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Abstract

This paper deals with preference representation and aggregation in combinatorial
domains. We assume that the set of alternatives is defined as the cartesian product of
finite domains and that agents’ preferences are represented by generalized additive
decomposable (GAI) utility functions. GAI functions allow an efficient representa-
tion of interactions between attributes while preserving some decomposability ofthe
model. We address the preference aggregation problem and consider several crite-
ria to define the notion of compromise solution (maxmin, minmaxregret, weighted
Tchebycheff distance). For each of them, we propose a fast procedure for the exact
determination of the optimal compromise solution in the product set. This proce-
dure relies on a ranking algorithm enumerating solutions according to the sumof the
agents individual utilities until a boundary condition is reached. We provideresults
of numerical experiments to highlight the practical efficiency of our procedure.
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1 Introduction

The development of decision support systems and web recommender systems has stressed
the need for models that can handle users preferences and perform preference-based rec-
ommendation tasks. In this respect, current works in preference modeling and decision
theory aim at developing compact preference models achieving a good trade-off between
two conflicting aspects: i) the need for models flexible enough to describe sophisticated
decision behaviors; and ii) the practical necessity of keeping the elicitation effort at an
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admissible level as well as the need for fast procedures to solve preference-based opti-
mization problems on large sets of alternatives. As an example, let us mention interactive
decision support systems on the web where the preferred solution must be found among
a combinatorial set of possibilities. This kind of application motivates the current in-
terest for qualitative preference models and compact representations like CP-nets [3, 4]
and mCP-nets [18], their extension to the multiagent case. Such models are deliberately
simple and flexible enough to be integrated efficiently in interactive recommendation sys-
tems; the preferences of the agents must be captured using only a few questions so as to
perform a fast preference-based search over the possible items.

In other applications (e.g. configuration system, fair allocation of resources, combi-
natorial auctions), more time can be spent in the elicitation stage in order to get a finer
description of preferences. In such cases, utilities can significantly outperform qualitative
models due to their higher descriptive power [2]. Moreover,the use of cardinal utilities in
the multiagent setting allows to escape the framework of Arrow’s impossibility theorem
which considerably restricts aggregation possibilities [17].

In the literature, different quantitative models based on utilities have been developed to
take into account different preference structures. The most widely used model assumes a
special kind of independence among attributes called “mutual preferential independence”
which ensures that the preferences are representable by an additive utility [14]. Such
decomposability makes the elicitation process very fast and simple. However, in practice,
preferential independence may fail to hold as it rules out any interaction among attributes.
Some generalizations have thus been investigated. For instanceutility independenceon
every attribute leads to a more sophisticated form calledmultilinear utilities[1]. The latter
are more general than additive utilities but they still cannot cope with many interactions
between attributes. To increase the descriptive power of such models, GAI (generalized
additive independence) decompositions have been introduced by [10], that allow more
general interactions between attributes [1] while preserving some decomposability. Such
a decomposition has been used to endow CP-nets with utility functions (UCP-nets) both
under uncertainty [2] and under certainty [5].

In the same direction [11, 6] propose a general procedure to assess GAI utilities in
decision under risk. This one is directed by the structure ofa graphical model called
a GAI-network and consists in a sequence of questions involving simple lotteries that
capture efficiently the basic features of the agent’s attitude towards risk. Recently the
elicitation of GAI models has been investigated in the context of decision making under
certainty. [12] thus proposes elicitation procedures relying on simple comparisons of
outcomes (e.g. questions involve only a subset of attributes or outcomes varying in only
few attributes). They also suggest efficient choice procedures to find the GAI-optimal
element in a product set, using classical propagation techniques used in the Bayesian net
literature.

In this paper, we address group decision making problems in similar contexts and we
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focus on the determination of a good compromise solution between agents. As usual in
works on preferences, we assume that the alternatives to be compared belong to a product
set the size of which prevents exhaustive enumeration. We assume that a GAI utility has
been elicited for each agent and we tackle the problem of performing efficient choices
for the group of agents. The paper is organized as follows: InSection 2, we discuss
individual and collective preference representation. After recalling some elements about
GAI models and their graphical representation we consider various aggregation criteria
to define the notion of compromise between agents. In Section3, we provide efficient
algorithms to determine the best compromise solution for the group of agents. Finally
Section 4 reports numerical results obtained on multiagentaggregation problems.

