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1. Introduction I

Classical game theory has focused upon situations in which outcomes are known.
When uncertainty is addressed, it makes unreasonable assumptions about common
knowledge (cf. Harsanyi, 1967/68a,b). Also, game theory makes unreasonable

assumptions about human decision-making (Camerer, 2003).

Classical risk analysis has focused upon situations in which the hazards arise at
random. This is appropriate for accident and life insurance, but it does not apply

when hazards result from the actions of an intelligent adversary.

Corporate competition, federal regulation, and counterterrorism all entail
game-theoretic problems with uncertain outcomes and partial information about the
goals and actions of the opponents. This talk describes a Bayesian approach to
adversarial risk analysis. It extends the decision analysis of Kadane and Larkey
(1982) and Raiffa (1982) through the use of a mirroring argument.
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Myerson (1991, p. 114) points up this problem clearly:

“A fundamental difficulty may make the decision-analytic approach
impossible to implement, however. To assess his subjective
probability distribution over the other players’ strategies, player i
may feel that he should try to imagine himself in their situations.
When he does so, he may realize that the other players cannot
determine their optimal strategies until they have assessed their
subjective probability distributions over i’s possible strategies.
Thus, player : may realize that he cannot predict his opponents’
behavior until he understands what an intelligent person would
rationally expect him to do, which is, of course, the problem that
he started with. This difficulty would force : to abandon the
decision analytic approach and instead undertake a game-theoretic
approach, in which he tries to solve all players’ decision problems

simultaneously.”

However, instead of following Myerson in defaulting back to game theory, we use the

mirroring method. It may be viewed as a Bayesian version of Level-k thinking (Stahl
and Wilson, 1995).




2. Auctions I

Suppose Apollo is bidding for a first edition of the Theory of Games and Economic

Behavior. He is the only bidder, but the owner has set a secret reservation price v*
below which the book will not be sold. Apollo does not know v*, and expresses his

uncertainty as a subjective Bayesian distribution F'(v).

Apollo’s utility function is linear in money and his personal valuation of the book is
a*. If money is infinitely divisible, his choice set is A = IR™. so his expected utility
from a bid of a is (¢* — a)IP[a > V*]. Thus Apollo should maximize his expected
utility by bidding

ap = argmax__p+(a” —a)F(a).

This is the standard approach in Bayesian auction theory (cf. Raiffa, 2002).
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Now suppose that Apollo and Daphne are bidding against each other to own the first
edition. Apollo needs to perform a game-theoretic calculation to find his subjective
distribution F' over Daphne’s bid Dy. Then Apollo can maximize his expected utility
by bidding ap = argmax g+ (a” — a)F(a).

In order to find F', Apollo uses the fact that Daphne must make the symmetric

calculation. This is the mirroring argument.

Specifically, suppose Daphne values the book at d* and has distribution G on Apollo’s
bid ap. Then Daphne would solve dy = argmax;_p+(d* — d)G(d); and symmetrically,
to obtain G(d), Daphne would need to mirror Apollo’s calculation.

But Apollo cannot duplicate Daphne’s calculation since he does not know her value
for the book, nor the value she thinks Apollo puts on the book, nor the value she
thinks Apollo believes is her value for the book. As a Bayesian, Apollo must express

his uncertainty on all three quantities through distributions.
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The notation becomes complicated; the following key is helpful:
e a* is Apollo’s value for the book

e D* is Daphne’s value for the book; since it is unknown to Apollo, he assigns it
the distribution Hp

e A* is the random variable that Apollo thinks Daphne uses to represent Apollo’s
value for the book; it has distribution H 4

F'is Apollo’s belief about the distribution of Daphne’s bid.

Dy is Daphne’s bid

(G is Apollo’s inference about Daphne’s distribution on Apollo’s bid.

Ag is Apollo’s bid from Daphne’s perspective.

These probabilities are all belong to Apollo; he imputes the beliefs that Daphne holds.
If he is mistaken, he diminishes his chance of maximizing his gain.

.
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To determine his bid ag, Apollo needs F', the distribution of Daphne’s bid. He knows
that Daphne’s bid Dy should satisfy Dy = argmax,_jp+(D* — d)G(d) where D* is
Daphne’s value (a random variable, to Apollo) for the book and G(d) is Apollo’s
estimate of Daphne’s probability that a bid of d exceeds Apollo’s bid Ay.

And, to Daphne, Ap = argmax,_+(A" — a)F(a) where A* is Daphne’s belief about
Apollo’s value for the book and F(a) is Apollo’s estimate of Daphne’s probability
that a bid of a exceeds her bid Dy. Thus Dy ~ F and Ag ~ G.

