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1. Introdu
tion

Classi
al game theory has fo
used upon situations in whi
h out
omes are known.When un
ertainty is addressed, it makes unreasonable assumptions about 
ommonknowledge (
f. Harsanyi, 1967/68a,b). Also, game theory makes unreasonableassumptions about human de
ision-making (Camerer, 2003).Classi
al risk analysis has fo
used upon situations in whi
h the hazards arise atrandom. This is appropriate for a

ident and life insuran
e, but it does not applywhen hazards result from the a
tions of an intelligent adversary.Corporate 
ompetition, federal regulation, and 
ounterterrorism all entailgame-theoreti
 problems with un
ertain out
omes and partial information about thegoals and a
tions of the opponents. This talk des
ribes a Bayesian approa
h toadversarial risk analysis. It extends the de
ision analysis of Kadane and Larkey(1982) and Rai�a (1982) through the use of a mirroring argument.
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Myerson (1991, p. 114) points up this problem 
learly:�A fundamental di�
ulty may make the de
ision-analyti
 approa
himpossible to implement, however. To assess his subje
tiveprobability distribution over the other players' strategies, player imay feel that he should try to imagine himself in their situations.When he does so, he may realize that the other players 
annotdetermine their optimal strategies until they have assessed theirsubje
tive probability distributions over i's possible strategies.Thus, player i may realize that he 
annot predi
t his opponents'behavior until he understands what an intelligent person wouldrationally expe
t him to do, whi
h is, of 
ourse, the problem thathe started with. This di�
ulty would for
e i to abandon thede
ision analyti
 approa
h and instead undertake a game-theoreti
approa
h, in whi
h he tries to solve all players' de
ision problemssimultaneously.�However, instead of following Myerson in defaulting ba
k to game theory, we use themirroring method. It may be viewed as a Bayesian version of Level-k thinking (Stahland Wilson, 1995). 3



2. Au
tions

Suppose Apollo is bidding for a �rst edition of the Theory of Games and E
onomi
Behavior. He is the only bidder, but the owner has set a se
ret reservation pri
e v∗below whi
h the book will not be sold. Apollo does not know v∗, and expresses hisun
ertainty as a subje
tive Bayesian distribution F (v).Apollo's utility fun
tion is linear in money and his personal valuation of the book is

a∗. If money is in�nitely divisible, his 
hoi
e set is A = IR+. so his expe
ted utilityfrom a bid of a is (a∗ − a)IP[a > V ∗]. Thus Apollo should maximize his expe
tedutility by bidding

a0 = argmax
a∈IR+(a∗ − a)F (a).

This is the standard approa
h in Bayesian au
tion theory (
f. Rai�a, 2002).
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Now suppose that Apollo and Daphne are bidding against ea
h other to own the �rstedition. Apollo needs to perform a game-theoreti
 
al
ulation to �nd his subje
tivedistribution F over Daphne's bid D0. Then Apollo 
an maximize his expe
ted utilityby bidding a0 = argmax
a∈IR+(a∗ − a)F (a).In order to �nd F , Apollo uses the fa
t that Daphne must make the symmetri

al
ulation. This is the mirroring argument.Spe
i�
ally, suppose Daphne values the book at d∗ and has distribution G on Apollo'sbid a0. Then Daphne would solve d0 = argmax

d∈IR+(d∗ − d)G(d); and symmetri
ally,to obtain G(d), Daphne would need to mirror Apollo's 
al
ulation.But Apollo 
annot dupli
ate Daphne's 
al
ulation sin
e he does not know her valuefor the book, nor the value she thinks Apollo puts on the book, nor the value shethinks Apollo believes is her value for the book. As a Bayesian, Apollo must expresshis un
ertainty on all three quantities through distributions.
5



The notation be
omes 
ompli
ated; the following key is helpful:

• a∗ is Apollo's value for the book
• D∗ is Daphne's value for the book; sin
e it is unknown to Apollo, he assigns itthe distribution HD

• A∗ is the random variable that Apollo thinks Daphne uses to represent Apollo'svalue for the book; it has distribution HA

• F is Apollo's belief about the distribution of Daphne's bid.

• D0 is Daphne's bid
• G is Apollo's inferen
e about Daphne's distribution on Apollo's bid.