2 GAI utilities: from individual preference modeling to
collective decision making

Before describing GAI models, we shall introduce some notations. Throughout the paper,
% denotes an agent’s preference relation (a weak order) over some setX . x % y means
thatx is at least as good asy. ≻ refers to the asymmetric part of% and∼ to the symmetric
one. In practice,X is often described by a set of attributes. For simplicity, weassume that
X is the product set of their domains, although extensions to general subsets are possible.
In the rest of the paper, uppercase letters (possibly subscripted) such asA, B, X1 denote
attributes as well as their domains. Unless otherwise mentioned, (possibly superscripted)
lowercase letters denote values of the attribute with the same uppercase letters:x, x1

(resp.xi, x1
i ) are thus values ofX (resp.Xi). Subsection 2.1 concerns the representation

of the preference of a single agent. We will consider the multiagent decision problem in
Subsection 2.2.

2.1 Individual Preference Modeling

Under mild hypotheses [8], it can be shown that% is representable by a utility, i.e., there
exists a functionu : X 7→ R such thatx % y ⇔ u(x) ≥ u(y) for all x, y ∈ X . As
preferences are specific to each individual, utilities mustbe elicited for each agent, which
is impossible due to the combinatorial nature ofX . Moreover, in a recommendation
system with multiple regular users, storing explicitly foreach user the utility of every
element ofX is prohibitive.

Fortunately, agent’s preferences usually have an underlying structure induced by in-
dependencies among attributes that substantially decreases the elicitation effort and the
memory needed to store preferences. The simplest case is obtained when preferences
overX = X1 × · · · × Xn are representable by an additive utilityu(x) =

∑n

i=1 ui(xi)
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for anyx = (x1, . . . , xn) ∈ X . This model only requires to storeui(α) for anyα ∈ Xi,
i = 1, . . . , n. However, such decomposition in not always convenient because it rules
out interactions between attributes. When agents preferences are more complex, a more
elaborate model is needed as shown below:

Example 1 Consider a setX of menusx = (x1, x2, x3), with main coursex1 ∈ X1 =
{meat(M), fish(F )}, drink x2 ∈ X2 = {red wine (R), white wine(W )} and dessert
x3∈X3 = {cake(C), sorbet(S)}.

First case. Assume the agent’s preferences are well represented by an additive utility u
characterized by the following marginal utilities:u1(M) = 4; u1(F ) = 0; u2(R) = 2;
u2(W ) = 0; u3(C) = 1; u3(S) = 0. Then the utilities of the23 possible menusx(i)

follow:
u(x(1)) = u(M,R,C) = 7; u(x(2)) = u(M,R, S) = 6;
u(x(3)) = u(M,W,C) = 5; u(x(4)) = u(M,W,S) = 4;
u(x(5)) = u(F,R,C) = 3; u(x(6)) = u(F,R, S) = 2;
u(x(7)) = u(F,W,C) = 1; u(x(8)) = u(F,W, S) = 0;

which yields the following ordering:

x(1) ≻ x(2) ≻ x(3) ≻ x(5) ≻ x(4) ≻ x(6) ≻ x(7) ≻ x(8).

Second case. Assume that another agent’s ranking is:x(1) ≻ x(2) ≻ x(7) ≻ x(8) ≻
x(3) ≻ x(4) ≻ x(5) ≻ x(6). This can be explained by: i) a high priority granted to
matching wine with main course (red wine for meat, white one for fish); ii) at a lower
level of priority, meat is preferred to fish; and iii) cake is preferred to sorbet (ceteris
paribus).