Apollo must find his personal belief about F' by solving:

argmax, jp+(D" —d)G(d) ~ F
argmax _p+(A" —a)F(a) ~ G.

The distributions for D* and A* are Hp and H 4, respectively.

Once Apollo has F, he solves ap = argmax__p+(a* — a)F(a) to determine his bid.

.
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To solve this system of equations, one iteratively alternates between the two equations

until convergence:
1. Select Fy and Gy arbitrarily.

2. Simulate a large number of samples from H 4, and solve the argmax problem

under G;. The distribution of those solutions gives Fjy.

3. Simulate a large number of samples from Hp, and solve the argmax problem

under F;, 1. The distribution of those solutions gives G, 1.

4. If some convergence threshold ¢ is satisfied (e.g., ||F; — F;11]| < § and
|Gi — Giy1]| < 6), then stop. Otherwise, return to step 2.

In simulation, this iterative solution has always converged. But one wants a
fixed-point theorem, and the key issue is to show this iteration is a contraction
operator. For a finite dimensional space (roughly corresponding to bids in pennies,
rather than infinitely divisible money), I think this can be done in terms of

Gauss-Siedel systems of equations.

o J




.

-

The following figures illustrate the fixed point solution. (Note that the caption
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The left panel shows the third iterate; the right panel shows the tenth iterate.
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These panels show the result of a algorithm. The left is the expected utility Daphne
believes Apollo thinks he will get from a given bid. The right shows the expected
utility that Daphne will receive from a given bid.

Caveat: I am not certain that these figures are correct.
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Note: This framework allows Apollo to incorporate secret information.

For example, suppose Apollo alone knows that the book was owned by Sir Ronald
Fisher, with annotations in his hand. In that case, his personal value a* is high, but

his distribution for Daphne’s value, Hp, will concentrate on much smaller values.

Similarly, he might know that Daphne knows the provenance of the book but thinks
that Daphne believes (falsely) that Apollo does not. In that case Hp will give
concentrate on large values, but Apollo’s belief about what Daphne thinks is his value
for the book, H 4, will concentrate on small values.

In principle, one could go into an infinite regress:

Apollo thinks that Daphne thinks that
Apollo thinks that paphne thinks that .. ..

But for human reasoning, it is probably quite reasonable to stop at the third step,

with the distribution H 4 for A*, as described in the mirroring analysis.

o J
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3. La Relance: A Primitive Version of Poker'

Pokeresque games have received considerable attention in the game theory literature.
Early work by von Neumann and Morgenstern (1947) and Borel (1938) developed
solutions under various simplifying assumptions. More recently, Ferguson and
Ferguson (2008) provide approximate analyses pertinent to more complex games, such
as Texas hold’em.

In the following, assume that Bart and Lisa play a game in which each privately and
independently draws a U[0, 1] random number. Each must ante an amount a = 1.
First, Bart examines his number X and decides whether to bet b or fold. Then Lisa
examines her Y and decides whether to bet b or fold. If both players bet, they
compare their draws to determine who wins the pot. Otherwise, the first person to
fold forfeits his or her ante.

o J
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Let V. be the amount Bart wins. The table shows the four possible situations:

V., | Bart’s Decision Lisa’s Decision QOutcome
-1 fold
1 bet fold
1-+b bet bet X >Y
-(1+Db) bet bet X <Y

From the table, the expected amount won by Bart, given his draw X = z, is:

IE|V,] = -—IP| Bart folds | + IP[ Bart bets and Lisa folds |
+(1 + b)IP| Lisa bets and loses |
—(1+ b)IP| Lisa bets and wins |.

Bart must use mirroring to find a subjective distribution for the probabilities, based

on the adversarial analysis he expects Lisa to perform.

\_
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Assume that Bart uses a “bluffing function” g(x); given x, he bets with probability
g(x). Then

IE[V,] = —[1—g(x)]+g(x)IP| Lisa folds | Bart bets |
+(1+ b)g(z)2IP[ Lisa bets | Bart bets |
—(1+b)g(z)(1 — x)IP| Lisa bets | Bart bets |.

For optimal play, Bart needs to find IP| Lisa bets | Bart bets |.

So Bart must “mirror” the thinking that Lisa will perform in deciding whether to bet.
He knows that Lisa’s opinion about X is updated by the knowledge that Bart decided
to bet. Further, suppose Bart has a subjective belief that Lisa thinks that his bluffing
function is g(x). In that case, Lisa should calculate the conditional density of X,
given that Bart decided to bet, as

; g9(x)

fla) = T3l2) ="
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Note: If g is a step function (i.e., Lisa believes that Bart does not bet if x is less than
some value xg, but always bets if it is greater), then the posterior distribution on X
is truncated below the X value corresponding to xg and the weight is reallocated

proportionally to values above x.

