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The Element of Surprise

To help combat the terrorism threat, officials at Los Angeles Inter
Airport are introducing a bold new idea into their arsenal: random
of security checkpoints. Can game theory help keep us safe?
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Sept. 28, 2007 - Security officials et Los Angeles
International Airport now have a new weapon in
therr fight against terrorism: complete, baffling
randomness. Anxious to thwart future terror
attacks in the early stages while plotters are
casing the airport, LAX security patrols have
begun using a new software program called
ARMOR, NEWSWEEK has learned, to make the
placement of security chackpoints completely Security forces work the sidewalk
unpredictable. Now all airport security officials

have to do is press a button labeled

"Randomize," and they can throw a sort of digital cloak of invisibility

over where they place the cops' antiterror checkpoints on any given

day.




What is game theory?

« Game theory studies settings where multiple parties
(agents) each have
— different preferences (utility functions),

— different actions that they can take

« Each agent’s utility (potentially) depends on all agents’
actions
— What is optimal for one agent depends on what other agents do

* Very circular!

« Game theory studies how agents can rationally form
beliefs over what other agents will do, and (hence) how
agents should act

— Useful for acting as well as predicting behavior of others
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Rock-paper-scissors

Column player aka.
player 2 chooses a
column

= | 5

0,0 -1,11, -1
chovses a row 1,-110,0 -1, 1

A row or column is ,"1, 1 1, '1 O, O
called an action or
(pure) strategy /
Row player’s utility is always listed first, column player’s second

Row player

-
.

Zero-sum game: the utilities in each entry sum to 0 (or a constant)
Three-player game would be a 3D table with 3 utilities per entry, etc.



Matching pennies (~penalty kick)




“Chicken”

* Two players drive cars towards each other

* |f one player goes straight, that player wins

not zero-sum




How to play matching pennies

Us

L
R

Them

L

R

1, -1

-1, 1

-1, 1

1, -1

Assume opponent knows our strategy...

— hopeless?

... but we can use randomization

If we play L 60%, R 40%...

... opponent will play R...

... we get .6%(-1) + 4*(1) =-.2

What's optimal for us? What about rock-paper-scissors?




Matching pennies with a sensitive target

Them
L R

L{1,-1 -1, 1
R|-2,2| 1, -1

« If we play 50% L, 50% R, opponent will attack L
— We get .5%(1) + .5%(-2) =-.5
 What if we play 55% L, 45% R?

Us

« Opponent has choice between

— L: gives them .55%(-1) + .45%(2) = .35
— R: gives them .55*(1) + .45*(-1) = .1
« Weget-.35>-5



Matching pennies with a sensitive target

Them
L R

L{1,-1 -1, 1
R|-2,2| 1, -1

Us

« What if we play 60% L, 40% R?

* Opponent has choice between

— L: gives them .6*(-1) + .4*(2) = .2
— R: gives them .6*(1) + .4*(-1) = .2

 We get -.2 either way

* This is the maximin strategy

— Maximizes our minimum utility



Let’'s change roles

Them
L R

L(1,-1 -1, 1
RI|-2,2| 1, -1

Suppose we know their strategy

Us

If they play 50% L, 50% R, von Neumann’s minimax
theorem [1927]: maximin
value = minimax value

If they play 40% L, 60% R, (~LP duality)
— If we play L, we get .4*(1)+.6*(-1) = -.2
— If we play R, we get .4*(-2)+.6*(1) = -.2

— We play L, we get .5*(1)+.5%(-1) =0

This is the minimax strategy



Minimax theorem falls apart in

NoONZero-sum games
D S

D|0,0 | -1, 1
s|1,-1|-5,-5

* Let's say we play S

* Most they could hurt us is by playing S as well

 But that is not rational for them

* |f we can commit to S, they will play D

— Commitment advantage



Nash equilibrium [Nash 1950] /s

'-':;I'

» A profile (= strategy for each player) so that ncB
player wants to deviate

D S
D|0,0 | -1, 1
S|1,-11-5, -5

* This game has another Nash equilibrium in
mixed strategies — both play D with 80%



