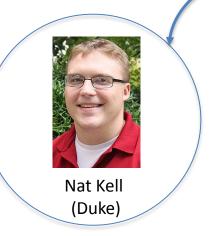
Debmalya Panigrahi Duke University

Work done with:

Sungjin Im (UC Merced)



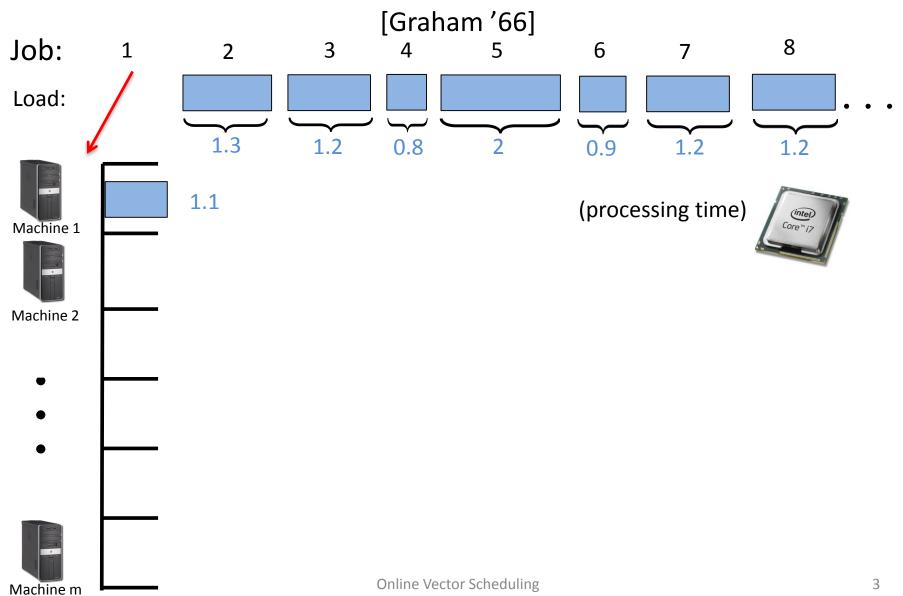
slídes

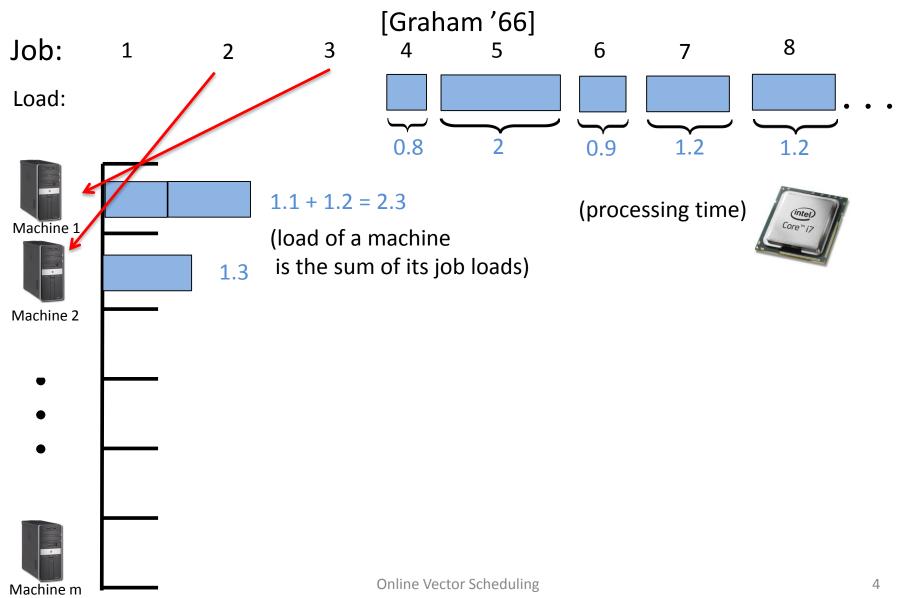
Janardhan Kulkarni (MSR \rightarrow UMN)

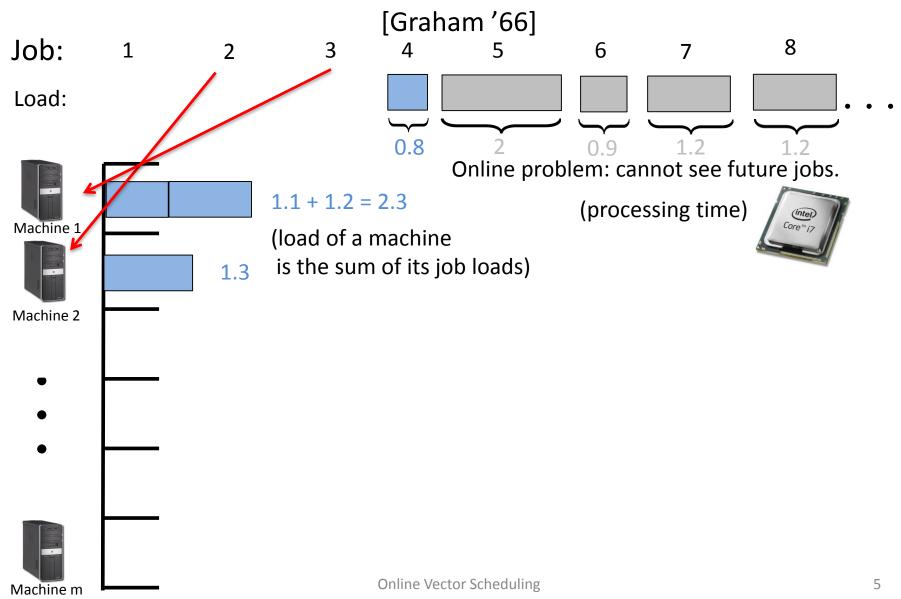
Maryam Shadloo (UC Merced)

Online Load Balancing [Graham '66] Job: 8 1 2 3 4 5 6 7 Load: 1.1 1.3 1.2 0.8 2 1.2 0.9 1.2 (processing time) (intel) Machine 1 Core" i7 Machine 2

Machine m





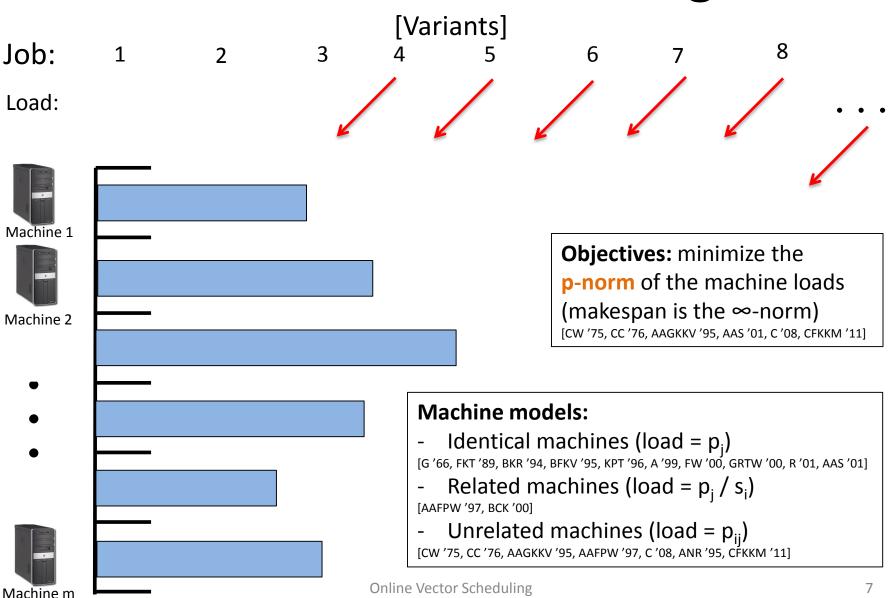


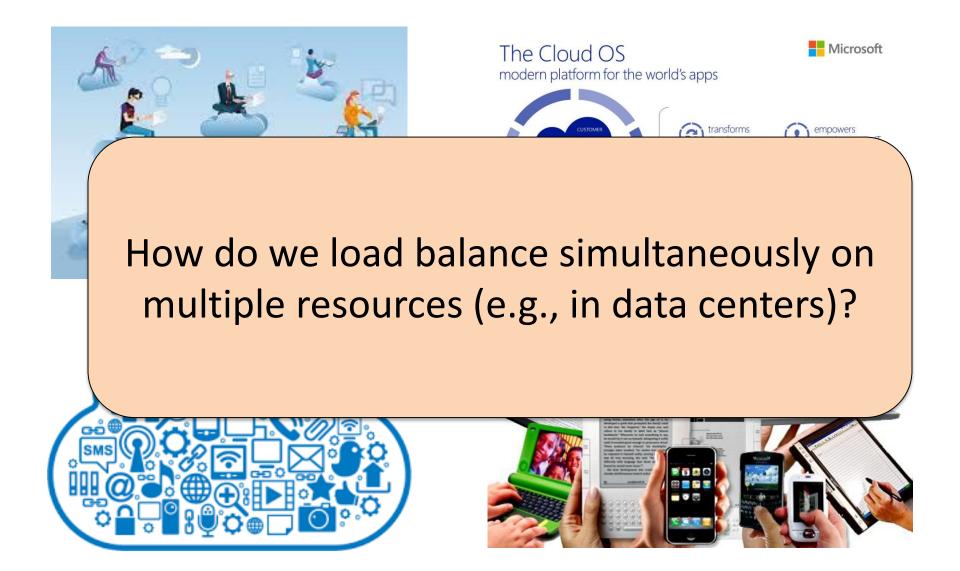
Online Load Balancing [Graham '66] Job: 3 8 1 2 6 4 5 7 Load: Machine 1 **Objective:** minimize the makespan of the schedule (maximum load) Machine 2

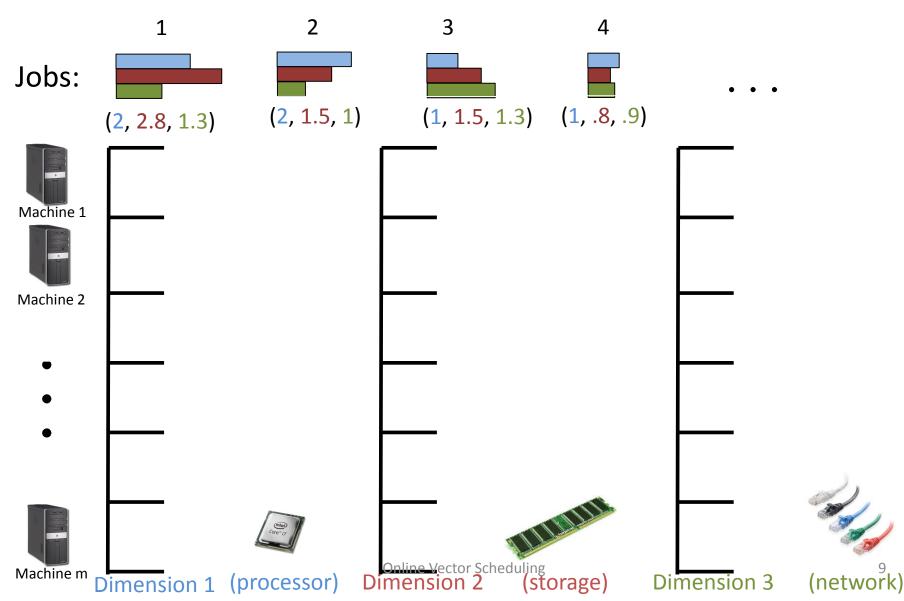
Algorithm performance benchmark: Competitive ratio