• A0 is Apollo's bid from Daphne's perspe
tive.These probabilities are all belong to Apollo; he imputes the beliefs that Daphne holds.If he is mistaken, he diminishes his 
han
e of maximizing his gain.
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To determine his bid a0, Apollo needs F , the distribution of Daphne's bid. He knowsthat Daphne's bid D0 should satisfy D0 = argmax

d∈IR+(D∗ − d)G(d) where D∗ isDaphne's value (a random variable, to Apollo) for the book and G(d) is Apollo'sestimate of Daphne's probability that a bid of d ex
eeds Apollo's bid A0.And, to Daphne, A0 = argmax
d∈IR+(A∗ − a)F (a) where A∗ is Daphne's belief aboutApollo's value for the book and F (a) is Apollo's estimate of Daphne's probabilitythat a bid of a ex
eeds her bid D0. Thus D0 ∼ F and A0 ∼ G.Apollo must �nd his personal belief about F by solving:argmax

d∈IR+(D∗ − d)G(d) ∼ Fargmax
a∈IR+(A∗ − a)F (a) ∼ G.The distributions for D∗ and A∗ are HD and HA, respe
tively.On
e Apollo has F , he solves a0 = argmax

a∈IR+(a∗ − a)F (a) to determine his bid.
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To solve this system of equations, one iteratively alternates between the two equationsuntil 
onvergen
e:1. Sele
t F0 and G0 arbitrarily.2. Simulate a large number of samples from HA, and solve the argmax problemunder Gi. The distribution of those solutions gives Fi+1.3. Simulate a large number of samples from HD, and solve the argmax problemunder Fi+1. The distribution of those solutions gives Gi+1.4. If some 
onvergen
e threshold δ is satis�ed (e.g., ‖Fi − Fi+1‖ < δ and

‖Gi − Gi+1‖ < δ), then stop. Otherwise, return to step 2.In simulation, this iterative solution has always 
onverged. But one wants a�xed-point theorem, and the key issue is to show this iteration is a 
ontra
tionoperator. For a �nite dimensional spa
e (roughly 
orresponding to bids in pennies,rather than in�nitely divisible money), I think this 
an be done in terms ofGauss-Siedel systems of equations.
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The following �gures illustrate the �xed point solution. (Note that the 
aptionreverses the roles of Apollo and Daphne.) The starting points for HD and HA weredistin
t triangular distributions on [0, 100].

The left panel shows the third iterate; the right panel shows the tenth iterate.
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These panels show the result of a algorithm. The left is the expe
ted utility Daphnebelieves Apollo thinks he will get from a given bid. The right shows the expe
tedutility that Daphne will re
eive from a given bid.Caveat: I am not 
ertain that these �gures are 
orre
t.
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Note: This framework allows Apollo to in
orporate se
ret information.For example, suppose Apollo alone knows that the book was owned by Sir RonaldFisher, with annotations in his hand. In that 
ase, his personal value a∗ is high, buthis distribution for Daphne's value, HD, will 
on
entrate on mu
h smaller values.Similarly, he might know that Daphne knows the provenan
e of the book but thinksthat Daphne believes (falsely) that Apollo does not. In that 
ase HD will give
on
entrate on large values, but Apollo's belief about what Daphne thinks is his valuefor the book, HA, will 
on
entrate on small values.In prin
iple, one 
ould go into an in�nite regress:Apollo thinks that Daphne thinks thatApollo thinks that Daphne thinks that . . ..But for human reasoning, it is probably quite reasonable to stop at the third step,with the distribution HA for A∗, as des
ribed in the mirroring analysis.
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3. La Relan
e: A Primitive Version of Poker

Pokeresque games have re
eived 
onsiderable attention in the game theory literature.Early work by von Neumann and Morgenstern (1947) and Borel (1938) developedsolutions under various simplifying assumptions. More re
ently, Ferguson andFerguson (2008) provide approximate analyses pertinent to more 
omplex games, su
has Texas hold'em.In the following, assume that Bart and Lisa play a game in whi
h ea
h privately andindependently draws a U [0, 1] random number. Ea
h must ante an amount a = 1.First, Bart examines his number X and de
ides whether to bet b or fold. Then Lisaexamines her Y and de
ides whether to bet b or fold. If both players bet, they
ompare their draws to determine who wins the pot. Otherwise, the �rst person tofold forfeits his or her ante.
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Let Vx be the amount Bart wins. The table shows the four possible situations:

Vx Bart's De
ision Lisa's De
ision Out
ome-1 fold1 bet fold1+b bet bet X > Y-(1+b) bet bet X < YFrom the table, the expe
ted amount won by Bart, given his draw X = x, is:IE[Vx] = −IP[ Bart folds ] + IP[ Bart bets and Lisa folds ]