The presentation game

Presenter
Put effort into Do not put effort into
presentation (E) presentation (NE)

Pay attention

“ 2, 2 -8, -7

Audience

e |0, -1 0,0

« Pure-strategy Nash equilibria: (A, E), (NA, NE)
« Mixed-strategy Nash equilibrium:

((1/10 A, 9/10 NA), (4/5 E, 1/5 NE))

— Utility O for audience, -7/10 for presenter

— Can see that some equilibria are strictly better for both players than other equilibria, i.e.
some equilibria Pareto-dominate other equilibria



Properties of Nash equilibrium in
two-player games

In zero-sum games, same thing as
maximin/minimax strategies

Any (finite) game has at least one Nash
equilibrium [Nash 1950

PPAD-complete to compute one Nash equilibrium
[Daskalakis, Goldberg, Papadimitriou 2006; Chen & Deng, 2006]

NP-hard & inapproximable to compute the “best”

Nash equilibrium [Gilboa & Zemel 1989; Conitzer & Sandholm 2008]



Nash isn’t optimal if one player
can commit

2,114,0
i |
o 1,03, 1

« Suppose the game is played as follows:

— Player 1 commits to playing one of the rows,

— Player 2 observes the commitment and then chooses a column

* Optimal strategy for player 1: commit to Down



Commitment as an
extensive-form game

* For the case of committing to a pure strategy:

Player 1

Player 2 Player 2

Left Right Left Right

2,1 4,0 1,0 3,1



Commitment to mixed strategies

® 12,1]4,0
1,0 | 3, 1

oy

« Assume follower breaks ties in leader’s favor

— In generic games this is the unique SPNE outcome of the extensive-
form game [von Stengel & Zamir 2010]

— We will also refer to this as a Stackelberg strategy



Commitment as an
extensive-form game...

« ... for the case of committing to a mixed strategy:

Player 1
(1,0) (.5,.5) (0,1)
(=Up) (=Down)
Player 2
Left Right Left Right Left Right
2,1 4,0 1.5, .5 3.5,.5 1,0 3, 1

« Economist: Just an extensive-form game, nothing new here

« Computer scientist: Infinite-size game! Representation matters



Computing the optimal mixed

strategy to commit to
[Conitzer & Sandholm 2006, von Stengel & Zamir 2010]

« Separate LP for every possible follower’s action t*

Maximize Z p U, (s,t7) _
Subject to

>p, =1  Distributional constraint.
V1) pU,(s,0< ) pU,(s,¢")  [EolIoWer optimality’

* Choose t* for which the LP is feasible and has the
highest objective. The leader plays the
corresponding strategy <p.>.




Easy polynomial-time algorithm
for two players

[Conitzer & Sandholm 2006; von Stengel & Zamir 2010]

For every column t separately, we solve separately for the
best mixed row strategy (defined by p.) that induces player
2 to play t

maximize Z_ p. U4(s, t)
subject to
forany t', 2, p. u,(s, t) 2 2, p. u,(s, t)
2. Ps=1
(May be infeasible)
Pick the t that is best for player 1



Visualization

L C R
U 0,1 1,0 | 00 0.1.0)=M
M 40 | 0,1
D 0,0 1,0

(1,0,0)=U (0,0,1)=D



Observations about commitment to a

mixed strategy in a two-player game
Coincides with minimax strategies in zero-sum

games

Leader’s payoff always at least as good as in any
Nash equilibrium (see [von Stengel & Zamir 2010])

— Can simply commit to the Nash equilibrium strategy

— Follower breaks ties in your favor

— Actually at least as good as any correlated equilibrium

— Close relationship to LP for correlated equilibrium [Conitzer 2010 draft]

No equilibrium selection problem

Natural notion of approximation



(a particular kind ofy Bayesian games

. follower utilities  follower utilities
leader utilities

(type 1) (type 2)
1 0 1 0
0 1 1 3

probability .6

probability .4




Multiple types - visualization

(0,1,0)

Combined

(1,0,0)

(1,0,0)




2 players > 3 players

normal-form O( #outcomes) | O(#outcomes:

#players)
Bayesian, O(#outcomes- | NP-hard
1-type leader Htypes)
Bayesian, NP-hard NP-hard
1-type follower
Bayesian (general) | NP-hard NP-hard

Results for commitment to pure strategies. ( With more
than 2 players, the “follower™ is the last player to commit,
the “leader” is the first.)