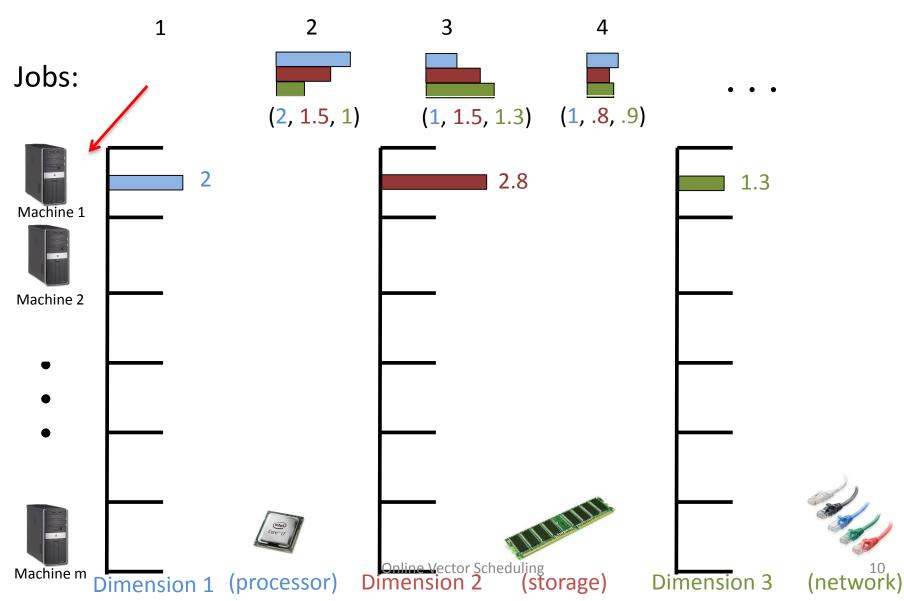
Online Makespan $\leq \alpha \cdot \text{Optimal Makespan}$ $\implies \alpha \text{-competitive}$

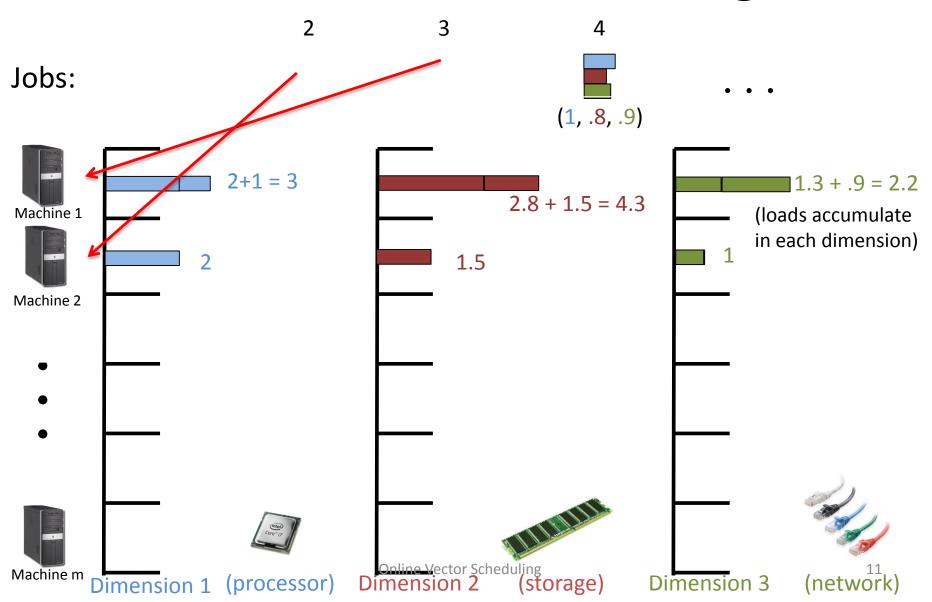
Machine m

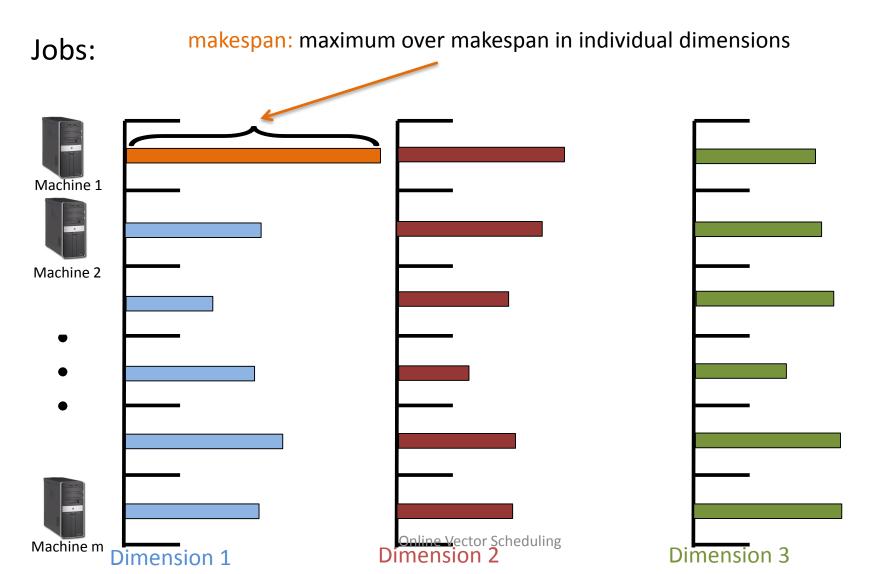








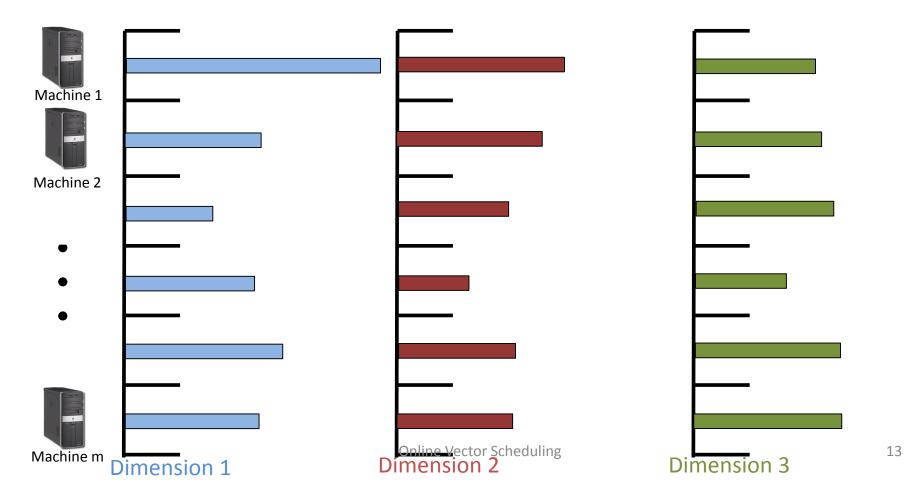




12

Jobs:

p-norms: maximum over p-norms in individual dimensions



Summary of Results

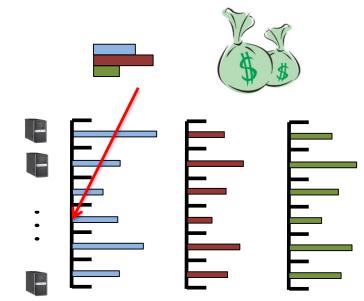
	Makespan minimization	p-norm minimization	
Identical machines	O(log d) [Azar <i>et al</i> '13, Meyerson <i>et al</i> '14] Our result: O(log d/log log d)	Our result: O((log d/log log d) ^{1-1/p})	
Unrelated machines (machine dependent loads)	O(log d + log m) [Meyerson <i>et al</i> '14] Our result: Θ(log d + log m)	Our result: Θ(log d + p)	(Im-Kulkarni-Kell-P. FOCS '15)
Related machines (non-uniform machine speeds)	Later	Later	(Im-Kell-PShadloo '17)

Summary of Results

	Makespan minimization	p-norm minimization	
Identical machines	O(log d) [Azar <i>et al</i> '13, Meyerson <i>et al</i> '14] Our result: O(log d/log log d)	Our result: Θ((log d/log log d) ^{1-1/p})	
Unrelated machines (machine dependent loads)	O(log d + log m) [Meyerson <i>et al</i> '14] Our result: Θ(log d + log m)	Our result: $\Theta(\log d + p)$	(Im-Kulkarni-Kell-P. FOCS '15)
Related machines (non-uniform machine speeds)	Later	Later	(Im-Kell-PShadloo '17)

Identical machines algorithm: First attempt

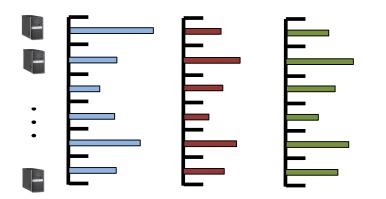
Greedy assignment (minimize maximum load across all machines and dimensions)



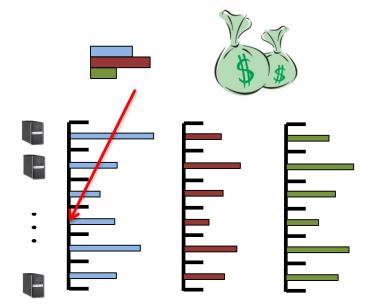
unbalanced loads on dimensions ...can be as bad as poly(d)-competitive

Identical machines algorithm: First attempt

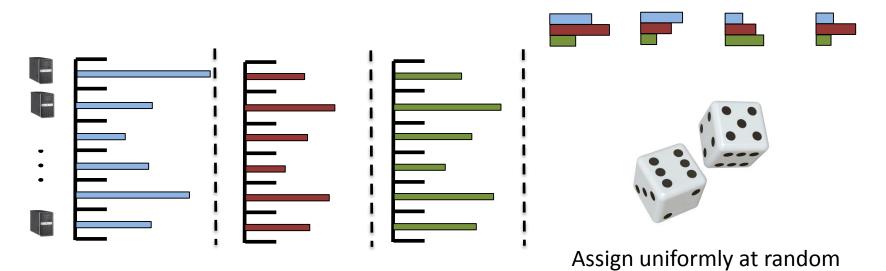
Random Assignment (assignment uniformly at random)