From this analysis, Bart believes that Lisa calculates her probability of winning as

IP[X < y| Bart bet | = F(y), where Y = y is unknown to Bart. And thus Bart
believes that Lisa will bet if the expected value of her return V,, from betting b is

greater than the loss of a that results from folding; i.e., Lisa would bet if

E[V,] = (1+b)F(y) - (1+b)[l - F(y)] = 1.
So Bart believes Lisa will bet if and only if F'(y) > b/2(1 + b).
Set § = inf{y : F'(y) > b/2(1 +b)}. The probability that Lisa has drawn Y > § is

1 — ¢ and this is the probability that she bets. So the expected value of the game for

Bart, given X = x, is:

Ve =—[1—g@)]+g(@)g+ (1+bg(x)z—g" — (1+b)g(z)(1—-g— [z —g]").

Bart should choose g(z) to maximize V.
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Bart’s expected value has the form —1 4 cg(x), where
c=1+g+1+b)z—g" - 1+b)(1—7§—[z—g]").

To maximize the expectation, Bart should make g(x) as small as possible when c is
negative (i.e., g(x) = 0), but as large as possible when c is positive (i.e., g(x) = 1).
Thus the optimal g(x) is a step function. It implies that Bart should never bluff, no
matter what he believes about the playing strategy used by Lisa.

When z < g, Bart bets if § > b/(b+ 2), he folds if § < b/(b+ 2), and he may do as he
pleases when §j = b/(b+2). When x > ¢, then Bart bets if z > & = [b(1+7)]/[2(1+b)],
folds if x < , and may do as he pleases when x = x.

As a sanity check, if b = 0 then Lisa should always bet. Here £ = 0, properly implying
that Bart also always bets.

The expected value of the game, to Bart, is V = fol V. dx. Its value depends on his
belief about Lisa’s play.

o J
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Case I: Bart Believes that Lisa Plays Minimax.

The traditional minimax solution has § = b/(b + 2). In that case it is known that
Bart should bet if x > g, and he should bet with probability 2/(b + 2) when x < 7.
The value of the game (to Bart) is V = —b?/(b + 2)?; he is disadvantaged by the

sequence of play.

In contrast, the ARA analysis finds that when Lisa uses the minimax threshold
g =b/(b+ 2), then Bart may bet or not, as he pleases, when z < Z. This is slightly

different from the minimax solution.

The difference arises because, if Lisa knows that Bart’s bluffing function does not bet
with probability 2/(b+ 2) when = < b/(b + 2), then she can improve her expected
value for the game by changing the threshold at which she calls.

In the minimax game, Bart’s bluff pins Lisa down, preventing her from using a more

2
profitable rule. But for either game, the value for Bart is unchanged: — (L) :

b+2
o

J
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Case II: Bart Believes that Lisa Is Rash.

Suppose that Bart’s analysis leads him to think that Lisa is reckless, calling with
g < b/(b+ 2). Then the previous ARA shows that his bluffing function should be

0 if 0 <z < max{y,z}
g(x) = . _
1 if max{y, 2} <x <1

where = = [b(1 4+ 9)]/[2(1 + b)].
The value of this ARA game to Bart is

T 1
V = —/ daer/ —1+ 2x 4+ 2bx — by — bdx
0 T
= bi—bj(l — %) — (14 b))z

The value of this ARA game is strictly larger than the minimax value.

o J
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Case III: Bart Believes that Lisa Is Conservative.

Suppose Bart believes that Lisa is risk averse, calling with y > b/(b + 2). Then

V, = —1+g(x) 1+§+(1+b)(1—§)%§_(1“’)(1_@) (1_Zf—g>]'

When z > gy, Bart’s optimal play is to bet. On the other hand, when x < y, Bart’s
payoft is

Vo=—1+g@)[l+y—-(1+0)(1—-9)].
For 7 > b/(b+ 2), the quantity in the square brackets is strictly positive. Thus, when
xr < 7y, Bart should bet.

The value V of this game is

v:/oyg—<1+b><1—g>+[ G+ (b)) — (1+b)(1 )

Solving the integral shows V = —bg + 9?(1 + b). This value is increasing in ¢ for
g > b/(24+b) and it is equal to the minimax value at § = b/(b+ 2). Thus the value of
the ARA game when Lisa is conservative is strictly larger than the minimax value.

o J
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Note: This analysis of the Borel Game extends immediately to situations in which
the two players draw independently from a continuous distribution W with density w.