2 players > 3 players
normal-form one LP-solve per | NP-hard
follower action
Bayesian, NP-hard NP-hard
1-type leader
Bayesian, one LP-solve per | NP-hard
1-type follower follower action
Bayesian (general) | NP-hard NP-hard

Results for commitment to mixed strategies. (With more
than 2 players, the “follower”™ is the last player to commit,
the “leader” is the first.)




LAX techniques
[Paruchuri et al. 2008, Pita et al. 2009]

» Uses Bayesian games framework

* Mixed integer programming formulation for
solving Bayesian games optimally

— Much faster than converting game to normal
form, solving that



(In)approximability

[Letchford, Conitzer, Munagala 2009]

* (#types)-approximation: pick one type uniformly at random,
optimize for it using LP approach

— ... or (deterministic) optimize for every type separately, pick best

« Can’t do any better in polynomial time, unless P=NP
— Reduction from INDEPENDENT-SET

* For adversarially chosen types, cannot decide in polynomial
time whether it is possible to guarantee positive utility,
unless P=NP

— Again, a MIP formulation can be given



Reduction from independent set

1 2 3
leader utilities Cr Cr O
A B
a'l 1 0
a’| 1 0
as| 1 0
follower utilities  follower utilities  follower utilities
(type 1) (type 2) (type 3)
A B A B A B
a'l 3 1 a'l 0 10 a'l 0 1
a’| 0 10 a’| 3 1 a’| 0 10
as| 0 1 as| 0 10 as| 3 1




Switching topics: Learning

» Single follower type
* Unknown follower payoffs

* Repeated play: commit to mixed strategy,
see follower’s (myopic) response

L R
u 1,? 3,7
D 2,7 4,7




Visualization

L C R
U 0,1 1,0 | 00 0.1.0)=M
M 40 | 0,1
D 0,0 1,0

(1,0,0)=U (0,0,1)=D



Sampling

C (0,1,0)

(1,0,0) (0,0,1)



Three main techniques in
the learning algorithm

* Find one point in each region (using
random sampling)
* Find a point on an unknown hyperplane

« Starting from a point on an unknown
hyperplane, determine the hyperplane
completely



Finding a point on an unknown
hyperplane

Step 1. Sample 1n the overlapping region

Intermediate state
Step 2. Connect the new point to the point

in the region that doesn’t match

Step 3. Binary search along this line

Region: R



Determining the hyperplane

Step 1. Sample a regular d-simplex
Intermediate state centered at the point

Step 2. Connect d lines between points on

opposing sides

Step 3. Binary search along these lines

Step 4. Determine hyperplane (and update
the region estimates with this information)



Bound on number of samples

Theorem. Finding all of the hyperplanes necessary to
compute the optimal mixed strategy to commit to
requires O(Fk log(k) + dLk?) samples

— F depends on the size of the smallest region
— L depends on desired precision
— k is the number of follower actions

— d is the number of leader actions



Discussion about appropriateness of
leadership model in security applications

Mixed strategy not actually communicated

Observability of mixed strategies?

— Imperfect observation?

Does it matter much (close to zero-sum anyway)?

Modeling follower payoffs?

— Sensitivity to modeling mistakes 2,.114,0

Human players... [Pitaetal. 2009] |1 0|3 1




Computing optimal strategies to commit to in
extensive-form games [Letchford & Conitzer 2010]

No Chance Chance
NP-hard
Perfect Info. mperfect Info.
NP-hard
Pure Mixed
Tree DAG Tree DAG
P NP-hard
Two Players Three+ Players Two Players Three+ Players
NP-hard NP-hard
No Restrictions Restrictions No Restrictions Restrictions

P NP-hard P ?