Although not irrational, such preferences are not representable by an additive utility
becausex(1) ≻ x(5) ⇒ u1(M) > u1(F ) whereasx(7) ≻ x(3) ⇒ u1(F ) > u1(M).
However, this does not rule out less disaggregated forms of additive decompositions such
as: u(x) = u1,2(x1, x2) + u3(x3). For example,u1,2(M,R) = 6, u1,2(F,W ) = 4,
u1,2(M,W ) = 2, u1,2(F,R) = 0, u3(C) = 1, u3(S) = 0 would represent%.

Third case. Assume that the ranking of a third agent is:x(2) ≻ x(1) ≻ x(7) ≻ x(8) ≻
x(4) ≻ x(3) ≻ x(5) ≻ x(6). Her preference system is actually a refinement of the previous
one. She prefers cake to sorbet when the main course is fish but the opposite obtains when
the main course is meat.

In this case, using similar arguments, it can be shown that theprevious decomposition
does not fit anymore due to the interaction between attributesX1 andX3. However it is
interesting to remark that preferences can still be represented by a decomposable utility
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of the form:u(x) = u1,2(x1, x2) + u1,3(x1, x3), setting for instance:

u1,2(M ,R)=6; u1,2(F ,W )=4; u1,2(M ,W )=2; u1,2(F ,R)=0;
u1,2(M ,C)=0; u1,2(M ,S)=1; u1,2(F ,C)=1; u1,2(F ,S)=0.

Such a decomposition over overlapping factors is called a GAI decomposition [1]. It
includes additive and multilinear decompositions as special cases, but it is much more
flexible since it does not make any assumption on the kind of interactions between at-
tributes. GAI decompositions can be defined more formally asfollows:

Definition 1 (GAI decomposition) Let X =
∏n

i=1 Xi. Let Z1, . . . , Zk be some subsets
of N = {1, . . . , n} such thatN = ∪k

i=1Zi. For everyi, let XZi
=

∏
j∈Zi

Xj. Utility u(·)
representing% is GAI-decomposable w.r.t. theXZi

’s iff there exist functionsui : XZi
7→ R

such that:
u(x) =

∑k

i=1 ui(xZi
), for all x = (x1, . . . , xn) ∈ X ,

wherexZi
denotes the tuple constituted by thexj ’s, j ∈ Zi.

GAI decompositions can be represented by graphical structures we callGAI networks
[11] which are essentially similar to the junction graphs used for Bayesian networks [13,
7]:

Definition 2 (GAI network) Let X =
∏n

i=1 Xi. Let Z1, . . . , Zk be a covering ofN =

{1, . . . , n}. Assume that% is representable by a GAI utilityu(x) =
∑k

i=1 ui(xZi
) for

all x ∈ X . Then a GAI network representingu(·) is an undirected graphG = (V,E),
satisfying the following properties:

1. V = {XZ1
, . . . , XZk

};
2. For every(XZi

, XZj
) ∈ E, Zi∩Zj 6= ∅. For everyXZi

, XZj
s.t.Zi∩Zj = Tij 6= ∅,

there exists a path inG linking XZi
and XZj

s.t. all of its nodes contain all the
indices ofTij (Running intersection property).

Nodes ofV are calledcliques. Every edge(XZi
, XZj

) ∈ E is labeled byXTij
= XZi∩Zj

and is called aseparator.

Cliques are drawn as ellipses and separators as rectangles. In this paper, we shall only
be interested in GAI trees, i.e., in singly-connected GAI networks. As mentioned in [11],
this is not restrictive as general GAI nets can always be compiled into GAI trees. For any
GAI decomposition, by Definition 2 the cliques of the GAI network should be the sets of
variables of the subutilities. For instance, ifu(a, b, c, d, e, f, g) = u1(a, b) + u2(c, e) +
u3(b, c, d) + u4(b, d, f) + u5(b, g) then, as shown in Figure 1, the cliques are:AB, CE,
BCD, BDF , BG. By property 2 of Definition 2 the set of edges of a GAI network
can be determined by any algorithm preserving the running intersection property (see the
Bayesian network literature [7]).
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BCD
C CE

