
Online Vector Scheduling

Nat Kell
(Duke)

Maryam Shadloo
(UC Merced)

Janardhan Kulkarni
(MSR UMN)

Work done with:

Debmalya Panigrahi

Duke University
slides

Sungjin Im
(UC Merced)

Online Load Balancing
[Graham ’66]

Job:

Machine 1

Machine 2

Machine m

(processing time)

Load:

1 2 3 4 5 6 7 8

0.8 2 0.9 1.2 1.21.3 1.2 1.1

Online Vector Scheduling 2

Online Load Balancing
[Graham ’66]

Job:

Machine 1

Machine 2

Machine m

(processing time)

Load:

1 2 3 4 5 6 7 8

0.8 2 0.9 1.2 1.21.3 1.2

1.1

Online Vector Scheduling 3

Online Load Balancing
[Graham ’66]

Job:

Machine 1

Machine 2

Machine m

(processing time)

Load:

1 2 3 4 5 6 7 8

1.1 + 1.2 = 2.3

1.3

0.8 2 0.9 1.2 1.2

(load of a machine
is the sum of its job loads)

Online Vector Scheduling 4

Online Load Balancing
[Graham ’66]

Job:

Machine 1

Machine 2

Machine m

(processing time)

Load:

1 2 3 4 5 6 7 8

1.1 + 1.2 = 2.3

1.3

0.8 2 0.9 1.2 1.2
Online problem: cannot see future jobs.

(load of a machine
is the sum of its job loads)

Online Vector Scheduling 5

Online Load Balancing
[Graham ’66]

Machine 1

Machine 2

Machine m

Objective: minimize the
makespan of the schedule
(maximum load)

Job: 1 2 3 4 5 6 7 8

Load:

Algorithm performance benchmark: Competitive ratio

Online Vector Scheduling 6

Online Load Balancing
[Variants]

Machine 1

Machine 2

Machine m

Objectives: minimize the
p-norm of the machine loads
(makespan is the ∞-norm)
[CW ’75, CC ’76, AAGKKV ’95, AAS ’01, C ’08, CFKKM ’11]

Job: 1 2 3 4 5 6 7 8

Load:

Machine models:
- Identical machines (load = pj)
[G ’66, FKT ’89, BKR ’94, BFKV ’95, KPT ’96, A ’99, FW ’00, GRTW ’00, R ’01, AAS ’01]

- Related machines (load = pj / si)
[AAFPW ’97, BCK ’00]

- Unrelated machines (load = pij)
[CW ’75, CC ’76, AAGKKV ’95, AAFPW ’97, C ’08, ANR ’95, CFKKM ’11]

Online Vector Scheduling 7

8

How do we load balance simultaneously on
multiple resources (e.g., in data centers)?

Online Vector Scheduling

Online Vector Scheduling

Jobs:

Machine 1

Machine 2

Machine m

2 3 4

(2, 2.8, 1.3)

Dimension 1 Dimension 2 Dimension 3

(2, 1.5, 1) (1, 1.5, 1.3) (1, .8, .9)

1

(processor) (network)(storage)
Online Vector Scheduling 9

Online Vector Scheduling

Jobs:

Machine 1

Machine 2

Machine m

2 3 4

Dimension 1 Dimension 2 Dimension 3

(2, 1.5, 1) (1, 1.5, 1.3) (1, .8, .9)

2 2.8 1.3

(processor) (network)(storage)

1

Online Vector Scheduling 10

Online Vector Scheduling

Jobs:

Machine 1

Machine 2

Machine m

4

Dimension 1 Dimension 2 Dimension 3

(1, .8, .9)

2 1.5 1

2+1 = 3

3

2.8 + 1.5 = 4.3
1.3 + .9 = 2.2

(processor) (network)(storage)

2

(loads accumulate
in each dimension)

Online Vector Scheduling 11

Online Vector Scheduling

Jobs:

Machine 1

Machine 2

Machine m

makespan: maximum over makespan in individual dimensions

Dimension 1 Dimension 2 Dimension 3
Online Vector Scheduling 12

Online Vector Scheduling

Jobs:

Machine 1

Machine 2

Machine m

p-norms: maximum over p-norms in individual dimensions

Dimension 1 Dimension 2 Dimension 3
Online Vector Scheduling 13

Summary of Results

Online Vector Scheduling 14

Makespan
minimization

p-norm
minimization

Identical machines O(log d)
[Azar et al ’13,

Meyerson et al ’14]

Our result:
Θ(log d/log log d)

Our result:
Θ((log d/log log d)1-1/p)

(Im-Kulkarni-Kell-P.
FOCS ’15)

Unrelated machines
(machine dependent
loads)

O(log d + log m)
[Meyerson et al ’14]

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Related machines
(non-uniform
machine speeds)

Later… Later… (Im-Kell-P.-Shadloo
’17)

Summary of Results

Online Vector Scheduling 15

Makespan
minimization

p-norm
minimization

Identical machines O(log d)
[Azar et al ’13,

Meyerson et al ’14]

Our result:
Θ(log d/log log d)

Our result:
Θ((log d/log log d)1-1/p)

(Im-Kulkarni-Kell-P.
FOCS ’15)

Unrelated machines
(machine dependent
loads)

O(log d + log m)
[Meyerson et al ’14]

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Related machines
(non-uniform
machine speeds)

Later… Later… (Im-Kell-P.-Shadloo
’17)

Identical machines algorithm:
First attempt

Greedy assignment
(minimize maximum load

across all machines and dimensions)

unbalanced loads on dimensions
…can be as bad as poly(d)-competitive

Online Vector Scheduling 16

Identical machines algorithm:
First attempt

Random Assignment
(assignment uniformly at random)

Chernoff bounds:
O(log(dm))-competitive

(optimal for unrelated machines)

Greedy assignment
(minimize maximum load

across all machines and dimensions)

unbalanced loads on dimensions
…can be as bad as poly(d)-competitive

Online Vector Scheduling 17

Algorithm: Random and Greedy

Assign uniformly at random

Online Vector Scheduling 18

Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Algorithm: Random and Greedy

Online Vector Scheduling 19

Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Algorithm: Random and Greedy

Online Vector Scheduling 20

Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Exceeds threshold

Algorithm: Random and Greedy

Online Vector Scheduling 21

Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Greedy schedule
(minimize max over

all machines and dimensions)

Algorithm: Random and Greedy

Online Vector Scheduling 22

Assign uniformly at random

log d/ log log d log d/ log log d log d/ log log d

Greedy schedule
(minimize max over

all machines and dimensions)

E[greedy volume] < volume/poly(d)
(Chernoff bounds)

E[greedy makespan] = O(1)

Algorithm: Random and Greedy

Online Vector Scheduling 23

Algorithm: Random and Greedy

Competitive ratio: O(log d/log log d)

Turns out yes:

Best we can do?

Ω(log d/log log d) lower bound
For vector scheduling Coloring lower bound

implies

Online Vector Scheduling 24

Online Monochromatic Clique

1

2

Given fixed of t colors: red, blue, and green. (here t = 3)

3

4

5

7

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the
largest monochromatic clique.

Clique:

6

Online Vector Scheduling 25

Online Monochromatic Clique

1

2

Given fixed of t colors: red, blue, and green. (here t = 3)

3

4

5

6
7

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the
largest monochromatic clique.

Clique:

Online Vector Scheduling 26

Online Monochromatic Clique

1

2

Given fixed of t colors: red, blue, and green. (here t = 3)

3

4

5

6
7

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the
largest monochromatic clique.

Clique:

Online Vector Scheduling 27

Online Monochromatic Clique

1

2

Given fixed of t colors: red, blue, and green. (here t = 3)

3

4

5

6
7

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the
largest monochromatic clique.