+(1 + b)IP[ Lisa bets and loses ]

−(1 + b)IP[ Lisa bets and wins ].Bart must use mirroring to �nd a subje
tive distribution for the probabilities, basedon the adversarial analysis he expe
ts Lisa to perform.
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Assume that Bart uses a �blu�ng fun
tion� g(x); given x, he bets with probability

g(x). Then IE[Vx] = −[1 − g(x)] + g(x)IP[ Lisa folds | Bart bets ]

+(1 + b)g(x)xIP[ Lisa bets | Bart bets ]

−(1 + b)g(x)(1 − x)IP[ Lisa bets | Bart bets ].For optimal play, Bart needs to �nd IP[ Lisa bets | Bart bets ].So Bart must �mirror� the thinking that Lisa will perform in de
iding whether to bet.He knows that Lisa's opinion about X is updated by the knowledge that Bart de
idedto bet. Further, suppose Bart has a subje
tive belief that Lisa thinks that his blu�ngfun
tion is g̃(x). In that 
ase, Lisa should 
al
ulate the 
onditional density of X,given that Bart de
ided to bet, as
f̃(x) =

g̃(x)
∫

g̃(z) dz
.
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Note: If g̃ is a step fun
tion (i.e., Lisa believes that Bart does not bet if x is less thansome value x0, but always bets if it is greater), then the posterior distribution on Xis trun
ated below the X value 
orresponding to x0 and the weight is reallo
atedproportionally to values above x0.From this analysis, Bart believes that Lisa 
al
ulates her probability of winning asIP[X ≤ y| Bart bet ] = F̃ (y), where Y = y is unknown to Bart. And thus Bartbelieves that Lisa will bet if the expe
ted value of her return Vy from betting b isgreater than the loss of a that results from folding; i.e., Lisa would bet ifIE[Vy] = (1 + b)F̃ (y) − (1 + b)[1 − F̃ (y)] ≥ −1.So Bart believes Lisa will bet if and only if F̃ (y) ≥ b/2(1 + b).Set ỹ = inf{y : F̃ (y) ≥ b/2(1 + b)}. The probability that Lisa has drawn Y > ỹ is

1 − ỹ and this is the probability that she bets. So the expe
ted value of the game forBart, given X = x, is:

Vx = −[1 − g(x)] + g(x)ỹ + (1 + b)g(x)[x − ỹ]+ − (1 + b)g(x)(1 − ỹ − [x − ỹ]+).Bart should 
hoose g(x) to maximize Vx. 15



Bart's expe
ted value has the form −1 + cg(x), where

c = 1 + ỹ + (1 + b)[x − ỹ]+ − (1 + b)(1 − ỹ − [x − ỹ]+).To maximize the expe
tation, Bart should make g(x) as small as possible when c isnegative (i.e., g(x) = 0), but as large as possible when c is positive (i.e., g(x) = 1).Thus the optimal g(x) is a step fun
tion. It implies that Bart should never blu�, nomatter what he believes about the playing strategy used by Lisa.When x ≤ ỹ, Bart bets if ỹ > b/(b + 2), he folds if ỹ < b/(b + 2), and he may do as hepleases when ỹ = b/(b+2). When x > ỹ, then Bart bets if x > x̃ = [b(1+ ỹ)]/[2(1+b)],folds if x < x̃, and may do as he pleases when x = x̃.As a sanity 
he
k, if b = 0 then Lisa should always bet. Here x̃ = 0, properly implyingthat Bart also always bets.The expe
ted value of the game, to Bart, is V =
∫ 1

0
Vx dx. Its value depends on hisbelief about Lisa's play.
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Case I: Bart Believes that Lisa Plays Minimax.The traditional minimax solution has ỹ = b/(b + 2). In that 
ase it is known thatBart should bet if x > ỹ, and he should bet with probability 2/(b + 2) when x ≤ ỹ.The value of the game (to Bart) is V = −b2/(b + 2)2; he is disadvantaged by thesequen
e of play.In 
ontrast, the ARA analysis �nds that when Lisa uses the minimax threshold

ỹ = b/(b + 2), then Bart may bet or not, as he pleases, when x ≤ x̃. This is slightlydi�erent from the minimax solution.The di�eren
e arises be
ause, if Lisa knows that Bart's blu�ng fun
tion does not betwith probability 2/(b + 2) when x ≤ b/(b + 2), then she 
an improve her expe
tedvalue for the game by 
hanging the threshold at whi
h she 
alls.In the minimax game, Bart's blu� pins Lisa down, preventing her from using a morepro�table rule. But for either game, the value for Bart is un
hanged: −(
b

b+2

)2.
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Case II: Bart Believes that Lisa Is Rash.Suppose that Bart's analysis leads him to think that Lisa is re
kless, 
alling with