BDF B BG
BAB

BD

Figure 1: A GAI tree

2.2 Collective Decision Making

We consider now a multiagent decision problem involving a set A={1, . . . ,m} of agents.
We assume that, for each agentj ∈ A, a GAI utility uj representing her preferences over
X has been elicited. For simplicity, we assume that each agentuse the same absolute util-
ity scale, so as to have commensurability. Then, a classicalway of defining the best com-
promise solution for the group of agents is to define an overall utility u(x) which gives, for
anyx ∈ X , the value ofx for the group. Thus we consideru(x) = h(u1(x), . . . , um(x))
whereh is an aggregation function implicitly defining the type of compromise seek in
X . The best compromise solution is obtained by optimizingu overX . Whenh is non-
decreasing in each component,u-optimal solutions are weakly Pareto-optimal (i.e. there
is no other solution improving the satisfaction of all the agents). Moreover, ifh is strictly
increasing in each component thenu-optimal solutions are Pareto-optimal (i.e. there is no
other solution improving the satisfaction of an agent without decreasing the satisfaction
of another).

If h is linear, thenu is the sum of GAI utilities and, as such, is itself a GAI utility. Then
the problem reduces to a monoagent decision problem with a GAI utility. However, linear
aggregation functions are not good candidates as they may lead to choose a solution hav-
ing a very ill-balanced utility profile. For example, consider a problem with 3 agents and
assume thatX = {x, y, z, w} with u1(x) = 0, u2(x) = u3(x) = 100, u2(y) = 0, u1(y) =
u3(y) = 100, u3(z) = 0, u1(z) = u2(z) = 100, u1(w) = u2(w) = u3(w) = 65. All
solutions exceptw are unacceptable for at least one agent. Thusw is the only possible
compromise solution; yet it cannot be obtained by maximizing a linear combination (with
positive coefficients) of agent utilities. To find better compromise solutions, the following
non-linear criteria seem more adequate:

The maximin criterion: u(x) = minj∈A uj(x), to be maximized overX . This criterion
amounts to maximize the satisfaction of the least satisfied agent.

The minimax Regret criterion: u(x) = maxj∈A rj(x), whererj = u(xj) − uj(x), and
xj = Argmaxx∈Xuj(x) (i.e. xj denotes the optimal solution for agentj). This criterion is
to be minimized overX . It represents the maximal regret among agents, the regretrj of
agentj being defined as the utility gap betweenx andxj.

The Tchebycheff criterion: u(x) = maxj∈A wjr
j(x) wherewj are positive coefficients.

This criterion is to be minimized overX . It represents the distance (w.r.t. a weighted
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Tchebycheff norm) between two utility profiles:(u1(x), . . . , un(x)) obtained with so-
lution x, and the ideal utility profile(u1(x1), . . . , um(xm)) corresponding to a fictitious
ideal situation (generally not feasible) in which all agents are optimally satisfied simulta-
neously. This ideal point is an upper bound of the set of Pareto non-dominated solutions.
Tchebycheff criterion is a standard tool for generating compromise solutions in multiob-
jective optimization [19]. It can be seen as a sophistication of the minimax regret criterion
using coefficient defined bywj = ωj/(u(xj)−uj

∗) whereωj is the weight attached to agent
j anduj

∗ = mink∈A uk(xj). The term1/(u(xj) − uj
∗) is a normalization factor. It can be

used as a correcting factor when the range of utility values attached to solutions signif-
icantly varies from an agent to another. It can also be usefulwhen the agents’utilities
are not commensurate. The weights allow to modulate the importance of agents and to
control the type of compromise. As shown in [20], any Pareto optimal solution can be
obtained by optimizing the Tchebycheff criterion with appropriate choices ofωj.

The above aggregation functions are weakly increasing w.r.t. each component, which
only ensures weak-Pareto optimality. However, they might be slightly modified to become
strictly increasing (so as to generate Pareto-optimal solutions). For example, it is sufficient
to add (resp. subtract)ǫ

∑
i∈A ui(x) for maximization (resp. minimization),ǫ being an

arbitrarily small positive value. We discuss in the next section the optimization of each of
the above functions to determine the better compromise solutions between agents.