Clique:

Online Vector Scheduling 28

Online Monochromatic Clique

1

2

Given fixed of t colors: red, blue, and green. (here t = 3)

3

4

5

6
7

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the
largest monochromatic clique.

Clique:

Online Vector Scheduling 29

Online Monochromatic Clique

1

2

Given fixed of t colors: red, blue, and green. (here t = 3)

3

4

5

6
7

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the
largest monochromatic clique.

Clique:

Online Vector Scheduling 30

Online Monochromatic Clique

1

2

Given fixed of t colors: red, blue, and green. (here t = 3)

3

4

5

6
7

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the
largest monochromatic clique.

Clique:

Online Vector Scheduling 31

Online Monochromatic Clique

Given fixed of t colors: red, blue, and green. (here t = 3)

ith vertex arrives: online algorithm gets adjacencies with vertices 1, …, i-1

Objective: minimize the
largest monochromatic clique.

Clique:

GoodBad

Online Vector Scheduling 32

The Game: Bins versus Colors
(…or robots versus blue devils)

Adversary (us) Online Algorithm

Number of colors: t = 4

Bins = algorithm’s coloring

1

2

3

Bin 1 Bin 2

Bin 3 Bin 4

My turn!

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision)

Online Vector Scheduling 33

Adversary (us) Online Algorithm

Bins = algorithm’s coloring

1

2

3

Bin 1 Bin 2

Bin 3 Bin 4

My turn!

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision)

Number of colors: t = 4

The Game: Bins versus Colors
(…or robots versus blue devils)

Online Vector Scheduling 34

Adversary (us) Online Algorithm

Bins = algorithm’s coloring

1

23

Bin 1 Bin 2

Bin 3 Bin 4

My turn!

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision)

Number of colors: t = 4

The Game: Bins versus Colors
(…or robots versus blue devils)

Online Vector Scheduling 35

Adversary (us) Online Algorithm

Bins = algorithm’s coloring

1

23

Bin 1 Bin 2

Bin 3 Bin 4

My turn!

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision)

Number of colors: t = 4

The Game: Bins versus Colors
(…or robots versus blue devils)

Online Vector Scheduling 36

The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a
distinct set of √t colors

Online Vector Scheduling 37

The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

vertex i

Online Vector Scheduling 38

The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a
distinct set of √t colors

• Generate a “code”: a sequence of strings of length t from a √t
alphabet

• For the ith vertex, define adjacencies as follows (say t = 16):
– Suppose the ith string in the code is 1312121121413134

– Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1
of bin 3, etc

Online Vector Scheduling 39

The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

vertex i

Online Vector Scheduling 40

Code string:
1312121121413134

The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a
distinct set of √t colors

• Generate a “code”: a sequence of strings of length t from a √t
alphabet

• For the ith vertex, define adjacencies as follows (say t = 16):
– Suppose the ith string in the code is 1312121121413134

– Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1
of bin 3, etc

– If the algorithm places the vertex in bin 2, then place it in slot 3 of bin
2

Online Vector Scheduling 41

The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

Online Vector Scheduling 42

Code string:
1312121121413134

Bin 15

The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a
distinct set of √t colors

• Generate a “code”: a sequence of strings of length t from a
√t alphabet

• For the ith vertex, define adjacencies as follows (say t = 16):
– Suppose the ith string in the code is 1312121121413134
– Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2,

slot 1 of bin 3, etc
– If the algorithm places the vertex in bin 2, then place it in slot 3

of bin 2
– OPT colors the vertex with a color from the √t colors associated

with slot 3 that is currently unused in bin 2

Online Vector Scheduling 43

The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

Online Vector Scheduling 44

Code string:
1312121121413134

Bin 15

Color black

The Adversary Strategy

• Split every bin into √t slots: each slot is associated with a
distinct set of √t colors