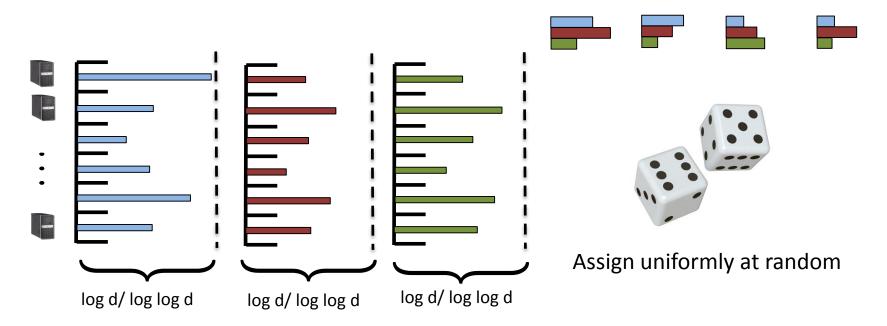


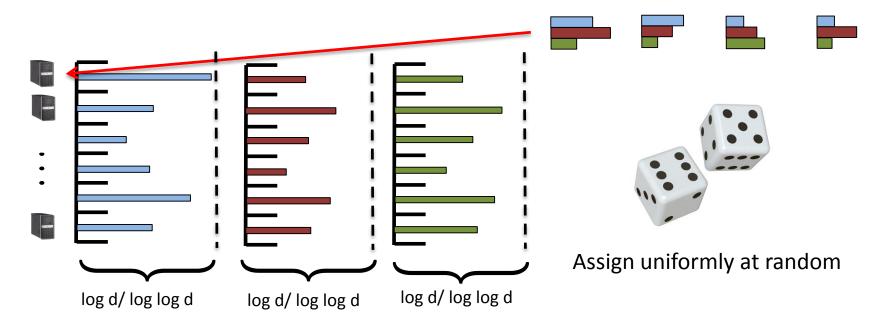
Chernoff bounds: O(log(dm))-competitive (optimal for unrelated machines) Greedy assignment (minimize maximum load across all machines and dimensions)

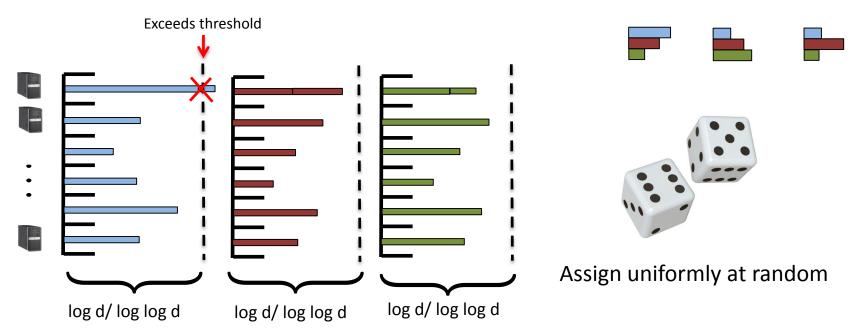


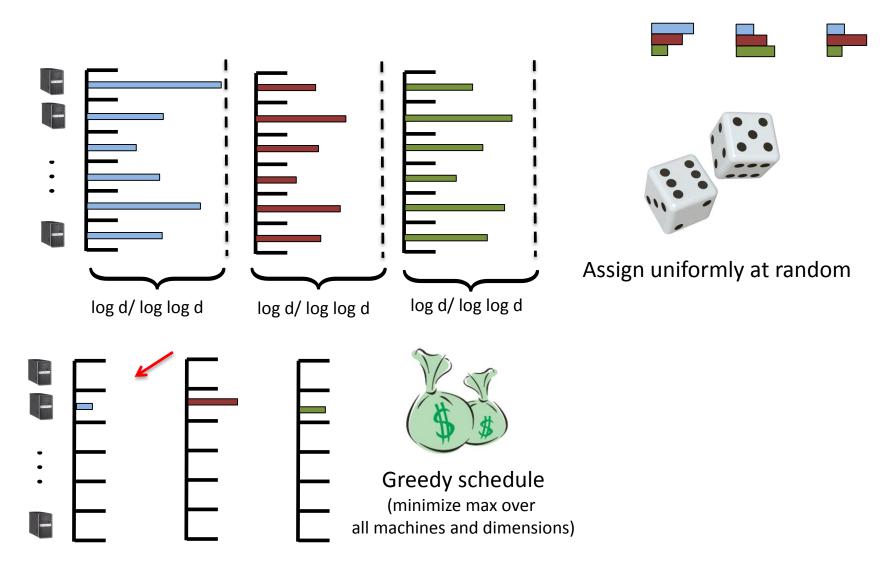
unbalanced loads on dimensions ...can be as bad as poly(d)-competitive

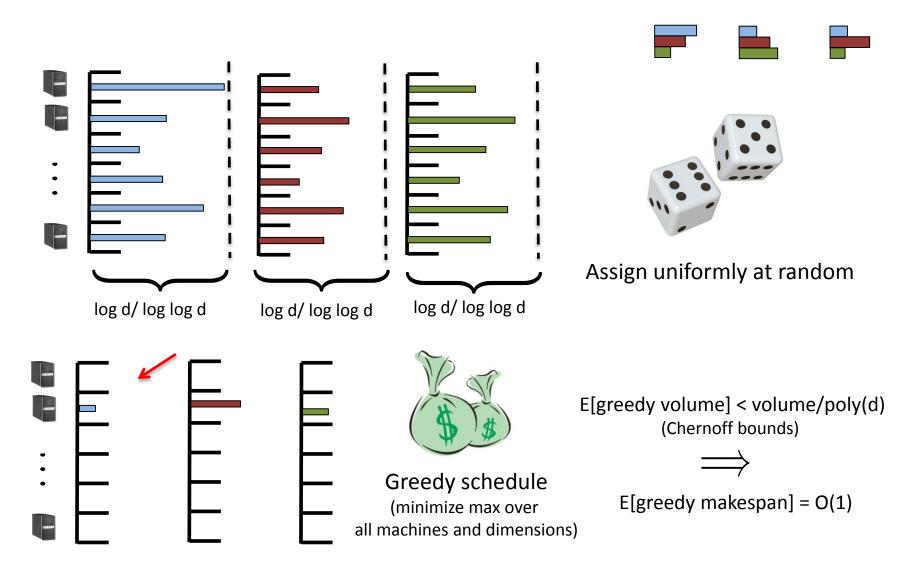


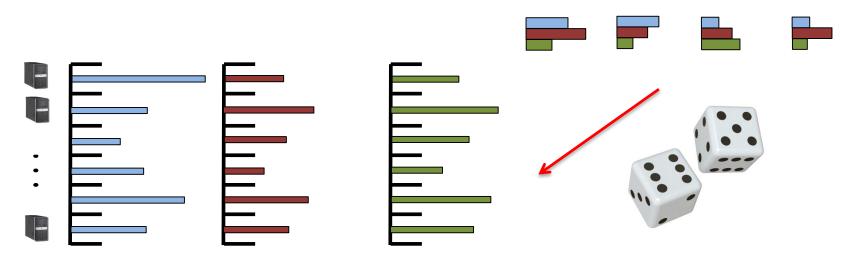




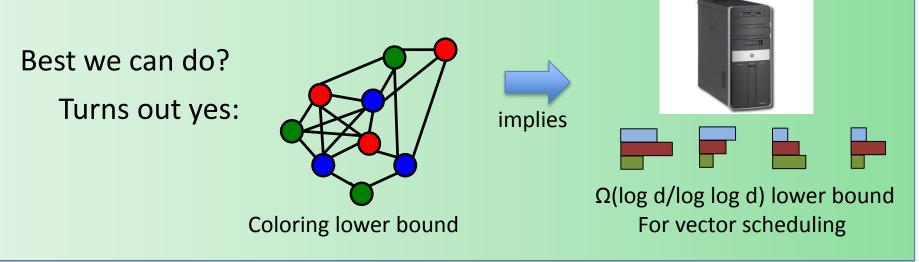




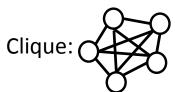




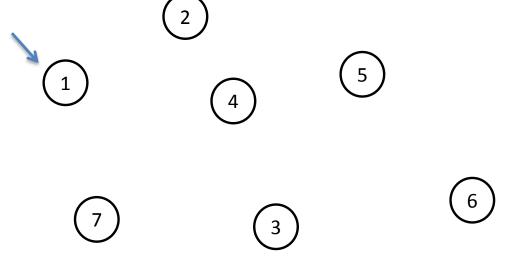
Competitive ratio: O(log d/log log d)



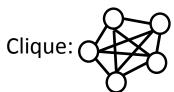
Given *fixed* of t colors: red, blue, and green. (here t = 3)



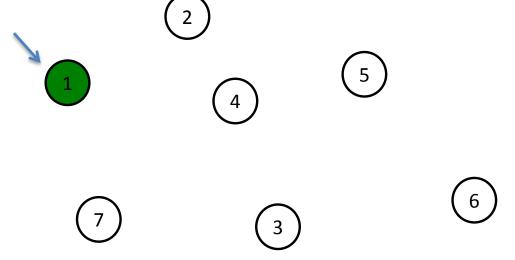
Objective: minimize the largest monochromatic clique.



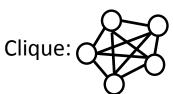
Given *fixed* of t colors: red, blue, and green. (here t = 3)



Objective: minimize the largest monochromatic clique.



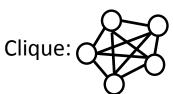
Given *fixed* of t colors: red, blue, and green. (here t = 3)



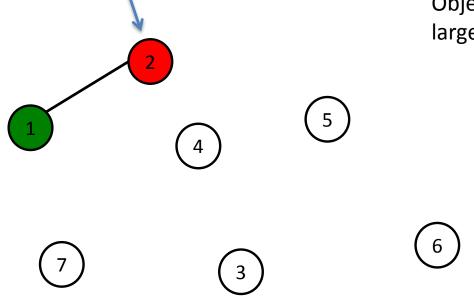
Objective: minimize the largest monochromatic clique.



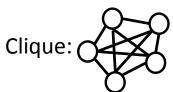
Given *fixed* of t colors: red, blue, and green. (here t = 3)



Objective: minimize the largest monochromatic clique.



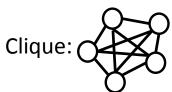
Given *fixed* of t colors: red, blue, and green. (here t = 3)



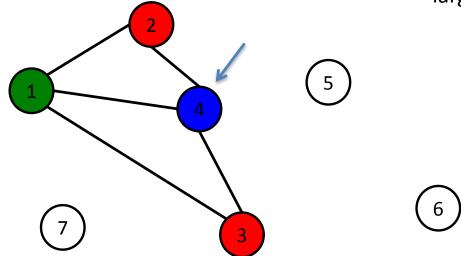
Objective: minimize the largest monochromatic clique.