3 Algorithms

3.1 The ranking approach for compromise search

Determining the optimal compromise solution among agents using a function of type
u(x) = h(u1(x), . . . , um(x)) is not trivial because we face two difficulties: the combina-
torial nature ofX and the possible non-decomposability of functionu (h is not linear).
For example, ifh = min (maximin utility), the determination of the best compromise
solution is NP-hard as soon as there aren ≥ 3 attributes,m ≥ 2 agents, each having a
GAI utility function including at least one factor of size greater than or equal to 3. This
can be proved using a reduction from 3-SAT. Indeed, consideran instance of 3-SAT with
n variables andm clauses. To each variable, we associate a Boolean attributeXi and to
any clauseCj over variables we associate an agent with Boolean functionuj. For instance
Cj = x∨y∨¬z will be represented by functionuj(x, y, z) = 1−(1−x)(1−y)z. Hence,
the optimal value of the maximin optimization problem overX = X1 × · · · × Xn with
functionsu1, . . . , um is 1 if and only if the initial 3-SAT problem is feasible. Similar re-
ductions might be proposed for minimax regret and Tchebycheff criteria which establish
the complexity of the search of a good compromise solution. To overcome the problem
and be able to optimize a non-decomposable functionf onX , we suggest resorting to a
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ranking approach based on the following 3-stage procedure:

Step 1: scalarization. we reformulate the problem as a monoagent problem, using an
overall criteriong(x) defined as a linear combination of individual utilities. Such a func-
tion is easier to optimize thanf since, as the sum of GAI functions, it is also a GAI
function.

Step 2: ranking. we enumerate the solutions ofX from best to worst using function
g(x). Here, an efficient ranking algorithm exploiting the GAI structure ofg to speed-up
enumeration is needed. This point will be the core of subsection 3.2.

Step 3: stopping condition.we need to stop enumeration as early as possible due to the
size of setX . This can be done efficiently using the following proposition.

Proposition 1 Consider two functionsf andg defined fromR
n into R, to be minimized

overX , and such thatf(x) ≥ g(x) for all x ∈ X . Letx1, ..., xk be the ordered sequence
of k-best solutions generated during Step 2 with functiong, if g(xk) ≥ f(x∗) with x∗ =
Argmini=1,...,kf(xk) thenx∗ is optimal forf , i.e. f(x∗) = minx∈X f(x).

Proof. For any i > k, we have, by construction,f(xi) ≥ g(xi) ≥ g(xk). Since
g(xk) ≥ f(x∗) by hypothesis we getf(xi) ≥ f(x∗) which shows that no solution found
after stepk in the ranking can improve the current best solutionx∗. 2

This simple result can be applied to criteria introduced in the previous section. The fol-
lowing table givesg, the GAI approximation to be used, for any criterionf considered:

criterion f(x) g(x)

maximin −minj(u
j(x)) −1/m

∑
j uj(x)

minimax regret maxj(r
j(x)) 1/m

∑
j rj(x)

Tchebycheff maxj(wjr
j(x)) 1/m

∑
j wjrj(x)

Since1/m
∑

j rj(x) only differs from−1/m
∑

j uj(x) by a constant term, the same
ranking algorithm can be used for maximin and minimax regretcriteria. Tchebycheff
is just an extension using weightswj and does not raise additional issues. Let us now
explain how to proceed to rank elements ofX with a GAI functiong (step 2).