A problem for scaling to (some)

real applications
e So far, we have assumed that we can

enumerate all the defender pure strategies

* Not feasible in some applications
— Federal Air Marshals [Tsai et al. 2009]
— Protecting a city [Tsai et al. 2010]

* Problem: each possible allocation of
resources Is a pure strategy

— Combinatorial explosion



Security resource allocation games
[Kiekintveld et al. 2009]

Set of targets T
Set of security resources Q2 available to the defender (leader)

Set of schedules S — 2"

Resource o can be assigned to one of the schedules in A(w) C §
Attacker (follower) chooses one target to attack

Utilities: U, (¢),U (¢) if the attacked target is defended,
U,(),U;(t) otherwise
Ua(0)2Uy(tkU; () <UL ()




Applications and previous work

» Security checkpoints in airports
(implemented at LAX) [Paruchuri et al.
2008, Pita et al. 2009]

* Federal air marshal service [Tsal et al.
2009]



Compact LPs approach

* Motivation: exponential number of pure
strategies for the defender, so the
standard LP is exponential in size

* |nstead, we will find the (marginal)
probability ¢, ; of resource @ being
assigned to schedule s



Compact LP

« Cf. ERASER-C algorithm by Kiekintveld et al. [2009]

« Separate LP for every possible t* attacked:

@ sitres o sit*es

Maximize U;(t* )Z ch,s +Us(t*(1—z an),s) _

Subject to Marginal probability
Vo : ch <1 of #* being defended

S <1 ' Disibutioalconstints

@ Ssites

w:Us(t)Zch,s+U2‘(t)(1—ZZCa;) -

ey

® sit*es w sit*es




Counter-example to the compact LP

0,

* LP suggests that we can cover every
target with probability 1...

e ... butin fact we can cover at most 3
targets at a time



Schedules of size 1

» Kiekintveld et al. prove that in this case,
there exists a mixed strategy with the
given marginal probabilities

* How can we find it?



Birkhoff-von Neumann theorem

* Every doubly stochastic n x n matrix can be
represented as a convex combination of n x n

permutation matrices 114 5
3|.5
6| .1
11010 01110 0|01 0[1]0
=1/0|l0|1| *1|lojOo|1] *5/0|1|0]| +3|1|0]0
01110 11010 11010 0|0 1

« Decomposition can be found in polynomial time O(n%°),
and the size is O(n?) [Dulmage and Halperin, 1955]

« Can be extended to rectangular doubly substochastic
matrices



Computing the probabilities for
each pure strategy

i
OF —@ U
b
Wy
4
1 2 2 S
0 0 1 0 1 0 ol 1 0 0
0 1 0 0 0 1 . - 0 0 1




Summary of results
[Korzhyk, Conitzer, Parr 2010]

(BvN theorem)

NP-hard
(BvN theorem) (SAT)

NP-h d
- (constraint generatlon)

NP-hard
(3COVER) NP-hard




Is it right to play Stackelberg?

* Typical argument: aftacker can observe
realizations of our distribution over time
before executing an attack, learn the
distribution

e |s this accurate?

 \We show that under certain conditions, it
IS “safe” to play the Stackelberg strategy
[Yin et al. 2010]



Every Stackelberg strategy is also
a Nash strategy in security games

 Theorem: If any subset of any schedule is
also a schedule, then every Stackelberg
strategy is also part of a Nash equilibrium

Set of defender strategies

Nash = Minimax

@ckelb@




So how do we know we're playing
the “right” equilibrium?
* Turns out not to matter:

 Theorem. Security games satisfy the
iInterchange property:
if <c,,a,>and <c,,a,> are NE profiles, then
<c,,a,> and <c,,a,> are also NE profiles
— Doesn'’t hold in general games (e.g., chicken)

* Proof analyzes a related zero-sum game

— Two-player zero-sum games always have the
interchange property



Interchange property in security games

* There is a 1:1 equivalence between NE
profiles in general-sum and zero-sum games.

 Interchange property of NE in zero-sum
games: if <c,,a,> and <c,,a,> are NE profiles,
then <c,,a,> and <c,,a,> are also NE profiles.
This property doesn’t hold in general games.