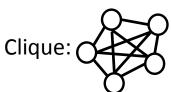
Given *fixed* of t colors: red, blue, and green. (here t = 3)



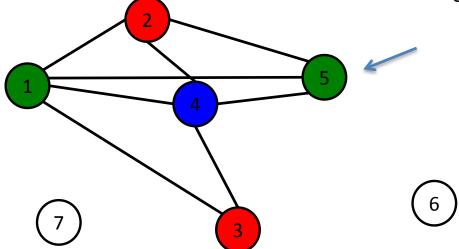
Objective: minimize the largest monochromatic clique.



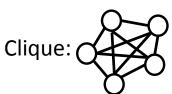
Given *fixed* of t colors: red, blue, and green. (here t = 3)



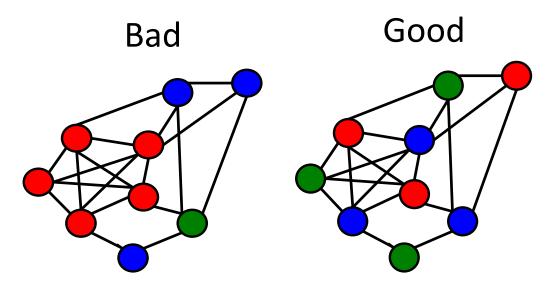
Objective: minimize the largest monochromatic clique.



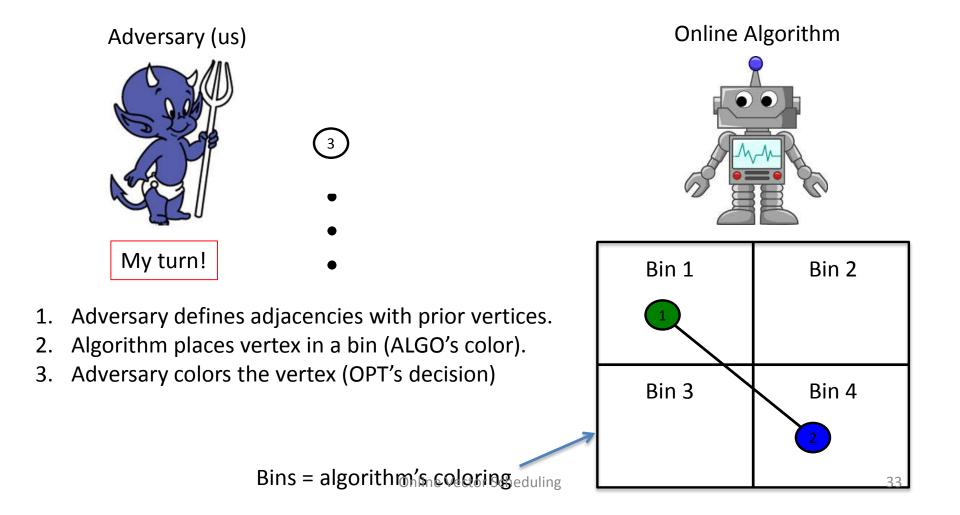
Given *fixed* of t colors: red, blue, and green. (here t = 3)



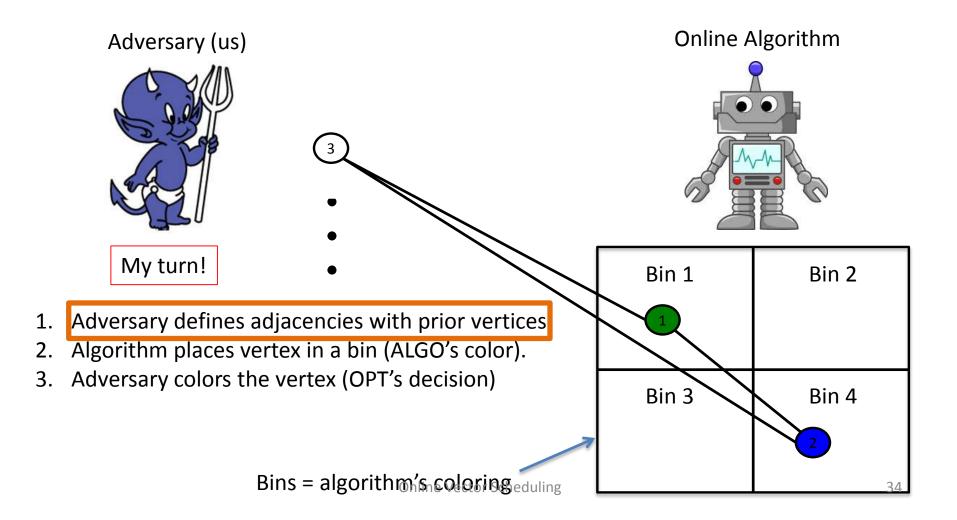
Objective: minimize the largest monochromatic clique.



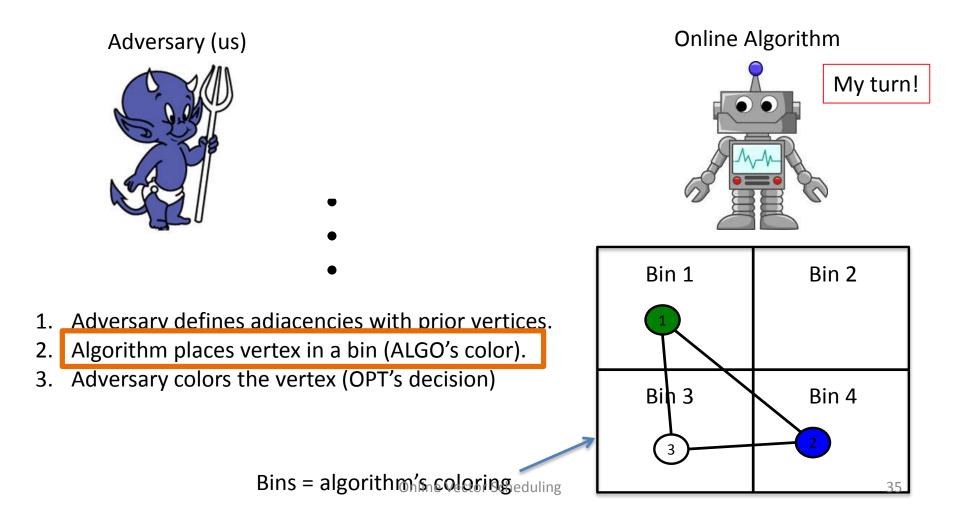
(...or robots versus blue devils)



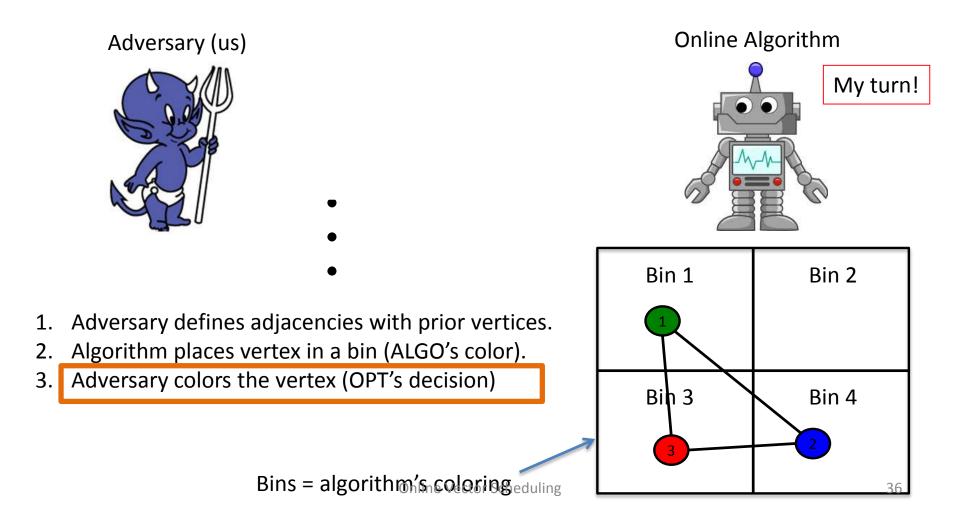
(...or robots versus blue devils)



(...or robots versus blue devils)



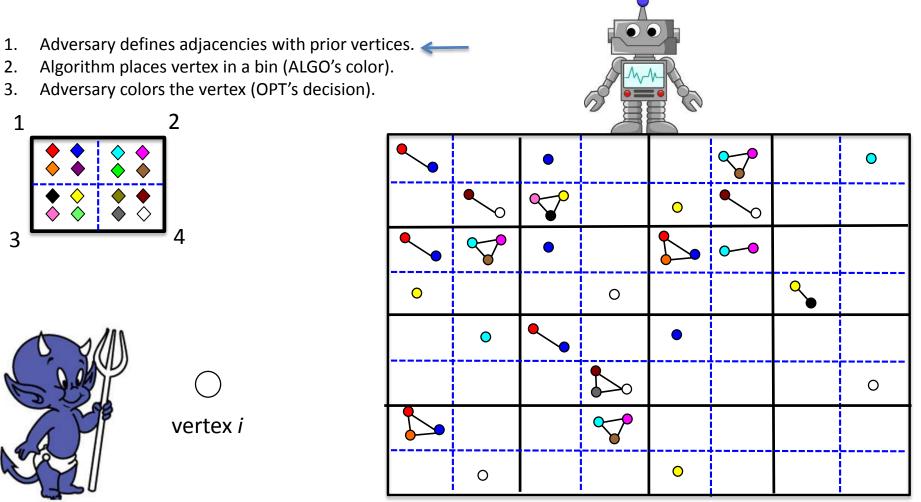
(...or robots versus blue devils)



The Adversary Strategy

Split every bin into Vt slots: each slot is associated with a distinct set of Vt colors

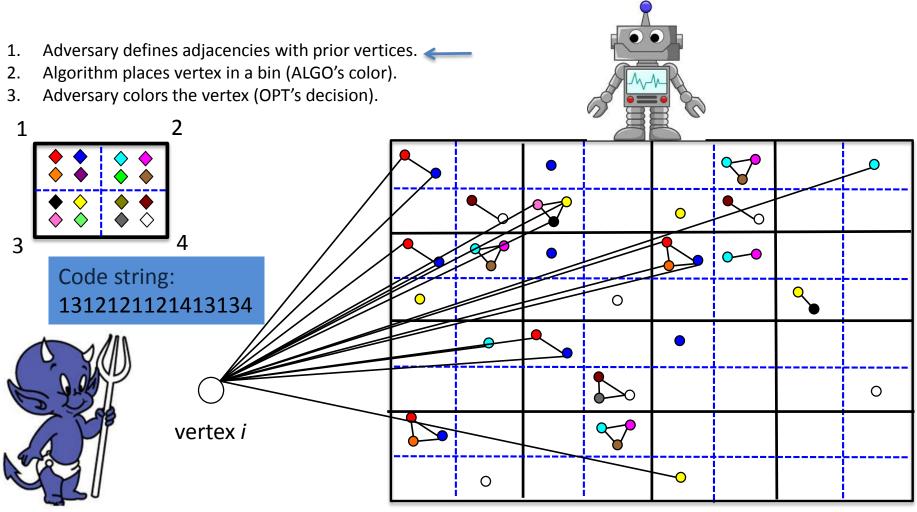
The Construction



The Adversary Strategy

- Split every bin into Vt slots: each slot is associated with a distinct set of Vt colors
- Generate a "code": a sequence of strings of length t from a Vt alphabet
- For the ith vertex, define adjacencies as follows (say t = 16):
 - Suppose the ith string in the code is 1312121121413134
 - Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1 of bin 3, etc

