave us 5 different GAl-decomposable utility
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functions with the same structure. We generated test dataf@bles of domain sizes 2,
5 and 10, resp. giving problems wit’, 5*° and10%° possible configurations.

4.2 Results

The average resultg:(times in ms and#gen: number of generated solutions) over 100
runs are summarized below:

Domain maximin  |minimax Regret Tchebycheff
size  t(ms) F#gen | t(MS) Fgen | t(MS) FHgen
2 371 9145| 118 2437| 96 1916
5 2784 60020 1100 22364 1052 21640
10 4703 99709 3934 78518 3104 60479

As it can be seen, we obtained average times ranging fromo0417tseconds, de-
pending on the compromise criterion and the attributes dosize. Finding the maximin
compromise solution required the enumeration of more golgtthan minimax Regret
and Tchebycheff. However, we can see that the most promfaetdr is the attributes
domain size. Fortunately, the number of elements that neeshbmerated before return-
ing the solution increases at a much lower rate than the @noBlze. For instance, from
20 attributes of domain size 5 to 20 attributes of domain $zethe number of configu-
rations is multiplied by ovet0° while, at the same time, the average number of solutions
enumerated increased by a factor less than 3. We also ranregpés where each agent
had a different GAlI decomposable preference structurehdsd cases, to generate the
aggregated GAIl network we triangulated the Markov grapluaed by the subutilities
of all the agents. The more the discrepancy between thesgguottures, the larger the
cliques, and the less efficient our algorithm. Whenever thé @@work structures were
very different, it turned out to be impossible to conduct téweking procedure due to the
too large amount of memory required to fill the cliques. Hogrethere are many practi-
cal situations where interacting attributes are almosttidal for all agents, the difference
between individual utilities being mainly due to discrepias in utility values.

5 Conclusion

In this paper we have shown how GAl-networks could be usedonbyt to efficiently
perform individual recommendations (choice and rankinggembinatorial sets, but also
to solve collective recommendation requests for multiagegision problems. The pro-
posed procedure allows the determination of various typesmpromise solutions and
remains very efficient provided the number of agents is notingportant. It might be
used in many real-world situations like preference-bassiigsh of an holidays-trip for a
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group, preference-based configuration of a car for the familfor content-based movie
recommendation tasks for a group of friends.

Further sophistication of our approach are possible, fsaimce using AND/OR trees
[9, 15] within the GAI structure instead of computing the Wha;’s during the collect
phases and performing substitutions of whole utility tabl&he ranking algorithm can
therefore be improved using a dynamic selection of the eligssed in argument to the
collect/instantiation phases (depending on the tupldsacao far). This is left for further
research.
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