* Interchange property carries over to general-

sum security games because of the above
equivalence.



Consequence

 When the defender is uncertain whether her
strategy is known to the attacker or not, it is
safe to play an SSE strategy.

* |f the attacker somehow learns the defender's
strategy, the defender gets optimal utility.

* |f the attacker does not learn the defender’s
strategy, the SSE strategy is as good as any
other NE strategy because of the interchange
property.



Conclusion

Desire to address general-sum games in security

Optimal mixed strategies to commit to (“Stackelberg
strategies”) have certain conceptual & algorithmic
advantages over (say) Nash equilibrium

Computational challenges remain: Many games
have exponential strategy spaces

Also raises & forces close examination of
fundamental game-theoretic questions

Thank you for your attention!



Rock-paper-scissors — Seinfeld variant

MICKEY: All right, rock beats paper!
(Mickey smacks Kramer's hand for losing)
KRAMER: | thought paper covered rock.
MICKEY: Nah, rock flies right through paper.
KRAMER: What beats rock?
MICKEY: (looks at hand) Nothing beats rock.

m [ .5
0,0 1,-11, -1
11-1,1/ 0,0 -1, 1

_2-1,1/1,-1 0,0




Dominance

» Player i's strategy s. strictly dominates s; if
—for any s, u(s;, s;) > u(s, s.)

- s, weakly dominates s;’ if 1= e payers)
—forany s, u(s, s.) 2 u(s;, s.); and

— for some s, u(s;, s.) > u(s’, s.)

= 5

strict dominance _2 O, O 1, -1 1, -1

11-1,1/ 0,0 -1, 1

<-1,1 1,-10,0




Prisoner’s Dilemma

 Pair of criminals has been caught

 District attorney has evidence to convict them of a minor
crime (1 year in jail); knows that they committed a major
crime together (3 years in jail) but cannot prove it

o (Offers them a deal:

— If both confess to the major crime, they each get a 1 year reduction

— If only one confesses, that oygts-a—yeaireduction

confess don’t confess

C confess _2, _2 O, _3
don’t confess _3, O _1, _1




“Should | buy an SUV?”

purchasing + gas cost accident cost




“2/3 of the average” game

* Everyone writes down a number between 0 and
100

» Person closest to 2/3 of the average wins

« Example:
— A says 50
— B says 10
— C says 90
— Average(50, 10, 90) = 50
— 2/3 of average = 33.33
— A'is closest (|50-33.33| = 16.67), so A wins



lterated dominance

* lterated dominance: remove (strictly/weakly)
dominated strategy, repeat

 |terated strict dominance on Seinfeld’s RPS:

/N

=

0,0

1, -1

1, -1

i

-1, 1

0,0

-1, 1

-1, 1

1, -1

0,0

!

0,0

1, -1

-1, 1

0,0




Iterated dominance: path (in)dependence

Iterated weak dominance is path-dependent:
sequence of eliminations may determine which

solution we get (if any)
(whether or not dominance by mixed strategies allowed)

e gffva] =<
@ 0 @ 1,0 @ 0/ 1,0

, 010, , 010, , 010,

Iterated strict dominance is path-independent: elimination

process will always terminate at the same point
(whether or not dominance by mixed strategies allowed)



“2/3 of the average” game revisited

100 |

v dominated

(2/3)*100 }

dominated after removal of
(originally) dominated strategies

(2/3)*(2/3)*100




Mixed strategies

* Mixed strategy for player | = probability
distribution over player I's (pure) strategies

- Eg. 1318 13| 13 _/=

 Example of dominance by a mixed strategy:

213,01 0,0
1210,01 3,0
1,0/ 1,0




Checking for dominance by mixed strategies

Linear program for checking whether strategy s;*
IS strictly dominated by a mixed strategy:

maximize ¢

such that:
— forany s, 2 ps Ui(S;, S;) 2 Ui(s;", s) + €
— Zsi psi =1

Linear program for checking whether strategy s.*
Is weakly dominated by a mixed strategy:

maximize Z (X P U(S;, S.)) - Ui(s*, s)
such that:

— forany s;, Z Ps, Ui(S;, S5) Z U(s*, s.)

