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”We are at an interesting 
inflection point!”
Keynote by George Varghese 
at SIGCOMM 2014

A rehash: It’s a great time to be a scientist!

How to exploit
these flexiblities? 
How not to shoot

in our feet?
Can be challenging!

Confluence: 
innovation!



❏ Datacenter networks, enterprise networks, Internet: a critical
infrastructure of the information society

❏ We have seen a huge shift in scale and applications…

❏ … but many Internet protocols hardly changed!

New Flexiblities: It’s About Time!

Applications: file transfer, email

Goal: connectivity between researchers

Applications: live streaming, IoT, etc.

Goal: quality-of-service, predictable
performance, low latency, …

New 
requirements and 

challenges!



Opportunity 1 of Network Virtualization: 
Overcoming Ossification

❏ Recent concern: Ossification in the
network core

❏ Are computer networks future-proof? 

❏ Meet the new requirements of new
applications?

❏ Example Internet-of-Things:

❏ IPv4: ~4.3 billion addresses, Gartner 
study: 20+ billion “smart things” by 
2020

❏ New security threats: recent DDoS 
attack based on IoT (almost 1TB/s, 
coming from webcames, babyphones, 
etc.)

Innovation!

Innovation?
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Innovation!

Innovation?

Innovation!

Opportunity: network
virtualization allows different 

computer networks with
different protocol stacks to

cohabit the shared substrate!
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Virtual Application 1

Realization and Embedding

Virtualization and Isolation

Quality-of-Service

& Resource

Requirements

Computational

& Storage

Requirements

Opportunity 2: Enable Resource Sharing for Improved Utilization

Virtual Application 2

Opportunity: flexible, 
fast, and cheap

deployment!

Challenge: How to
provide performance

isolation and 
predictable

performance?

In general: For a predictable application performance, performance
isolation needs to be provided along all involved resources. 



Focus Today: The Network



The Network Matters

❏ Cloud-based applications generate significant network traffic

❏ E.g., scale-out databases, streaming, batch processing applications

Example 1: Hadoop Terrasort job

shuffle phase

Example 2: Aggregate Server Traffic 
in Google datacenter

Jupiter rising @ SIGCOMM 2015Example 3: More memory-based systems

(network becoming bottleneck again)
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Example 3: More memory-based systems

(network becoming bottleneck again)

The Network Matters

❏ Cloud-based applications generate significant network traffic

❏ E.g., scale-out databases, streaming, batch processing applications

Example 1: Hadoop Terrasort job

As much time is spent on communication: For a predictable application
performance, bandwidth resources need to be reserved explicitly. 

shuffle phase

Example 2: Aggregate Server Traffic 
in Google datacenter

Jupiter rising @ SIGCOMM 2015

Ideally, communication should
be local. And bandwidth

reservations along short paths! 
An algorithmic problem.



Structure in Traffic Matrix = Optimization Opportunities

❏ At the same time, traffic matrices are often far from random and 
uniform, but have a lot of structure and are sparse

Example 1: Often little to no traffic between many racks

Heatmap of rack-to-rack traffic
ProjecToR @ SIGCOMM 2016

Without taking
this structure into

account, some
links may be

overprovisioned
and others

underprovisioned
.



Focus Today: The Network

We will be talking a lot about
bandwidth reservations. 
But: Predictable network

performance is about more, 
and interference can come in 

many flavors!



<remark>



The Many Faces of Performance Interference

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

An Experiment: 2 vSDNs with bw guarantee! 

Assume: perfect
performance isolation on 

the network! 

Consider: 2 SDN-based
virtual networks (vSDNs) 

sharing physical resources! 



SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

To enable multi-tenancy, 
take existing network

hypervisor (e.g. Flowvisor, 
OpenVirteX): provides

network abstraction and 
control plane translation!

An Experiment: 2 vSDNs with bw guarantee! 

The Many Faces of Performance Interference



SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
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packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod
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6 translate

7 flow-mod
7 flow-mod

Translation 
could include, 

e.g., switch
DPID, port

numbers, …

Translation 
could include, 

e.g., switch
DPID, port

numbers, …

An Experiment: 2 vSDNs with bw guarantee! 

The Many Faces of Performance Interference

Intercepts control
plane messages. 



SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

It turns out: the network hypervisor can 
be source of unpredictable performance!

An Experiment: 2 vSDNs with bw guarantee! 

The Many Faces of Performance Interference



SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Experiment: web latency depends
on hypervisor CPU load!

The Many Faces of Performance Interference



Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference



Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

Conclusion: for predictable performance, 
need to account for all resources!

But let us now focus on the network itself.

The Many Faces of Performance Interference



</remark>



mappers
tenant 1

mappers
tenant 2

reducers
tenant 1

reducers
tenant 2

Consider a simple data center hosting two tenants: green and blue

Bandwidth reservations
for predictable
performance!