In that case, the conditional distribution that Bart imputes to Lisa is

W@
1@) = T3 ())&

and Bart’s bluffing function takes its step at
1 | 1 1+ W(y)

i==

2 14+b1-W(y

If Bart and Lisa draw from a bivariate, possibly discrete distribution W (x,y) (e.g., a
deck of cards) then the analysis is trivial (in G. H. Hardy’s sense): Bart’s distribution
for Y is the conditional W (y|X = x), and he knows that Lisa’s analysis is symmetric.

Note: Some may be uncomfortable with the specificity in requiring Bart to assume
that Lisa thinks his bluffing function is g(}:) They might argue that Bart could not
guess that exactly—that it would be more reasonable to say that he has a subjective
distribution over the set G of all possible bluffing functions. But when Bart integrates
over that space with respect to his subjective distribution, he then obtains the g that

khe needs for this analysis. /
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Example: The g is a power function.

Suppose that Bart believes that Lisa thinks his bluffing function has the form

1 b
21+b°

that Lisa believes Bart tends to bet for large values of z, leading Lisa to fold more

g(x) = P for some fixed value p > —1. Then g = *# Large values of p imply

frequently and increasing Bart’s expected payoff.
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The left panel shows, for b = 2, the minimum value of x at which Bart should bet as a

function of p. The right panel shows the game value, to Bart, as a function of p.

o J
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Continuous Bets

Consider a modification of the Borel Game, in which Bart is not constrained to bet

any amount on some interval (e, K|.

Define the following notation:

¢, K: the lower and upper bounds of the bets Bart can choose, if he decides to bet;
i.e. [e, K| is Bart’s betting strategy space, where 0 < ¢ < K (usually € is a very

small positive number).

g(x): the probability that Bart decides to bet after learning X = z.

h(blx): a probability density on [e, K] that Bart will use to select his bet conditional

on his decision to bet.

B,: a random variable with value in [e, K| representing Bart’s bet after he learns
X =z

Let IPy, (.1 [] and IEj(.|4)[-] denote the probability and expectation computed using
the probability measure induced by the density h(-|z).

.

J
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Bart must “mirror” Lisa’s analysis given that she observes Bart’s bet B, = b. Define

g(z): Bart’s belief about Lisa’s belief of the probability that he decides to bet with
X =u.

h(blz): Bart’s belief about Lisa’s belief of the density on [e, K] that Bart uses to bet.

f(z|b): Bart’s belief about Lisa’s posterior density for X after she observes that he

bets b: )
hblz)g(e)
I h(b]2)(z) d=

f(z|b) =

Given g(z) and h(-|x), then V, = IE ) n(jz) [VB|X = 2]:

Vo = —(1—g())+g() {IEh,(.m [JPf(_le)[ Lisa folds | Bart bets B,]| X = x}

g

Ve

Bart folds
+IEp, (.2 [IP];(_|BQC)[ Lisa loses | Bart bets B,|- (1+ B,)| X = a:}

B [IP [ Lisa wins | Bart bets B,]- (1 + B,)| X = x] }

f(:|Bz)
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Bart’s first-order ARA solution is

{g"(x),h*(-|x)} € a(r%lzrﬁf IE; ) n2) [VBIX = 2].
g(x),h(-|z

To solve for {g*(x), h*(:|x)}, he studies Lisa’s strategy and rolls back.

Bart believes Lisa will form the posterior assessment f(-|b) on his X, so for Y =y,
Bart believes Lisa thinks her probability of winning is

CS
Py g, X <Y[B;,Y =y :/0 f(z|Bg) dz.
So Bart believes that Lisa is, by calling, expecting a payoff of

| Lisa wins |B;,Y =y, Lisa calls |- (1 + B,)
| Lisa loses | B,,Y =y, Lisa calls |- (1 + B,)

Vy = Psp,)
—P7 i,

- 2(1+Ba;)/0y F(2|By) dz — (1 + By).