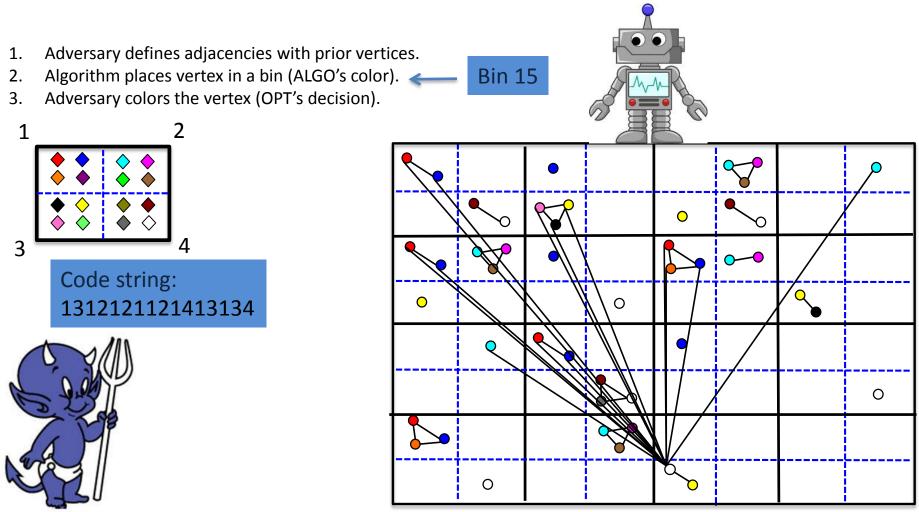
The Construction



The Adversary Strategy

- Split every bin into Vt slots: each slot is associated with a distinct set of Vt colors
- Generate a "code": a sequence of strings of length t from a Vt alphabet
- For the ith vertex, define adjacencies as follows (say t = 16):
 - Suppose the ith string in the code is 1312121121413134
 - Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1 of bin 3, etc
 - If the algorithm places the vertex in bin 2, then place it in slot 3 of bin
 2

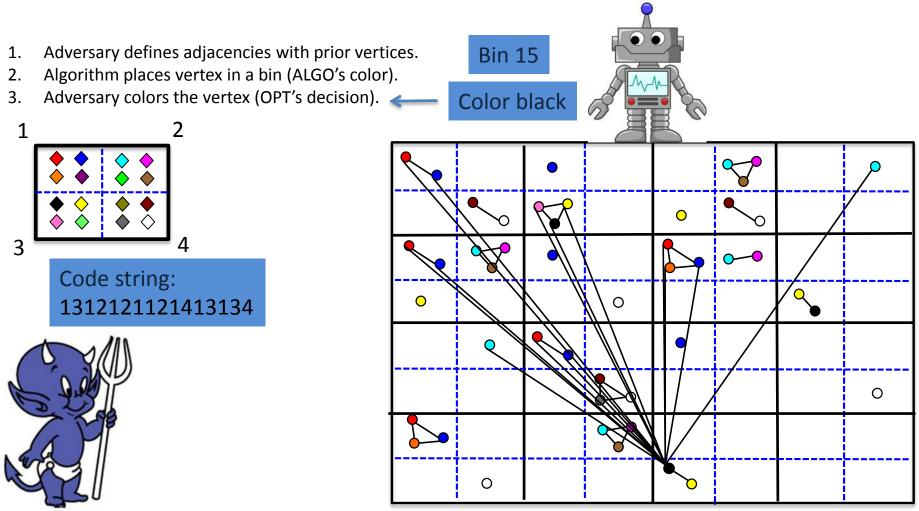
The Construction



The Adversary Strategy

- Split every bin into Vt slots: each slot is associated with a distinct set of Vt colors
- Generate a "code": a sequence of strings of length t from a Vt alphabet
- For the ith vertex, define adjacencies as follows (say t = 16):
 - Suppose the ith string in the code is 1312121121413134
 - Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1 of bin 3, etc
 - If the algorithm places the vertex in bin 2, then place it in slot 3 of bin 2
 - OPT colors the vertex with a color from the Vt colors associated with slot 3 that is currently unused in bin 2

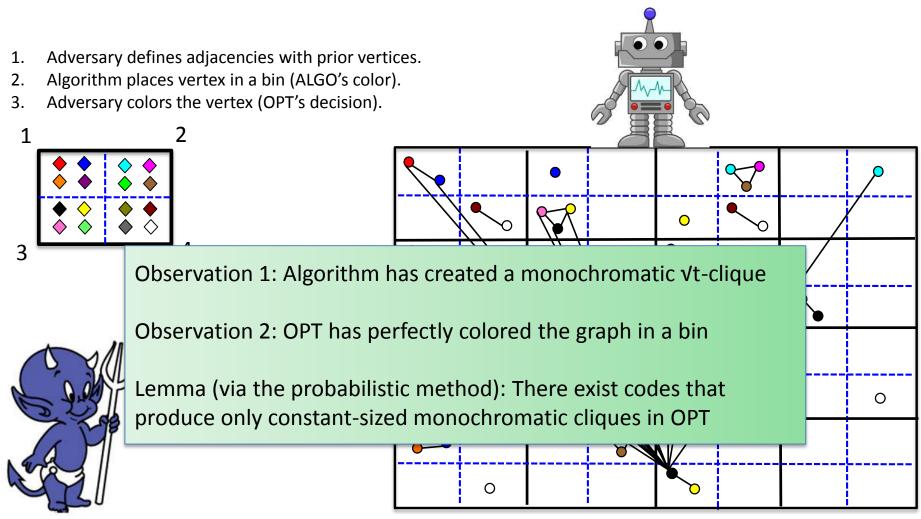
The Construction



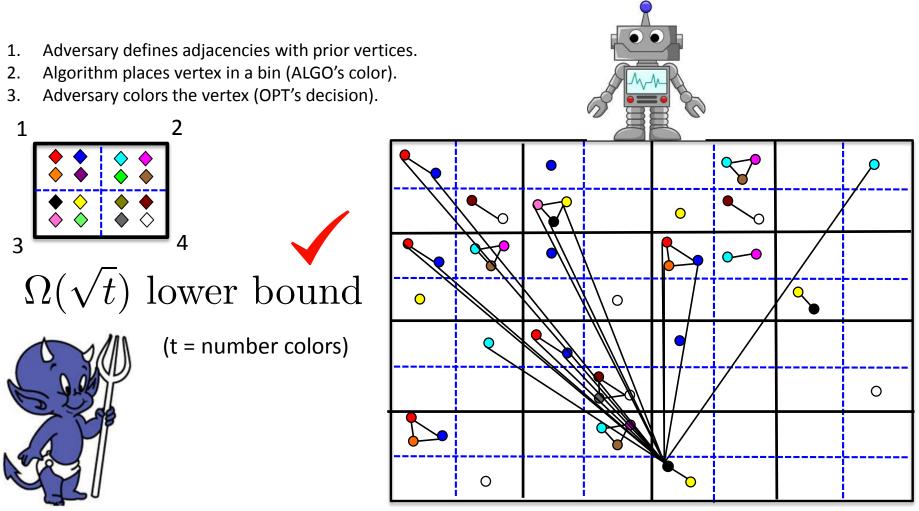
The Adversary Strategy

- Split every bin into Vt slots: each slot is associated with a distinct set of Vt colors
- Generate a "code": a sequence of strings of length t from a Vt alphabet
- For the ith vertex, define adjacencies as follows (say t = 16):
 - Suppose the ith string in the code is 1312121121413134
 - Then, add edges to all vertices in slot 1 of bin 1, slot 3 of bin 2, slot 1 of bin 3, etc
 - If the algorithm places the vertex in bin 2, then place it in slot 3 of bin 2
 - OPT colors the vertex with a color from the Vt colors associated with slot 3 that is currently unused in bin 2
- Terminate when some slot in some bin has Vt vertices

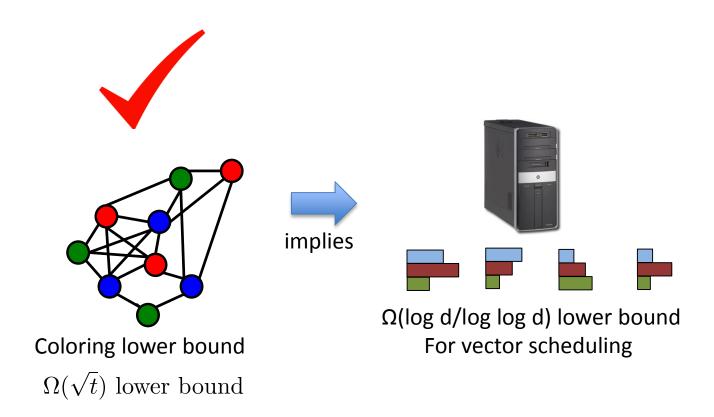
The Construction



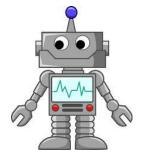
The Construction

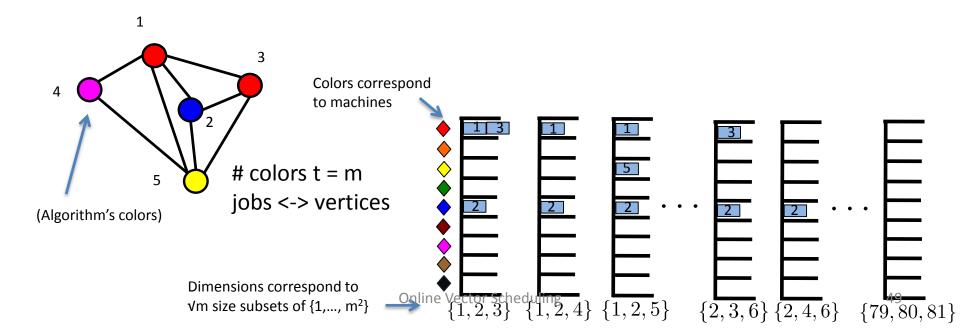


Now for the reduction...