ỹ < b/(b + 2). Then the previous ARA shows that his blu�ng fun
tion should be

g(x) =







0 if 0 ≤ x ≤ max{ỹ, x̃}

1 if max{ỹ, x̃} < x ≤ 1where x̃ = [b(1 + ỹ)]/[2(1 + b)].The value of this ARA game to Bart is
V = −

∫ x̃

0

dx +

∫ 1

x̃

−1 + 2x + 2bx − bỹ − b dx

= bx̃ − bỹ(1 − x̃) − (1 + b)x̃2.The value of this ARA game is stri
tly larger than the minimax value.
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Case III: Bart Believes that Lisa Is Conservative.Suppose Bart believes that Lisa is risk averse, 
alling with ỹ > b/(b + 2). Then

Vx = −1 + g(x)

[

1 + ỹ + (1 + b)(1 − ỹ)
x − ỹ

1 − ỹ
− (1 + b)(1 − ỹ)

(

1 −
x − ỹ

1 − ỹ

)]

.When x > ỹ, Bart's optimal play is to bet. On the other hand, when x < ỹ, Bart'spayo� is

Vx = −1 + g(x) [1 + ỹ − (1 + b)(1 − ỹ)] .For ỹ > b/(b + 2), the quantity in the square bra
kets is stri
tly positive. Thus, when

x < ỹ, Bart should bet.The value V of this game is

V =

∫ ỹ

0

ỹ − (1 + b)(1 − ỹ) +

∫ 1

ỹ

ỹ + (1 + b)(x − ỹ) − (1 + b)(1 − x).Solving the integral shows V = −bỹ + ỹ2(1 + b). This value is in
reasing in ỹ for

ỹ > b/(2 + b) and it is equal to the minimax value at ỹ = b/(b + 2). Thus the value ofthe ARA game when Lisa is 
onservative is stri
tly larger than the minimax value.19



Note: This analysis of the Borel Game extends immediately to situations in whi
hthe two players draw independently from a 
ontinuous distribution W with density w.In that 
ase, the 
onditional distribution that Bart imputes to Lisa is

f̃(x) =
g̃(W (x))w(x)

∫
g̃(W (z))w(z) dzand Bart's blu�ng fun
tion takes its step at

x̃ =
1

2

[

1 −
1

1 + b

1 + W (ỹ)

1 − W (ỹ

]

.If Bart and Lisa draw from a bivariate, possibly dis
rete distribution W (x, y) (e.g., ade
k of 
ards) then the analysis is trivial (in G. H. Hardy's sense): Bart's distributionfor Y is the 
onditional W (y|X = x), and he knows that Lisa's analysis is symmetri
.Note: Some may be un
omfortable with the spe
i�
ity in requiring Bart to assumethat Lisa thinks his blu�ng fun
tion is ˜g(x). They might argue that Bart 
ould notguess that exa
tly�that it would be more reasonable to say that he has a subje
tivedistribution over the set G of all possible blu�ng fun
tions. But when Bart integratesover that spa
e with respe
t to his subje
tive distribution, he then obtains the g̃ thathe needs for this analysis. 20



Example: The g̃ is a power fun
tion.Suppose that Bart believes that Lisa thinks his blu�ng fun
tion has the form

g(x) = xp for some �xed value p > −1. Then ỹ = p+1

√
1
2

b
1+b

. Large values of p implythat Lisa believes Bart tends to bet for large values of x, leading Lisa to fold morefrequently and in
reasing Bart's expe
ted payo�.
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The left panel shows, for b = 2, the minimum value of x at whi
h Bart should bet as afun
tion of p. The right panel shows the game value, to Bart, as a fun
tion of p.21



Continuous BetsConsider a modi�
ation of the Borel Game, in whi
h Bart is not 
onstrained to betany amount on some interval (ǫ, K].De�ne the following notation:
ǫ, K: the lower and upper bounds of the bets Bart 
an 
hoose, if he de
ides to bet;i.e. [ǫ, K] is Bart's betting strategy spa
e, where 0 < ǫ ≪ K (usually ǫ is a verysmall positive number).
g(x): the probability that Bart de
ides to bet after learning X = x.

h(b|x): a probability density on [ǫ, K] that Bart will use to sele
t his bet 
onditionalon his de
ision to bet.