• Generate a “code”: a sequence of strings of length t from a
√t alphabet

• For the ith vertex, define adjacencies as follows (say t = 16):
– Suppose the ith string in the code is 1312121121413134
– Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2,

slot 1 of bin 3, etc
– If the algorithm places the vertex in bin 2, then place it in slot 3

of bin 2
– OPT colors the vertex with a color from the √t colors associated

with slot 3 that is currently unused in bin 2

• Terminate when some slot in some bin has √t vertices

Online Vector Scheduling 45

The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

Online Vector Scheduling 46

Observation 1: Algorithm has created a monochromatic √t-clique

Observation 2: OPT has perfectly colored the graph in a bin

Lemma (via the probabilistic method): There exist codes that
produce only constant-sized monochromatic cliques in OPT

The Construction

1. Adversary defines adjacencies with prior vertices.
2. Algorithm places vertex in a bin (ALGO’s color).
3. Adversary colors the vertex (OPT’s decision).

1 2

3 4

(t = number colors)

Online Vector Scheduling 47

Now for the reduction…

Ω(log d/log log d) lower bound
For vector scheduling Coloring lower bound

implies

Online Vector Scheduling 48

Using MC Lower Bound for
Vector Scheduling

Colors correspond
to machines

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

2

3

4

5

1

5

1 3

2

3

2(Algorithm’s colors)

colors t = m
jobs <-> vertices

Online Vector Scheduling 49

mO(m)

Using MC Lower Bound for
Vector Scheduling

Colors correspond
to machines

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

5

1 3

2

3

2(Algorithm’s colors)

colors t = m
jobs <-> vertices

6
(issued by MC instance)

Online Vector Scheduling 50

2

3

4

1

5

Using MC Lower Bound for
Vector Scheduling

Colors correspond
to machines

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

5
5

1 3

2

3

2(Algorithm’s colors)

colors t = m
jobs <-> vertices

6
(issued by MC instance)

Online Vector Scheduling 51

2

3

4

1

Using MC Lower Bound for
Vector Scheduling

Colors correspond
to machines

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

3

5

1 3

2

3

2(Algorithm’s colors)

colors t = m
jobs <-> vertices

6
(issued by MC instance)

(0, 0 , 0 , . . . 1, 0, . . . 0)

1 iff vertex forms a clique with
previous vertices in the set

Online Vector Scheduling 52

3

2

4

5

1

Using MC Lower Bound for
Vector Scheduling

Colors correspond
to machines

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

5

1 3

2

3

2(Algorithm’s colors)

colors t = m
jobs <-> vertices

6
(issued by MC instance)

(0, 0 , 0 , . . . 1, 0, . . . 0)

6

Online Vector Scheduling 53

1 iff vertex forms a clique with
previous vertices in the set

2

3

4

5

1

Using MC Lower Bound for
Vector Scheduling

Colors correspond
to machines

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

5

1 3

2

3

2(Algorithm’s colors)

colors t = m
jobs <-> vertices

6
(issued by MC instance)

(0, 0 , 0 , . . . 1, 0, . . . 0)

6

Online Vector Scheduling 54

2

3

4

5

1

1 iff vertex forms a clique with
previous vertices in the set

Using MC Lower Bound for
Vector Scheduling

Colors correspond
to machines

Dimensions correspond to
√m size subsets of {1,…, m2}

1 1

2 2 2

3

5

1 3

2

3

2(Algorithm’s colors)

colors t = m
jobs <-> vertices

6

6

1. After m2 vertices, there will exist a monochromatic clique of size √m on
some color c.

2. => dimension corresponding to these vertices will have a load of √m on
machine c.