~ 25 Ps = 1



The presentation game

Presenter
Put effort into Do not put effort into
presentation (E) presentation (NE)

Pay attention

W 4, 4 -16, -14

Audience

Lo |0, -2 0,0

« Pure-strategy Nash equilibria: (A, E), (NA, NE)
« Mixed-strategy Nash equilibrium:

((1/10 A, 9/10 NA), (4/5 E, 1/5 NE))

— Utility O for audience, -14/10 for presenter

— Can see that some equilibria are strictly better for both players than other equilibria, i.e.
some equilibria Pareto-dominate other equilibria



1 gets King

A poker-like game

“nature”

1 gets Jack

bb
bs
sb

SS

CcC cf fc ff

0,0 0,0 1, -1 1, -1
5,-5 | 15,15 0,0 1, -1
-5,.5 -5,.5 1, -1 1, -1

0,0 1, -1 0,0 1, -1




A poker-like game

‘nature”

1 gets King 1 gets Jack

« To make player 1 indifferent between bb and bs, we need:
utility for bb = 0*P(cc)+1*(1-P(cc)) = .5*P(cc)+0*(1-P(cc)) = utility for bs
That is, P(cc) = 2/3

« To make player 2 indifferent between cc and fc, we need:
utility for cc = 0*P(bb)+(-.5)*(1-P(bb)) = -1*P(bb)+0*(1-P(bb)) = utility for fc
That is, P(bb) = 1/3



Rock-paper-scissors

= 5

0,0|-1,1 1, -1
111,-1/ 0,0 -1, 1

_2-1,1/1,-1] 0,0

Any pure-strategy Nash equilibria?

But it has a mixed-strategy Nash equilibrium:
Both players put probability 1/3 on each action

If the other player does this, every action will give you expected utility 0

— Might as well randomize



Nash equilibria of “chicken”

D|I0,0 | -1, 1
s|1,-1|-5, -5

« (D, S)and (S, D) are Nash equilibria

— They are pure-strategy Nash equilibria: nobody randomizes

— They are also strict Nash equilibria: changing your strategy will make you
strictly worse off

* No other pure-strategy Nash equilibria



Nash equilibria of “chicken”...
D S

pDl| 0,0 | -1, 1
g|1,-1]-5 -5

Is there a Nash equilibrium that uses mixed strategies? Say, where player 1 uses a mixed
strategy?

If a mixed strategy is a best response, then all of the pure strategies that it randomizes over
must also be best responses

So we need to make player 1 indifferent between D and S
Player 1’s utility for playing D = -p¢g

Player 1’s utility for playing S = p°, - 5p®s = 1 - 6p°s

So we need -p¢s = 1 - 6p°s which means p°s = 1/5

Then, player 2 needs to be indifferent as well

Mixed-strategy Nash equilibrium: ((4/5 D, 1/5 S), (4/5 D, 1/5 S))
— People may die! Expected utility -1/5 for each player



Ranges for the follower payoffs

* Suppose we just know a range within which
each follower payoff lies

L R
Ul 1,[03] | 2,3
D| 0,[1,3] | 1,[1,2]

 NP-hard if payoffs are adversarially drawn

— We do not know about (in)approximabillity...

— ... except for a richer variant



Extension of the BvN theorem

 Every m x n doubly substochastic matrix
can be represented as a convex
combination of m x n matrices with
elements from {0, 1} such that every row
and column contains “1” in at most one

11 .41 .5
cell.
31 .51 .2
061]1.11.3
O O 0 0 0O 0
=1lolol1! *1lolofl1!| t5101/110 +31110
O[11]0 11010 11010 00O




[lbackup] Will compact LP work

for homogeneous resources?

* Suppose that every resource can be
assigned to any schedule.

* We can still find a counter-example for

this case: /a ) o)
/LY
(/"0 (fo/ o)




Stackelberg games in extensive form

(23

Player 2 /

(1, 3) (0, 1) (2,2) (3,0)