Bx: a random variable with value in [ǫ, K] representing Bart's bet after he learns

X = x.Let IPh(·|x)[·] and IEh(·|x)[·] denote the probability and expe
tation 
omputed usingthe probability measure indu
ed by the density h(·|x).22



Bart must �mirror� Lisa's analysis given that she observes Bart's bet Bx = b. De�ne

g̃(x): Bart's belief about Lisa's belief of the probability that he de
ides to bet with

X = x.
h̃(b|x): Bart's belief about Lisa's belief of the density on [ǫ, K] that Bart uses to bet.

f̃(x|b): Bart's belief about Lisa's posterior density for X after she observes that hebets b:
f̃(x|b) =

h̃(b|x)g̃(x)
∫ 1

0
h̃(b|z)g̃(z) dz

.

Given g(x) and h(·|x), then Vx = IEg(x),h(·|x) [VB |X = x]:
Vx = −(1 − g(x))

︸ ︷︷ ︸Bart folds+g(x)
{IEh(·|x)

[IPf̃(·|Bx)[ Lisa folds | Bart bets Bx] |X = x
]

+IEh(·|x)

[IPf̃(·|Bx)[ Lisa loses | Bart bets Bx] · (1 + Bx) |X = x
]

−IEh(·|x)

[IPf̃(·|Bx)[ Lisa wins | Bart bets Bx] · (1 + Bx) |X = x
]}

.
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Bart's �rst-order ARA solution is

{g∗(x), h∗(·|x)} ∈ argmax

g(x),h(·|x)

IEg(x),h(·|x) [VB |X = x] .To solve for {g∗(x), h∗(·|x)}, he studies Lisa's strategy and rolls ba
k.Bart believes Lisa will form the posterior assessment f̃(·|b) on his X, so for Y = y,Bart believes Lisa thinks her probability of winning isIPf̃(·|Bx)[X ≤ Y |Bx, Y = y] =

∫ y

0

f̃(z|Bx) dz.So Bart believes that Lisa is, by 
alling, expe
ting a payo� of
Vy = IPf̃(·|Bx)[ Lisa wins |Bx, Y = y, Lisa 
alls ] · (1 + Bx)

−IPf̃(·|Bx)[ Lisa loses |Bx, Y = y, Lisa 
alls ] · (1 + Bx)

= 2(1 + Bx)

∫ y

0

f̃(z|Bx) dz − (1 + Bx).
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So Bart believes Lisa will 
all if and only if

−1 ≤ 2(1 + Bx)

∫ y

0

f̃(z|Bx) dz − (1 + Bx).Sin
e f̃(z|Bx) ≥ 0, then for all y ≥ ỹ∗(Bx) we must have

∫ y

0

f̃(z|Bx) dz ≥

∫ ỹ∗

0

(Bx)f̃(z|Bx) dz ≥
Bx

2(1 + Bx)
.Then Lisa will 
all if and only if

Y ≥ ỹ∗(Bx) ≡ inf

{

y ∈ [0, 1] :

∫ y

0

f̃(z|Bx) dz ≥
Bx

2(1 + Bx)

}

.Hen
e, Bart believes that the probability Lisa will 
all after he bets the amount Bxshould beIPf̃(·|Bx)[ Lisa 
alls | Bart bets Bx] = IP[Y ≥ ỹ∗(Bx) |Bx] = 1 − ỹ∗(Bx).
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Now Bart is able to 
ompute the following quantities:IPf̃(·|Bx)[ Lisa folds | Bart bets Bx] = ỹ∗(Bx);IPf̃(·|Bx)[ Lisa loses | Bart bets Bx] = IP[ỹ∗(Bx) ≤ Y ≤ x|Bx]

= [x − ỹ∗(Bx)]+;IPf̃(·|Bx)[ Lisa wins | Bart bets Bx] = IPf̃(·|Bx)[ Lisa 
alls | Bart bets Bx]

−IPf̃(·|Bx)[ Lisa loses | Bart bets Bx]

= 1 − ỹ∗(Bx) − [x − ỹ∗(Bx)]+.