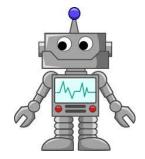


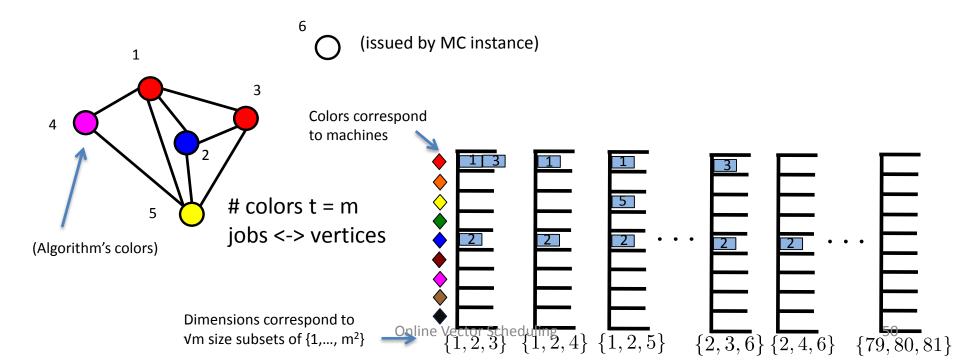
$$m = 9$$
 machines $m^{0(m)}$
Issue $m^2 = 81$ jobs
Job dimension $d = \begin{pmatrix} m^2 \\ \sqrt{m} \end{pmatrix} = \begin{pmatrix} 81 \\ 3 \end{pmatrix}$





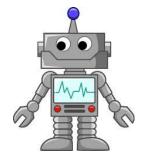
$$m = 9$$
 machines
Issue $m^2 = 81$ jobs
Job dimension $d = \begin{pmatrix} m^2 \\ \sqrt{m} \end{pmatrix} = \begin{pmatrix} 81 \\ 3 \end{pmatrix}$

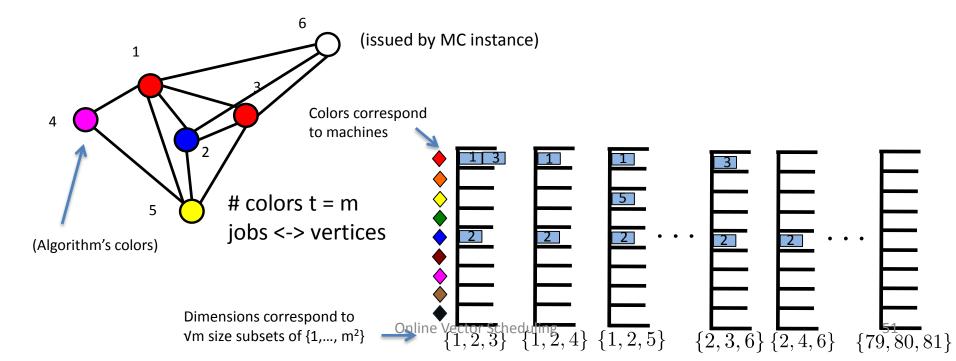


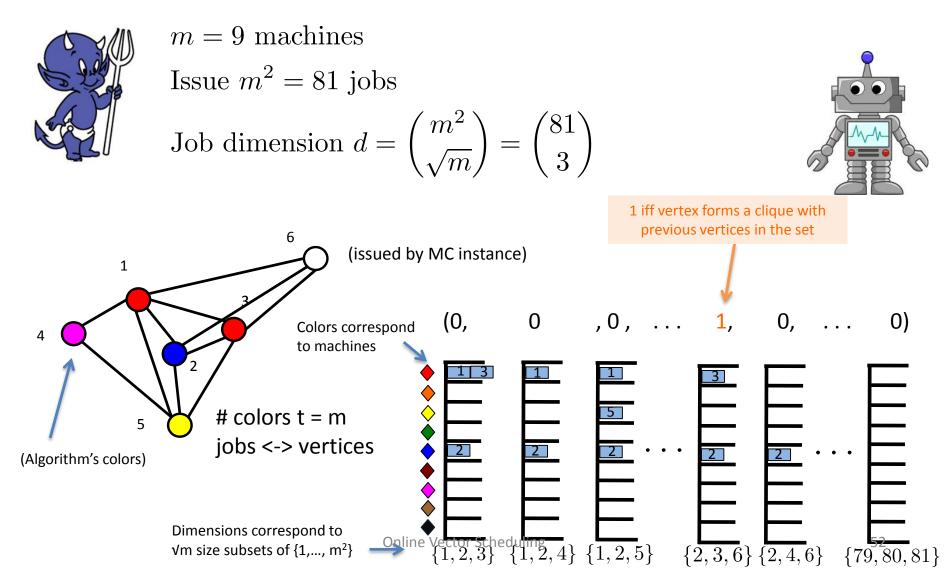


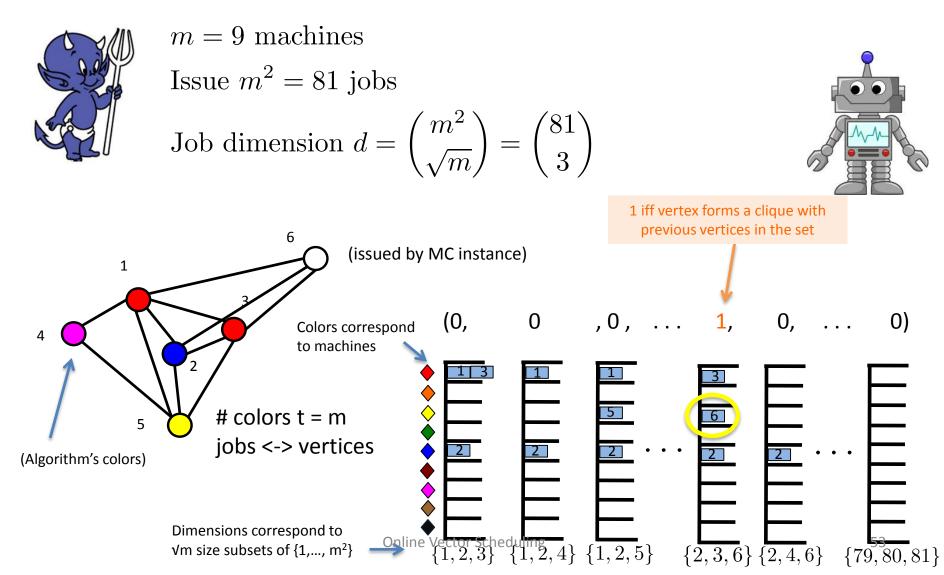
$$m = 9$$
 machines
Issue $m^2 = 81$ jobs

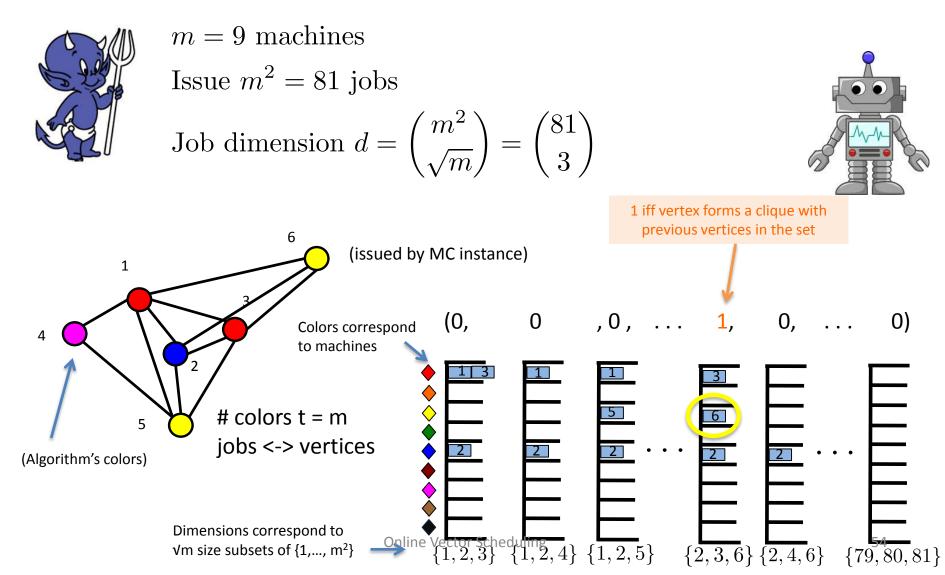
Job dimension
$$d = \begin{pmatrix} m^2 \\ \sqrt{m} \end{pmatrix} = \begin{pmatrix} 81 \\ 3 \end{pmatrix}$$







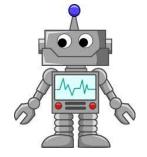


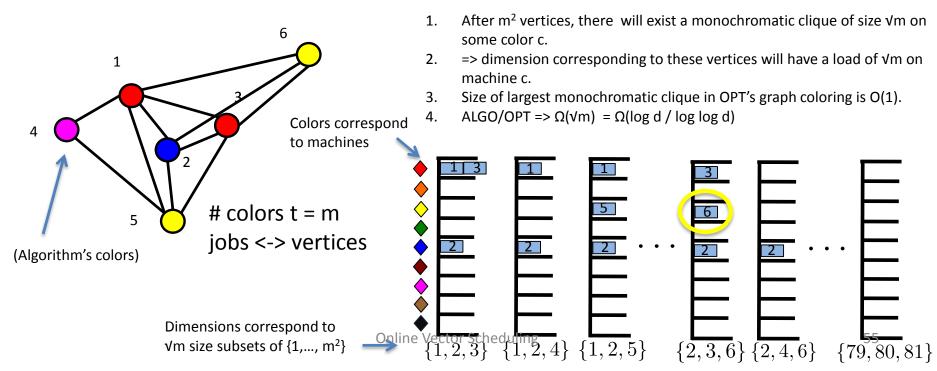


m = 9 machines

Issue $m^2 = 81$ jobs

Job dimension
$$d = \begin{pmatrix} m^2 \\ \sqrt{m} \end{pmatrix} = \begin{pmatrix} 81 \\ 3 \end{pmatrix}$$