3.2 Ranking using a GAI function

The ranking procedure we present in this subsection heavilyrelies on another one de-
signed to answerchoice queries, that is, to find the preferred tuple overX . To avoid
exhaustive pairwise comparisons which would be too prohibitive due to the combinato-
rial nature ofX , both procedures take advantage of the structure of the GAI network to
decompose the query problem into a sequence of local optimizations, hence keeping the
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computational cost of the overall ranking task at a very admissible level. We first briefly
present the choice algorithm and, then, derive the general ranking procedure. The former
corresponds to solving:

max
x∈X

u(x1, . . . , xn) = max
x∈X

∑

i

ui(xZi
). (1)

The optimum can be found efficiently by exploiting the following properties:

1. the max overX1, . . . , Xn of u(X1, . . . , Xn), can be decomposed asmaxX1
. . .

maxXn
u(X1, . . . , Xn), and the order in which the max’s are performed is unim-

portant;

2. if u(X1, . . . , Xn) can be decomposed asf() + g() wheref() does not depend on
Xi, thenmaxXi

[f() + g()] = f() + maxXi
g();

3. in a GAI-net, the running intersection ensures that a variable contained in an outer
cliqueC (i.e. a clique with at most one neighbor) but not contained inC ’s neighbor
does not appear in the rest of the net.

Properties 2 and 3 suggest computing the max recursively by first maximizing over
the variables contained only in the outer cliques as only onefactor is involved in these
computations, then adding the result to the factor of their adjacent clique, remove these
outer cliques and iterate until all cliques have been removed. This leads to the following
algorithm:

Function Collect(cliqueCi, F )
01 for allCj in {cliques adjacent toCi}\F in the GAI-net do
02 letSij = Ci ∩ Cj be the separator betweenCi andCj

03 letu∗
j be defined onSij by Collect(Cj , {Ci})

04 substituteui(xCi
) by ui(xCi

) + u∗
j (xSij

) for all xCi
’s

05 done
06 if F 6= ∅ then
07 letCj be the only clique∈ F and letSij = Ci ∩ Cj

08 letM∗
i (xSij

) = Argmax{ui(yCi
) : ySij

= xSij
} and let

u∗
i (xSij

) = ui(M
∗
i (xSij

)) for all xSij
in

∏
Xk∈Sij

Xk

09 store matrixM∗
i in separatorSij and returnu∗

i

10 endif

This function recursively reduces Eq. (1) by removing one byone all the subutilities
(by extracting their max). Thus, calling functionCollect on any clique returns the
value of the utility of the most preferred element. For instance, on the example of Figure 1,
applyingCollect(BCD, ∅) results in the message propagations described in Figure 2,
where:
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u∗
1(B) = maxA u1(A,B), M1(B) = ArgmaxAu1(A,B)

u∗
2(C) = maxE u2(C,E), M2(C) = ArgmaxEu2(C,E)

u∗
5(B) = maxG u5(B,G), M5(B) = ArgmaxGu5(B,G)

u′
4(B,D, F ) = u4(B,D, F ) + u∗

5(B)
u∗

4(B,D)=maxF u′
4(B,D,F ), M4(B,D)=ArgmaxF u′

4(B,D,F )

BCD
CE

BDF B BG
BAB

BD

C

M4(B,D)
u∗

4(B,D)
M5(B)
u∗

5(B)

u∗
1(B)

M1(B)

u∗
2(C)

M2(C)

Figure 2: The Collect phase

At the end of the collect,maxBCD u∗
3(B,C,D) = u3(B,C,D) + u∗

1(B) + u∗
2(C) +

u4(B,D) corresponds to the maximum value of the utility function. Let (b̂, ĉ, d̂) be a
solution tomaxBCD u∗

3(B,C,D). Then(b̂, ĉ, d̂) is obviously a projection onB × C × D
of a most preferred element ofX . But the corresponding utility isu3(b̂, ĉ, d̂) + u∗

1(b̂) +
u∗

2(ĉ)+u4(b̂, d̂) which, in turn, is obtained atM1(b̂), M2(ĉ) andM4(b̂, d̂). Finally,M4(b̂, d̂)
corresponds to utility valueu4(b̂, ĉ, d̂) + u∗

5(b̂), obtained atM5(b̂). Consequently, the
optimal tuple can be obtained by propagating recursively the attributes instantiations (the
Mi’s) from cliqueBCD toward the outer cliques, as shown on Figure 3. This leads to the
following algorithm:

Function Instantiate(Ci, F, xF )
01 if F = ∅ then
02 letx∗

Ci
= Argmax{ui(xCi

) : xCi
∈

∏
Xk∈Ci

Xk}

03 else
04 letCj be the only clique∈ F and letx∗

Cj
= xF

05 letSij = Ci ∩ Cj andDij = Ci\Cj

06 letx∗
Ci

= Argmax{ui(x
∗
Sij

, yDij
)}

07 endif
08 let{Ci1 , . . . , Cik} = {cliques adjacent toCi}\F
09 foreachj varying from 1 tok do
10 letxij = Instantiate (Cij , {Ci}, x∗

Ci
)

11 letyij be tuplexij without the values of the attributes inSij

12 return tuple(x∗
Ci

, yi1 , . . . , yik)
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BCD
CE

BDF B BG
BAB

BD

C

b̂, d̂ b̂

b̂
ĉ

Figure 3: The Instantiation phase

Function Optimal choice(GAI-net)
01 LetC0 be any clique in the GAI-net
02 callCollect(C0, ∅) and letx∗ = Instantiate(C0,∅,∅,∅)
03 return the optimal choicex∗

As for ranking, consider the example of Fig. 2. Assume thatOptimal choice
returnedx∗=(â, b̂, ĉ, d̂, ê, f̂ , ĝ). Then, the next best tuple, sayx2, differs fromx∗ by at
least one attribute, i.e. there exists a cliqueCi such that the projection ofx2 onCi differs
from that ofx∗. As we do not know on whichCi the difference occurs, we can test all the
possibilities and partition the feasible space into:
Set 1:(B,C,D) 6= (b̂, ĉ, d̂)

Set 2:(B,C,D) = (b̂, ĉ, d̂) and (B,D, F ) 6= (b̂, d̂, f̂)

Set 3:(B,C,D, F ) = (b̂, ĉ, d̂, f̂) and(B,G) 6= (b̂, ĝ)

Set 4:(B,C,D, F,G) = (b̂, ĉ, d̂, f̂ , ĝ) and(C,E) 6= (ĉ, ê)

Set 5:(B,C,D,E, F,G)=(b̂, ĉ, d̂, ê, f̂ , ĝ) and(A,B) 6=(â, b̂)

The construction of the above sets follows the decomposition advocated by [16]: the
cliques in which the attributes are constrained to be different from those ofx∗ are enu-
merated in the order in which the cliques are called by functionCollect within the call
toOptimal choice. Sets 1 to 5 above thus correspond to a collect phase encountering
successively cliques(B,C,D), (B,D, F ), (B,G), (C,E) and(A,B). Finding the best
element in a given Set is essentially similar to finding the optimal choice except that lines
02 and 06 in functionInstantiate need be modified to avoid some instantiations (like
(b̂, ĉ, d̂)).

Assume now that the second best tuple, sayx2 = (a2, b2, ĉ, d2, ê, f̂ , g2), is the optimal
choice of Set 1. Then the next tuple,x3, is the best tuple that is different from bothx∗

andx2. It can be retrieved using the same process. Asx2 is in Set 1, we should substitute
Set 1 by the sets below to excludex2 and, then, iterate the same process:

11
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Set 1.1:(B,C,D) 6∈ {(b̂, ĉ, d̂), (b2, ĉ, d2)}

Set 1.2:(B,C,D) = (b2, ĉ, d2) and(B,D, F ) 6= (b2, d2, f̂)

Set 1.3:(B,C,D, F ) = (b2, ĉ, d2, f̂) and(B,G) 6= (b2, g2)

Set 1.4:(B,C,D, F,G) = (b2, ĉ, d2, f̂ , g2) and(C,E) 6= (ĉ, ê)

Set 1.5:(B,C,D,E, F,G)=(b2,ĉ,d2,ê,f̂ ,g2) and(A,B) 6=(a2,b2)

This justifies the following algorithm:

Function k-best(GAI-net,k)
01 letx∗ be the tuple resulting fromOptimal choice
02 letS = {Setsi} as described above and letkbest = ∅
03 for each Seti, let opt(Seti) be the optimal choice in Seti
04 for i = 2 tok do
05 let Setj be an arbitrary element of