24
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So Bart believes Lisa will call if and only if
Yy
1< 201+ Bx)/ F(21B,) dz — (1 + B.).
0

Since f(z|By) > 0, then for all y > §*(B,) we must have

B,
(14 By)’

y 7 )
/0 f(z\Ba;)dzZ/O (B$)f(Z‘BQ;)dZZ2

Then Lisa will call if and only if

Y > §*(B,) = inf {y c [0,1] : /0 f(2|By) dz > 2(1i$B$) } :

Hence, Bart believes that the probability Lisa will call after he bets the amount B,
should be

P | Lisa calls | Bart bets B, =1P|Y > 4" (B;) | Bz =1 — 9" (B.).

f(1Bz)
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f(
f(

f(

Va

,)| Lisa folds | Bart bets B,]
5,)| Lisa loses | Bart bets B,]

,)| Lisa wins | Bart bets B]

Combining these expressions shows:

—(1—g(x)) +

Now Bart is able to compute the following quantities:

J (Be);

IP[y*(B;) <Y < z|By]

J"(Ba)l™;

IP 7 p,| Lisa calls | Bart bets B,]
—IP; g | Lisa loses | Bart bets B]

I - g*<Ba:) T [$ o (Ba:)]+

1z -

~ %

Y

g<$)]Eh(~|a:) [g* (Ba:) + 2[$ - g* (Ba:)]+<1 + Ba:) T (1 - g*(Ba:))<1 + Ba:)] :
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Theorem: For x € [0,1] and given f(-|b) positive and continuous in b € [e, K], let

0*(x) € argmax 77 (0) +2(x — 57 (0)) (1 +b) — (1 — 5" (b)) (1 +b),

M) = max 50 +2e =5 )0+~ (17 0)1+ D).

Then, Bart’s first-order ARA solution is

0 if A*(z) < -1
1 if A*(x) > —1;
h*(blz) = o(b—0b"(x)),

g (z) =

where §(-) is the Dirac delta function.

In other words, when he observes X = x, Bart will fold with probability 1 if

A*(z) < —1 and bet b*(x) with probability 1 if A*(z) > —1. Of course, the regularity
condition requiring that f(:|b) be positive and continuous in b € [e, K] is purely
sufficient but not necessary.

o J
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Example: Lisa has a step-function posterior.

To illustrate the use of the theorem to find the ARA solution in a Borel game with
continuous bets, suppose f(-|b) is of the following form:

1+K s 145
halpy = | T H0STS g
0 otherwise.

It is easy to see that g*(b) = and

TR
5 (0) + 2@ — 57 (6)* (L+b) = (L= 5" (6) (L +D)

— sty T Qe D+1) i b<2(14 K)a

b’ K .
sirm) TRl L if b>2(1+ K)x.
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€2 4+2(1+K)e
4(1+K)(1+€)

Assume that € is small enough that <14 € Consider the followin
2 T 20+ K) )

cases:

62 K)e * * 62
1. For z < 4(112I(<1;(F1+)€)’ then b*(z) = € and A*(z) = s+ 2z —-1)(e+1) < —1.

By the theorem, g*(x) = 1; i.e., Bart will fold w.p. 1. There is no need to specify
h*(-[z).

2 +2(14+K)e € * —
2. For qagagg S ¢ < 0 Sy then b (x) = € and

A*(x) = =57y + (22 — 1)(e 4+ 1) = —1. By the theorem, g*(2) = 1 and
h*(blx) = d(b —¢€), i.e. Bart will bet € w.p. 1.

3. For £ + SR ST < 3 L+ 2(1+K) then b*(x) = 2(1 + K)x — (1 + K) and
A*(z ) = L8 (27 — 1)? + (2x — 1) > —1. By the theorem, g*(z) = 1 and
h*(blz) =d(b— (2(1+ K)z — (1 + K))); i.e., Bart will bet 2(1 + K)x — (1 + K)
w.p. L.

4. Forz > s+ 2(1+K) then b*(x) = K and A*(x) = —2(1K—+2K)+(2x—1)(K—i—1) > —1.
Then, by the Theorem, g*(x) = 1 and h*(b|x) = (b — K); i.e., Bart will bet K
w.p. L.
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0 24+2(1+K)e
4(1+K)(1+e€)

bet
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4. Conclusions I

The ARA approach has a number of attractive features:
e It is simpler to calculate than Nash equilibria. Sort of.
e It can take advantage of soft information.

e Its decisions that seem closer to the kind of strategizing that humans use.

In particular, for the Borel game, it is notable that many things that are difficult or
still unresolved are straightforward (if tedious). The minimax solution was found by
Borel; Bellman & Blackwell extended it to a game with two levels of bet, as did von
Neumann and Morgenstern. Karlin and Restrepo (1957) obtained a solution when
the minimum bet is one unit and there are a finite number of possible larger bids.
Ferguson and Ferguson (2007) report unpublished work by W. H. Cutler in 1976 that
addresses the case of continuous bets in the context of the poker endgame. And there

are no good minimax solutions for games with dependent non-uniform distributions.
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