3. Size of largest monochromatic clique in OPT’s graph coloring is O(1).
4. ALGO/OPT => Ω(√m) = Ω(log d / log log d)

Online Vector Scheduling 55

2

3

4

5

1

Summary of Results

Online Vector Scheduling 56

Makespan
minimization

p-norm
minimization

Identical machines O(log d)
[Azar et al ’13,

Meyerson et al ’14]

Our result:
Θ(log d/log log d)

Our result:
Θ((log d/log log d)1-1/p)

(Im-Kulkarni-Kell-P.
FOCS ’15)

Unrelated machines
(machine dependent
loads)

O(log d + log m)
[Meyerson et al ’14]

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Related machines
(non-uniform
machine speeds)

(Im-Kell-P.-Shadloo
’17)

Related Machines (homogenous)

Jobs:

Machine 1

Machine m

(2, 2.8, 1.3)

1

speed = 1

Processing time = load/speed

(2, 1.5, 1)

2

speed = 1/2
Online Vector Scheduling 57

Jobs:

Machine 1

Machine m

speed = 1

Execution time = load/speed

(2, 1.5, 1)

2

speed = 1/2

2 2.8 1.3

Related Machines (homogenous)

Online Vector Scheduling 58

Jobs:

Machine 1

Machine m

speed = 1

Execution time = load/speed

speed = 1/2

2 2.8 1.3

4 3 2

Related Machines (homogenous)

Online Vector Scheduling 59

Related Machines (heterogeneous)

Jobs:

Machine 1

Machine m

(2, 2.8, 1.3)

1

speed = 1

Processing time = load/speed

(2, 1.5, 1)

2

speed = 1 speed = 1/2

speed = 1/3 speed = 1/4speed = 1/2 Online Vector Scheduling 60

Related Machines (heterogeneous)

Jobs:

Machine 1

Machine m

speed = 1

Processing time = load/speed

(2, 1.5, 1)

2

speed = 1 speed = 1/2

speed = 1/3 speed = 1/4speed = 1/2

2 2.8 2.6

Online Vector Scheduling 61

Related Machines (heterogeneous)

Jobs:

Machine 1

Machine m

speed = 1

Processing time = load/speed

speed = 1 speed = 1/2

speed = 1/3 speed = 1/4speed = 1/2

2 2.8 2.6

4 4.5 4
Online Vector Scheduling 62

Summary of Results

Online Vector Scheduling 63

Makespan
minimization

p-norm
minimization

Identical machines O(log d)
[Azar et al ’13,

Meyerson et al ’14]

Our result:
Θ(log d/log log d)

Our result:
Θ((log d/log log d)1-1/p)

(Im-Kulkarni-Kell-P.
FOCS ’15)Unrelated machines

(machine dependent
loads)

O(log d + log m)
[Meyerson et al ’14]

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Related
machines
(non-
uniform
machine
speeds)

Homo-
geneous

Our result:
Θ(log d/log log d)

Our result:
O(log3 d)

(Im-Kell-P.-Shadloo
’17)

Hetero-
geneous

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Summary of Results

Online Vector Scheduling 64

Makespan
minimization

p-norm
minimization

Identical machines O(log d)
[Azar et al ’13,

Meyerson et al ’14]

Our result:
Θ(log d/log log d)

Our result:
Θ((log d/log log d)1-1/p)

(Im-Kulkarni-Kell-P.
FOCS ’15)Unrelated machines

(machine dependent
loads)

O(log d + log m)
[Meyerson et al ’14]

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

Related
machines
(non-
uniform
machine
speeds)

Homo-
geneous

Our result:
Θ(log d/log log d)

Our result:
O(log3 d)

(Im-Kell-P.-Shadloo
’17)

Hetero-
geneous

Our result:
Θ(log d + log m)

Our result:
Θ(log d + p)

First O(1)
competitive for d = 1

Machine Grouping

Want to reduce problem to identical machines…
Natural to try to groups machines of similar speed.

speed = 1

Issue: if total speed (processing power) of faster
machines is large, slower machines go unutilized.

speed = 1

speed = 1

speed = 1

speed = 1/2

speed = 1/2

speed = 1/2 speed = 1/4

speed = 1/4

speed = 1/8

Online Vector Scheduling 65

Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3 Online Vector Scheduling 66

Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3

speed = 1

Group 0: (total speed 1)

• Group machines so that total speed increases exponentially.
• Replace machines with identical machines with

(roughly) same total speed.