Combining these expressions shows:
Vx = −(1 − g(x)) +

g(x)IEh(·|x)

[
ỹ∗(Bx) + 2[x − ỹ∗(Bx)]+(1 + Bx) − (1 − ỹ∗(Bx))(1 + Bx)

]
.
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Theorem: For x ∈ [0, 1] and given f̃(·|b) positive and 
ontinuous in b ∈ [ǫ, K], let

b∗(x) ∈ argmax
b∈[ǫ,K]

ỹ∗(b) + 2(x − ỹ∗(b))+(1 + b) − (1 − ỹ∗(b))(1 + b),

∆∗(x) ≡ max
b∈[ǫ,K]

ỹ∗(b) + 2(x − ỹ∗(b))+(1 + b) − (1 − ỹ∗(b))(1 + b).Then, Bart's �rst-order ARA solution is
g∗(x) =







0 if ∆∗(x) < −1

1 if ∆∗(x) ≥ −1;

h∗(b|x) = δ(b − b∗(x)),where δ(·) is the Dira
 delta fun
tion.In other words, when he observes X = x, Bart will fold with probability 1 if

∆∗(x) < −1 and bet b∗(x) with probability 1 if ∆∗(x) ≥ −1. Of 
ourse, the regularity
ondition requiring that f̃(·|b) be positive and 
ontinuous in b ∈ [ǫ, K] is purelysu�
ient but not ne
essary.
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Example: Lisa has a step-fun
tion posterior.To illustrate the use of the theorem to �nd the ARA solution in a Borel game with
ontinuous bets, suppose f̃(·|b) is of the following form:

h̃(x|b) =







1+K
1+b

if 0 ≤ x ≤ 1+b
1+K

0 otherwise.

It is easy to see that ỹ∗(b) = b
2(1+K) , and

ỹ∗(b) + 2(x − ỹ∗(b))+(1 + b) − (1 − ỹ∗(b))(1 + b)

=







− b2

2(1+K) + (2x − 1)(b + 1) if b ≤ 2(1 + K)x

b2

2(1+K) −
K

1+K
b − 1 if b > 2(1 + K)x.
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Assume that ǫ is small enough that ǫ2+2(1+K)ǫ
4(1+K)(1+ǫ) < 1

2 + ǫ
2(1+K) . Consider the following
ases:1. For x < ǫ2+2(1+K)ǫ

4(1+K)(1+ǫ) , then b∗(x) = ǫ and ∆∗(x) = − ǫ2

2(1+K) + (2x− 1)(ǫ + 1) < −1.By the theorem, g∗(x) = 1; i.e., Bart will fold w.p. 1. There is no need to spe
ify

h∗(·|x).2. For ǫ2+2(1+K)ǫ
4(1+K)(1+ǫ) ≤ x < 1

2 + ǫ
2(1+K) , then b∗(x) = ǫ and

∆∗(x) = − ǫ2

2(1+K) + (2x − 1)(ǫ + 1) ≥ −1. By the theorem, g∗(x) = 1 and

h∗(b|x) = δ(b − ǫ), i.e. Bart will bet ǫ w.p. 1.3. For 1
2 + ǫ

2(1+K) ≤ x < 1
2 + K

2(1+K) , then b∗(x) = 2(1 + K)x − (1 + K) and

∆∗(x) = 1+K
2 (2x − 1)2 + (2x − 1) ≥ −1. By the theorem, g∗(x) = 1 and

h∗(b|x) = δ(b − (2(1 + K)x − (1 + K))); i.e., Bart will bet 2(1 + K)x − (1 + K)w.p. 1.4. For x ≥ 1
2 + K

2(1+K) , then b∗(x) = K and ∆∗(x) = − K2

2(1+K) +(2x−1)(K+1) ≥ −1.Then, by the Theorem, g∗(x) = 1 and h∗(b|x) = δ(b − K); i.e., Bart will bet Kw.p. 1.
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4. Con
lusions

The ARA approa
h has a number of attra
tive features:

• It is simpler to 
al
ulate than Nash equilibria. Sort of.

• It 
an take advantage of soft information.
• Its de
isions that seem 
loser to the kind of strategizing that humans use.In parti
ular, for the Borel game, it is notable that many things that are di�
ult orstill unresolved are straightforward (if tedious). The minimax solution was found byBorel; Bellman & Bla
kwell extended it to a game with two levels of bet, as did vonNeumann and Morgenstern. Karlin and Restrepo (1957) obtained a solution whenthe minimum bet is one unit and there are a �nite number of possible larger bids.Ferguson and Ferguson (2007) report unpublished work by W. H. Cutler in 1976 thataddresses the 
ase of 
ontinuous bets in the 
ontext of the poker endgame. And thereare no good minimax solutions for games with dependent non-uniform distributions.
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