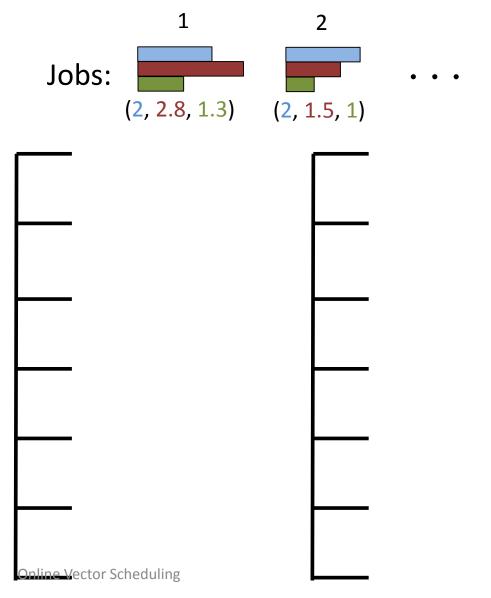


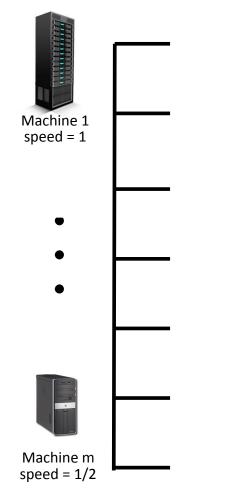
Summary of Results

	Makespan minimization	p-norm minimization	
Identical machines	O(log d) [Azar <i>et al</i> '13, Meyerson <i>et al</i> '14] Our result: O(log d/log log d)	Our result: Θ((log d/log log d) ^{1-1/p})	
Unrelated machines (machine dependent loads)	O(log d + log m) [Meyerson <i>et al</i> '14] Our result: Θ(log d + log m)	Our result: $\Theta(\log d + p)$	(Im-Kulkarni-Kell-P. FOCS '15)
Related machines (non-uniform machine speeds)			(Im-Kell-PShadloo '17)

Related Machines (homogenous)

Processing time = load/speed



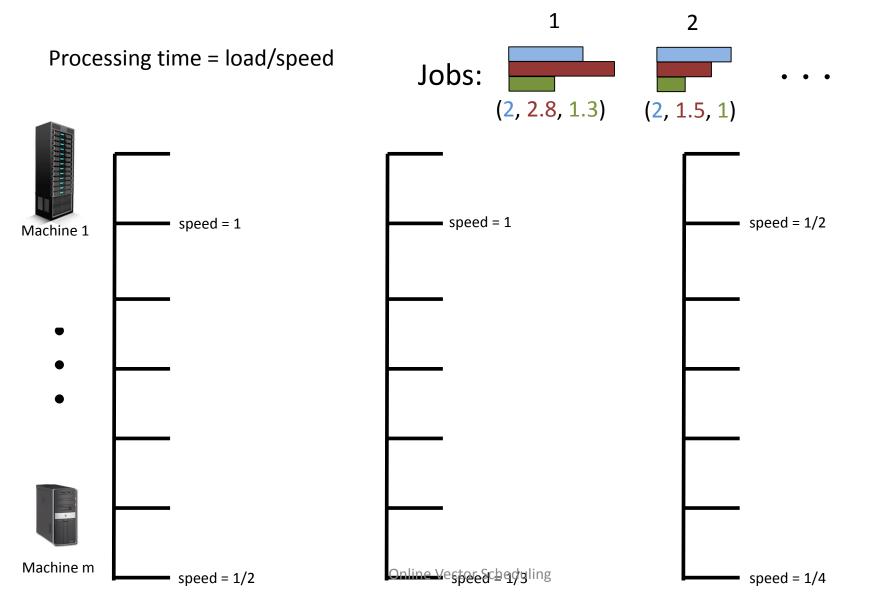


Related Machines (homogenous)

Related Machines (homogenous)

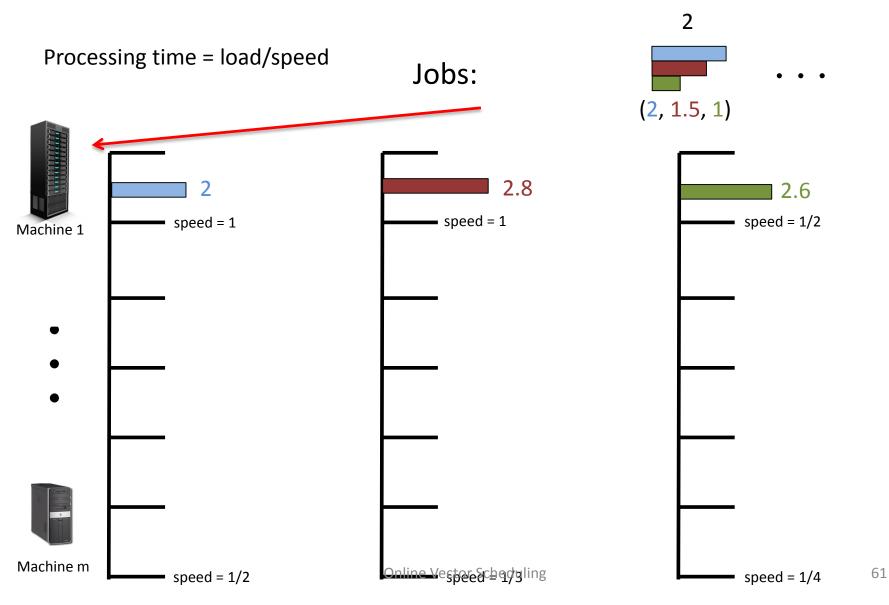
Execution time = load/speed Jobs: 2 1.3 2.8 Machine 1 speed = 13 4 2 Machine m Online Vector Scheduling speed = 1/2

Related Machines (heterogeneous)



60

Related Machines (heterogeneous)



Related Machines (heterogeneous)



Summary of Results

		Makespan minimization	p-norm minimization		
Identical n	nachines	O(log d) [Azar <i>et al</i> '13, Meyerson <i>et al</i> '14] Our result: O(log d/log log d)	Our result: Θ((log d/log log d) ^{1-1/p})	(Im-Kulkarni-Kell-P.	
Unrelated (machine loads)	machines dependent	$O(\log d + \log m)$ [Meyerson <i>et al</i> '14] Our result: $\Theta(\log d + \log m)$	Our result: Θ(log d + p)	FOCS '15)	
Related machines (non- uniform machine speeds)	Homo- geneous	Our result: O(log d/log log d)	Our result: O(log ³ d)	(Im-Kell-PShadloo '17)	
	Hetero- geneous	Our result: $\Theta(\log d + \log m)$	Our result: $\Theta(\log d + p)$		

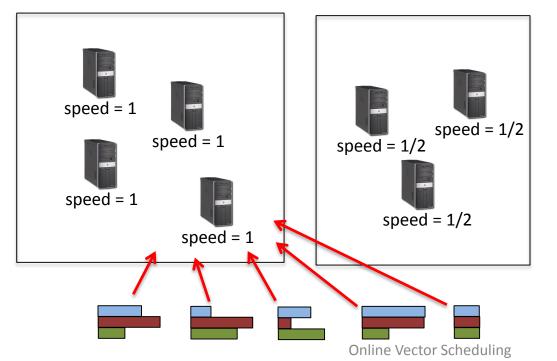
Summary of Results

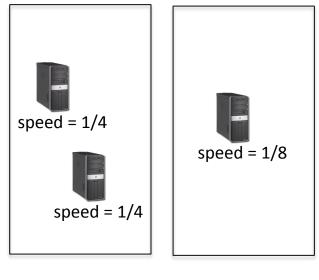
		Makespan minimization	p-norm minimization	
Identical n	nachines	O(log d) [Azar <i>et al</i> '13, Meyerson <i>et al</i> '14] Our result: O(log d/log log d)	Our result: O((log d/log log d) ^{1-1/p})	(Im-Kulkarni-Kell-P.
Unrelated machines (machine dependent loads)		$O(\log d + \log m)$ [Meyerson <i>et al</i> '14] Our result: $\Theta(\log d + \log m)$	Our result: O(log d + p)	First O(1) competitive for d = 1
Related machines (non-	Homo- geneous	Our result: O(log d/log log d)	Our result: O(log ³ d)	(Im-Kell-PShadloo
uniform machine speeds)	Hetero- geneous	Our result: $\Theta(\log d + \log m)$	Our result: $\Theta(\log d + p)$	'17)

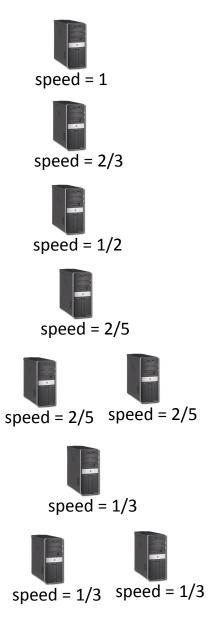
Machine Grouping

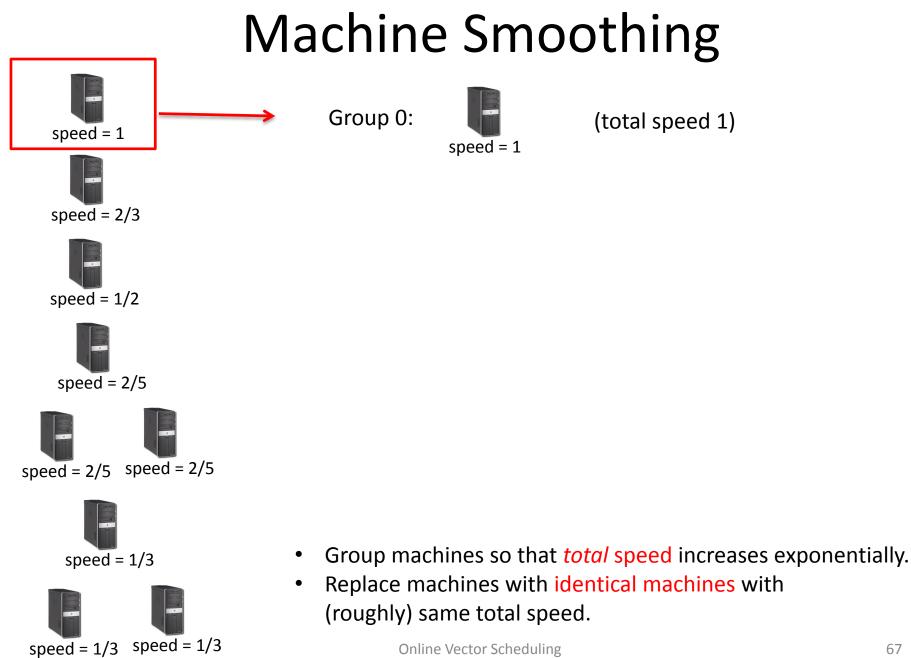
Want to reduce problem to identical machines... Natural to try to groups machines of similar speed.