Online Vector Scheduling 67

Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3

speed = 1

Group 0: (total speed 1)

Group 1: speed = 1/2 speed = 1/2

speed = 1/2 speed = 1/2

(total speed 2)

• Group machines so that total speed increases exponentially.
• Replace machines with identical machines with

(roughly) same total speed.

Online Vector Scheduling 68

Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3

• Group machines so that total speed increases exponentially.
• Replace machines with identical machines with

(roughly) same total speed.

speed = 1

Group 0: (total speed 1)

Group 1: speed = 1/2 speed = 1/2

speed = 1/2 speed = 1/2

(total speed 2)

Group 2:

speed = 1/4 (each) (total speed 4)

Online Vector Scheduling 69

Machine Smoothing

speed = 1

speed = 2/3

speed = 1/2

speed = 2/5

speed = 2/5 speed = 2/5

speed = 1/3

speed = 1/3 speed = 1/3

• Group machines so that total speed increases exponentially.
• Replace machines with identical machines with

(roughly) same total speed.

speed = 1

Group 0: (total speed 1)

Group 1: speed = 1/2 speed = 1/2

speed = 1/2 speed = 1/2

(total speed 2)

Group 2:

speed = 1/4 (each) (total speed 4)

Online Vector Scheduling 70

Lemma (informal): Any schedule on a smoothed instance can be
replicated on the original instance with constant change in
makespan, and vice-versa. A similar statement can be shown for all
p-norms as well.

Makespan minimization:
Slowest fit on Smoothed Instance

speed = 1

speed = 1/2

speed = 1/4

Suppose OPT = 10

Jobs:
(3, 3, 1)

1

(2, 1.5, 1)

2

Algorithm: Assign to slowest group
such that all execution times are <= c. OPT

Online Vector Scheduling 71

speed = 1

speed = 1/2

speed = 1/4

Jobs:

(3, 3, 1)

(2, 1.5, 1)

2

Algorithm: Assign to slowest group
such that all execution times are <= c. OPT

Online Vector Scheduling 72

Makespan minimization:
Slowest fit on Smoothed Instance

Suppose OPT = 10

speed = 1

speed = 1/2

speed = 1/4

Jobs:

(3, 3, 1)

(2, 1.5, 1)

Algorithm: Assign to slowest group
such that all execution times are <= c. OPT

Online Vector Scheduling 73

Makespan minimization:
Slowest fit on Smoothed Instance

Suppose OPT = 10

speed = 1

speed = 1/2

speed = 1/4

Jobs:

(3, 3, 1)

(2, 1.5, 1)

Algorithm: Assign to slowest group
such that all processing times are <= c. OPT

…. Then, assign jobs using the identical
machines algorithm (within each group).

+

+

Online Vector Scheduling 74

Makespan minimization:
Slowest fit on Smoothed Instance

Suppose OPT = 10

speed = 1

speed = 1/2

speed = 1/4

Challenge: Even if we are able to guess
OPT, how do we divide it among the
machine groups?

Indeed, no algorithm previously known
even for d = 1

Online Vector Scheduling 75

p-norm minimization

speed = 1

speed = 1/2

speed = 1/4

Challenge: Even if we are able to guess
OPT, how do we divide it among the
machine groups?

Indeed, no algorithm previously known
even for d = 1

Online Vector Scheduling 76

p-norm minimization

Algorithm has two interleaved stages:
• fractional solution via gradient

descent on a potential defined by a
suitable fractional relaxation

• online rounding uses a slowest-fit
strategy on the fractional solution

Thank You

Questions?

Online Vector Scheduling 77