{Setj ∈ S : opt(Setj) ≥ opt(Setp), Setp ∈ S}
06 letxi, theith best element, beopt(Setj)
07 addxi to kbest and remove Setj from S
08 substitute Setj in S by sets6⊇ {xi} as described above
10 returnkbest

4 Numerical Tests

To evaluate our approach in practice, we have performed experiments on various instances
of the multiattribute multiagent search problem. We have recorded computation times and
the number of solutions generated before returning the optimal compromise solution for
each of the three criteria discussed in the paper. The experiments were performed on a
3.2GHz PC with a Java program.

4.1 Test data

To run the experiments, we generated synthetic data for GAI-decomposable preferences.
All GAI decompositions involved 20 variables, with 10 subutilities ui(xZi

) of domain size
|xZi

| randomly drawn between 2 to 4. It does not seem realistic to consider higher-order
interactions as far as human preference modeling is concerned (such complex interaction
might actually be very difficult to assess in practice). Eachui’s domain variables were
randomly selected from the set of all variables. For variables that were not selected in any
subutility function, we created unary subutilities. Next,we created 5 different utility func-
tions for the structure previously generated, representing the preferences of 5 agents. For
each subutility functionuj

i of an agentj, we first generated its maximum valuemax(uj
i ),

in the interval[0, 1]. Then we uniformly generated the utility values for all configura-
tions ofuj

i in the interval[0, max(uj
i )]. This gave us 5 different GAI-decomposable utility

12
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functions with the same structure. We generated test data for variables of domain sizes 2,
5 and 10, resp. giving problems with220, 520 and1020 possible configurations.

4.2 Results

The average results (t: times in ms and#gen: number of generated solutions) over 100
runs are summarized below:

Domain maximin minimax Regret Tchebycheff
size t(ms) #gen t(ms) #gen t(ms) #gen
2 371 9145 118 2437 96 1916
5 2784 60020 1100 22364 1052 21640
10 4703 99709 3934 78518 3104 60479

As it can be seen, we obtained average times ranging from 0.1 to 4.7 seconds, de-
pending on the compromise criterion and the attributes domain size. Finding the maximin
compromise solution required the enumeration of more solutions than minimax Regret
and Tchebycheff. However, we can see that the most prominentfactor is the attributes
domain size. Fortunately, the number of elements that need be enumerated before return-
ing the solution increases at a much lower rate than the problem size. For instance, from
20 attributes of domain size 5 to 20 attributes of domain size10, the number of configu-
rations is multiplied by over106 while, at the same time, the average number of solutions
enumerated increased by a factor less than 3. We also ran experiments where each agent
had a different GAI decomposable preference structure. In these cases, to generate the
aggregated GAI network we triangulated the Markov graph induced by the subutilities
of all the agents. The more the discrepancy between the agents structures, the larger the
cliques, and the less efficient our algorithm. Whenever the GAI network structures were
very different, it turned out to be impossible to conduct theranking procedure due to the
too large amount of memory required to fill the cliques. However, there are many practi-
cal situations where interacting attributes are almost identical for all agents, the difference
between individual utilities being mainly due to discrepancies in utility values.

5 Conclusion

In this paper we have shown how GAI-networks could be used notonly to efficiently
perform individual recommendations (choice and ranking) on combinatorial sets, but also
to solve collective recommendation requests for multiagent decision problems. The pro-
posed procedure allows the determination of various types of compromise solutions and
remains very efficient provided the number of agents is not too important. It might be
used in many real-world situations like preference-based design of an holidays-trip for a
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group, preference-based configuration of a car for the family, or for content-based movie
recommendation tasks for a group of friends.

Further sophistication of our approach are possible, for instance using AND/OR trees
[9, 15] within the GAI structure instead of computing the whole u∗

i ’s during the collect
phases and performing substitutions of whole utility tables. The ranking algorithm can
therefore be improved using a dynamic selection of the clique passed in argument to the
collect/instantiation phases (depending on the tuples ranked so far). This is left for further
research.
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