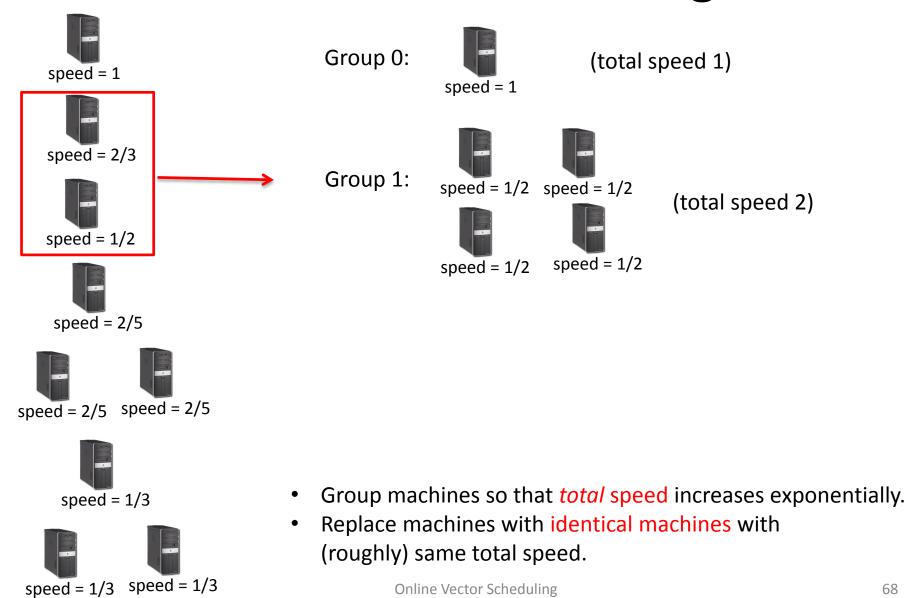
Issue: if total speed (processing power) of faster machines is large, slower machines go unutilized.



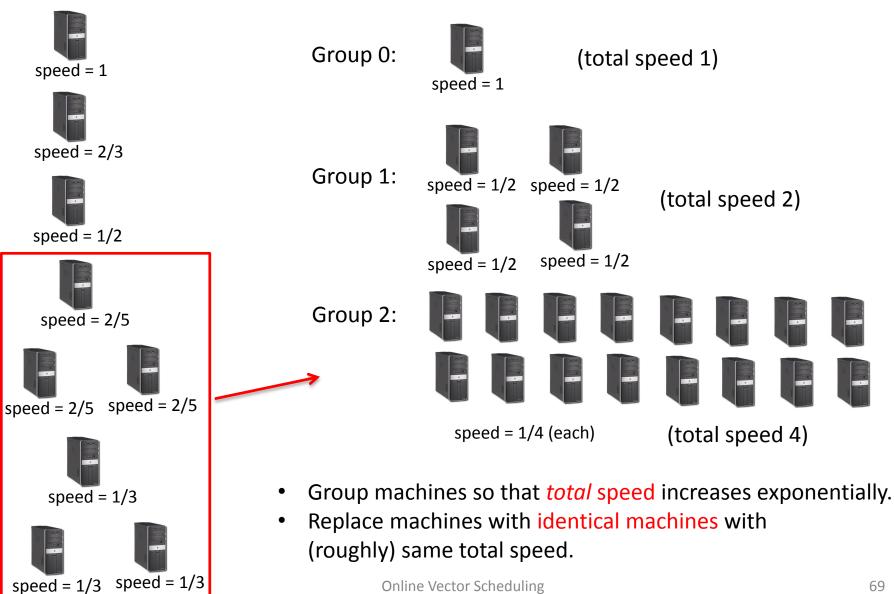


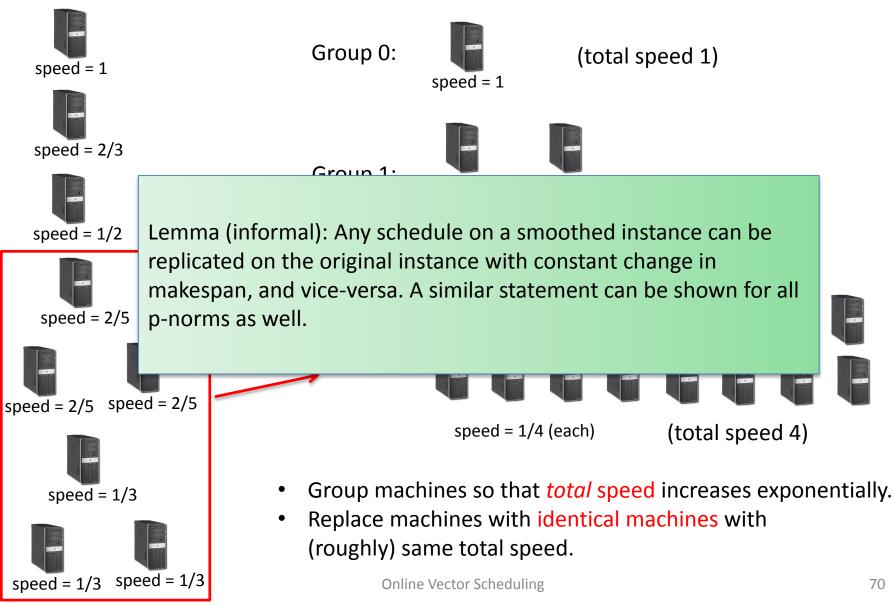


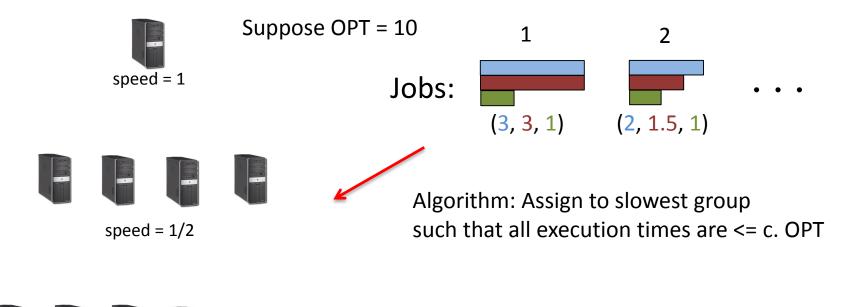




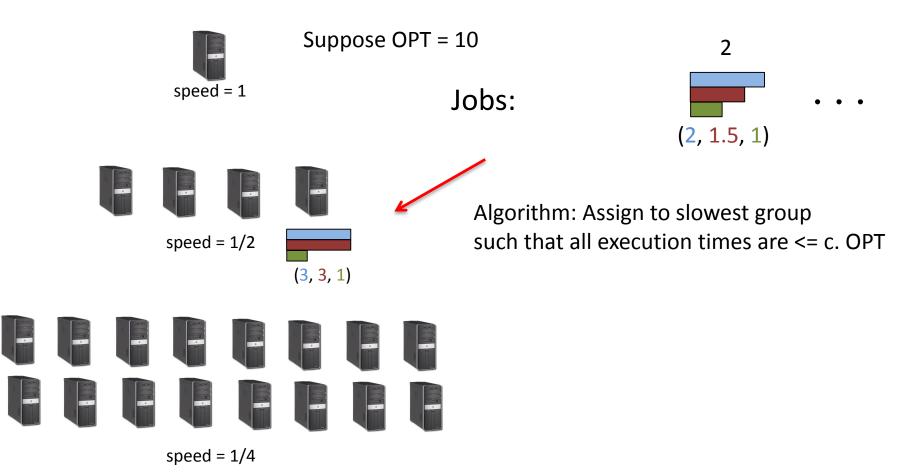
68

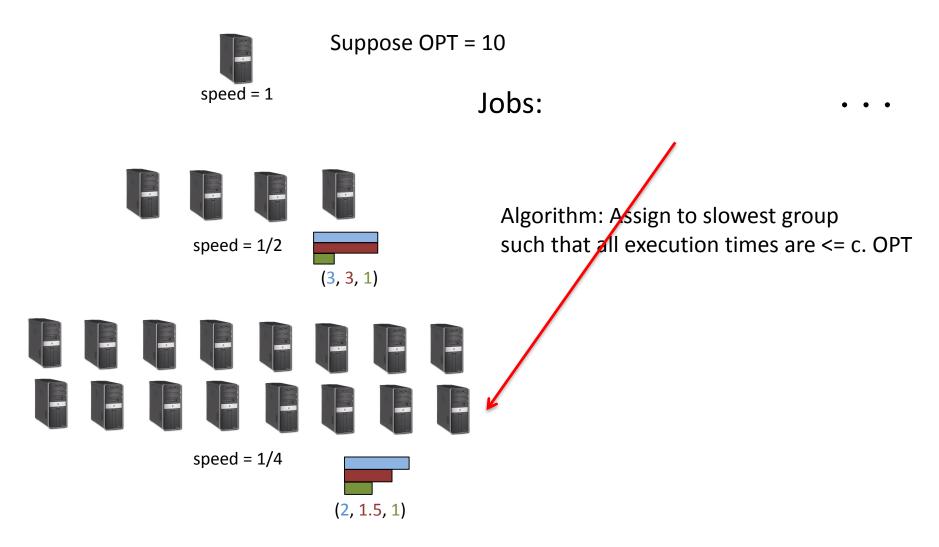






speed = 1/4





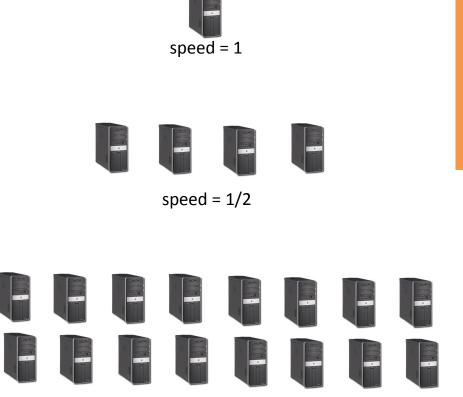
Suppose OPT = 10 speed = 1speed = 1/2+ (3, 3, 1)speed = 1/4(2, 1.5, 1)

Jobs:

Algorithm: Assign to slowest group such that all processing times are <= c. OPT

.... Then, assign jobs using the identical machines algorithm (within each group).

p-norm minimization

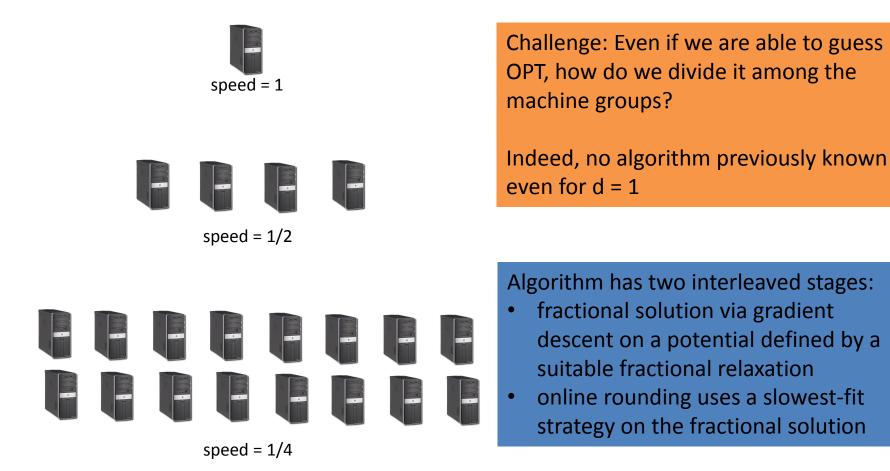


speed = 1/4

Challenge: Even if we are able to guess OPT, how do we divide it among the machine groups?

Indeed, no algorithm previously known even for d = 1

p-norm minimization



Thank You

Questions?