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Topics

1. Outliers: an important data anomaly
- types and working assumptions

- some real data examples

2. Detecting outliers
- the popular 30 edit rule
- order-statistics vs. moments

- some alternative approaches

3. Other data anomalies
- missing data
- misalignments
- noninformative variables

- comparing performance



Log?2 Intensity Ratio

EXAMPLE 1:
Outlier in a microarray data sequence
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EXAMPLE 2:
Influence of outliers on a volcano plot

Log2 expression change vs. p-value, Genes 201 to 300
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EXAMPLE 3:

Bivariate outlier in a stmulated dataset

~~ NOTE:
Outlier 1s not extreme with respect to

either x or y indiwvidually
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EXAMPLE 4:

Bivariate outliers in a real dataset

MA plot constructed from an uncorrected

microarray dataset
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EXAMPLE 5:
Multivariate outliers in material property
relationships

~ NOTE:
Here, outliers correspond to unusually
good materials
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EXAMPLE 6:

Common mode outlier example

~~ NOTE:
Univariate outliers can be highly correlated

in different vartables
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The 30 Edit Rule

e Procedure:
|z, — Z| > 36 = x is an outlier

e Motivation:

1. the Gaussian assumption z ~ N(u,0?) is
very popular

2. under this assumption:
Prob {|xx — p| > 30} ~ 0.3%

e History:

— dates back at least a century:

T. Wright, A Treatise on the Adjustment of
Observations by the Method of Least Squares,
Van Nostrand, 1884

— still advocated today:

S. Draghici, Data Analysis Tools for DNA
Microarrays, Chapman and Hall/CRC, 2003



A SPECTACULAR FAILURE:
The flow rate dataset

~~ NOTE:
This dataset contains ~ 20% wvisually
obvious outliers: none are detected by the
3o edit rule
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WHY?

e Basic reason:

— the mean p and standard deviation o are

unknown and must be estimated from data
~» standard estimators are extremely
sensitive to the presence of outliers
e Specific observation:

At point contamination levels greater
than 10%, the 3o edit rule will fail
completely: no outliers will be detected

e To overcome this problem:

1. replace the mean with an outlier-resistant

alternative (e.g., median)

2. replace the standard deviation with an

outlier-resistant alternative (e.g., MAD)
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OUTLIER SENSITIVITY OF STANDARD
MOMENT ESTIMATORS:

Mean, variance, and skewness
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ORDER-BASED ALTERNATIVES:

Median, square of interquartile distance,

Galton’s skewness
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The Hampel Identifier

e Idea:

— replace the mean x with the

outlier-resistant median 7
— replace the standard deviation ¢ with the

outlier-resistant MAD scale estimate S

e The MAD scale estimate:

S = 1.4826 median {|z), — z'|}

e Interpretation:

— dy, = | — x| measures the distance of

each point x; from the reference value '

— the median d; value tells how far a

“typical” point lies from z!

— the factor 1.4826 makes S an unbiased

estimate of o for Gaussian data
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THE FLOW RATE DATASET REVISITED

The Hampel identifier provides a
clean separation between normal

operation and shutdown episodes
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The Boxplot Edit Rule

e Symmetric version:
— like Hampel identifier, replace z with T
— replace 6 with the outlier-resistant
interquartile distance )
e Quartiles:

— = upper quartile = 75% of data values
lie below this observation

— x5, = lower quartile = 25% of data values
lie below this observation

- Q=ay —7r
~» Asymmetric version:
— x < xp, — tQQ = lower outlier

— x> xy + tQ) = upper outlier
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ASYMMETRIC EXAMPLE:

The industrial pressure dataset

Comparison of three outlier
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Mis ...ING DATA

e Problem: some x; values are unavailable
— ignorable case: increases variability
~» nonignorable case: introduces bias

— 1936 Literary Digest election poll

e Autocorrelation example:
~ 1
Ra:a:(k) — m Z LoTo+k

— S = random subset of {1,2,...,N} =
ignorable case: causes increased variability
of R..(k) estimates

— S = even k only = non-ignorable case:
cannot estimate R, (k) for any odd k
e Additional consequences:

— missing values can be converted into

outliers (storage tank example)

— missing values can cause misalignments
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Gene Index

X Location
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MISALIGNMENT:

Four corrupted data sequences caused by

unexpected “blank” records

~ NOTE:
Difficulty of detection
one variable
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The CAMDA Challenge Dataset

e CAMDA: Critical Assessment of Microarray
Data Analysis

— annual data analysis competition

— CAMDA 2002 challenge datsets:

1. Latin square Affymetrix benchmark
2. normal mouse cDNA microarray study
e Structure of the normal mouse dataset:
— derived from 72 individual microarrays
— 3 organ samples from each of 6 mice
— 4 microarrays per sample

— 2 channels per microarray: reference &

experimental

~+ reformated into three organ-specific

summary datasets
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The CAMDA Challenge Dataset

e Stivers et al. obtained anomalous results from

a preliminary principal components analysis

— expected clustering: common reference

cluster, 3 organ clusters

— observed: unreasonable splitting of the

reference cluster

— subsequently observed: disagreements of
gene ID /slide position combinations

between different organ datasets

e What happened?
— 1932 of 5304 genes were mis-annoted

— cause: error in procedure that combined
the 72 individual microarray datasets into

3 organ-specific summary datasets
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Softwear Errors

e Source of both misalignment examples:

1. inconsistent handling of missing values

between Excel and S-plus
2. (Stivers et al.):

The data used here were assembled into
packages, probably manually using ad hoc
database, spreadsheet, or perl script. Under
these conditions, it is remarkably easy for the
row order to be changed accidentally ...

e Some relevant observations:

1. Wall, et al. (2000):

It is a standing joke in the Perl community that
the next big stock market crash will probably
be caused by a bug in someone’s Perl script.

2. Kanert et al. (1999):

About one in three attempts to fix a program
doesn’t work or causes a new problem.

3. Beizer (1990):

estimates between 1 and 3 errors per 100
executable statements, after the code has been
debugged

22



Noninformative Variables

e Externally noninformative variables:
— variables x; that are a prior: irrelevant

~» Murphy’s law: irrelevant variables

sometimes aren’t

— R.W. McClure’s example

e Inherently noninformative variables:
— completely missing variables
— constant variables

— exact duplicate variables

e Application-irrelevant variables:

— e.g., variables that become inherently
noninformative when analysis is restricted
to a subset of interest

— specific example: anomaly indicator

variables in the analysis of nominal data

— (sometimes:) noise variables

~» Why is this important?
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A Clustering Example

e Fight datasets compared:
— k = 4 well-separated clusters

— three informative components in each

attribute vector x;

— 0 to 7 non-informative components in xy

e Clustering procedure:

— Partitioning Around Medoids (PAM) -
Kaufman and Rousseeuw (1987)

— better-behaved alternative to k-means

e Performance assessment:

— average silhouette coefficient (Kaufman
and Rousseeuw, 1987)

— assesses both intracluster cohesion and

intercluster separation

— bounded between —1 (horrible
misclassification) and +1 (perfect

classification)
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Clustering Results:
Influence of noninformative variables

Average silhouette coefficients s
k = 2 = spurious clustering

k =4 = correct clustering

Noise s, s,
Components k=2 k=4
0 0.636 0.750
1 0.619 0.709
2 0.604 0.675
3 0.587 0.638
4 0.579 0.619
5 0.568 0.595
6 0.557 0.573
7 0.548 0.555
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A Final Example

e Consider the effects of “small” deletions:
— datasets: four different 17 point sequences

— deletions: all possible 2 point deletions

17
=X = 136 possible 15 point subsets

2

e The data sequences:
0: uniformly distributed on [—1.1, 1.1]

1: 8 points uniformly distributed on
[—1.1, —0.9], one zero value, 8 points
uniformly distributed on [0.9, 1.1]

2: middle 5 points of Sequence 0 set to zero
(one common missing data model)

3: Sequence 0 with 2 outliers, rescaled into
original [—1.1,1.1] range
e The scale estimates:
A. the standard deviation &
B. the interquartile distance ()
C. the MAD scale estimate S

26



Data value, x(k)

Data value, x(k)

FOUR SIMULATED DATA SEQUENCES
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SCALE ESTIMATES:

Consequences of all possible 2-point
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Summary:

Three Key Conclusions

Unimaginable anomalies infest real datasets

Yogi Bera:

If something has a 50% chance of happening,
then 9 times out of 10 it will.

Dasu and Johnson (2003, p. 186):

Take NOTHING for granted. The data are never

what they are supposed to be, even after they are

7

“cleaned up.” The schemas, layout, content, and

nature of content are never completely known or
documented and continue to change dynamically.

Different analysis methods exhibit different
sensitivities to different data anomalies

Comparison of what should be “equivalent”
analyses across different scenarios can be

extremely useful in uncovering anomalies
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