First Algorithmic Challenge: 
Keep the traffic local!
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mappers
tenant 1

mappers
tenant 2

reducers
tenant 1

reducers
tenant 2

Bad embedding, 
distributed across
pods: reservations
along long paths, 
costly shuffling!

Consider a simple data center hosting two tenants: green and blue

First Algorithmic Challenge: 
Keep the traffic local!

Solutions?!



Consider a simple data center hosting two tenants: green and blue

Solution 1: Adjust the Network
Adjust the 
network!

mappers
tenant 1

mappers
tenant 2

reducers
tenant 1

reducers
tenant 2

Short 
communication

paths!



Consider a simple data center hosting two tenants: green and blue

mappers
tenant 1

reducers
tenant 1

mappers
tenant 2

reducers
tenant 2

Much better
embedding: Locally
clustered within a 

rack or pod: 
efficient!

Solution 2: Adjust Embedding 



mappers
tenant 1

reducers
tenant 1

mappers
tenant 2

reducers
tenant 2

Consider a simple data center hosting two tenants: green and blue

Much better
embedding: Locally
clustered within a 

rack or pod: 
efficient!

How to compute a minimal 
embedding? Known as the Virtual 

Network Embedding Problem.

Solution 2: Adjust Embedding 



Overview

PART II: Reconfiguring Embeddings

PART I: Static Embeddings

PART III: A request comes seldom alone!



PART I:
Static Embeddings
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The Virtual Network Embedding Problem

embedding?

VNet Substrate 

aka “guest 
graph”

aka “host 
graph”

Assume unit demand 
and capacity!
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❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate 

How to compute 2 
shortest paths under 
capacity constraints?

Embedding the 2 virtual links 
boils down to computation of
2 shortest paths!
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❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate 

Let’s try greedy! 
First vm1-vm2. 

Then vm3-vm4.
Total cost: 6. 
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❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate 

A better solution: 
cost 5!

Embedding the 2 virtual links 
boils down to computation of
2 shortest paths!
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❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate 

Joint optimization of 2 flows is already a challenging
combinatorial problem! If demand=capacity=1: 
shortest 2-disjoint paths problem. 

Embedding the 2 virtual links 
boils down to computation of
2 shortest paths!

Hasn’t this problem been 
solved a generation ago?!



❏ Essentially a 2-disjoint shortest paths problem: a deep
combinatorial problem
❏ NP-hard on directed graphs

❏ For undirected graphs:

❏ Feasibililty more or less understood: Robertson&Seymour

❏ Shortest paths: recent breakthrough, first polytime randomized
algorithm (still slow: a theoretical result)

❏ We are still looking for polytime deterministic algorithms!

Mapping virtual links: Already hard!

s1

t2

t1

s2



Bad news: The Virtual Network Embedding Problem is hard
even if endpoints are already mapped and given.

Therefore: Mapping Virtual Links is Challenging

But maybe at least 
mapping nodes is simple?



❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Guest

Host
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❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Cost 2 

Guest

Host



❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Minimizing the sum of virtual link 
lengths is a Minimum Linear 

Arrangement Problem (MinLA)! 
NP-hard.



Therefore: VNEP is Hard “in Both Dimensions”!

Known? Why is SIP NP-hard? 

❏ We have seen examples that: 
❏ mapping virtual links is hard (even if nodes are given)

❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)
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❏ We have seen examples that: 
❏ mapping virtual links is hard (even if nodes are given)

❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)
❏ The SIP problem: Given two graphs G,H, determine whether G contains a subgraph that is 

isomorphic to H?

❏ NP-hard: “does G contain an n-node cycle?” is a Hamilton cycle problem (each node visited 
exactly once), a solution to “does G contain a k-clique?” solves maximum clique problem, etc.

Therefore: VNEP is Hard “in Both Dimensions”!

So if SIP is hard, why is 
VNEP hard?



❏ Observe: VNEP is a generalization of SIP

❏ For example: 

Can VNet G=(V,E) be embedded in H at cost |E|? 

(I.e., each virtual edge has length 1.)



Is G a subgraph of H?

NP-Hardness: From SIP to VNEP

?



Note: It is possible to embed a guest graph G on a host graph H, even 
though G is not a minor of H:

Remark: Graph Minors

Assume planar host graph H: 
K5 and K3,3 minor-free…

… but it is possible to embed 
non-planar guest graph G=K5!



Can we at least formulate a “fast” MIP?

?



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?
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One that provides 
good relaxations!



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Initially: no variables set

subset of variables set

all variables set: infeasible, 
feasible, optimal? 

Usual
procedure:



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Assume: best
feasible so far!

Assume: 

best (still 
unknown)

Assume: 

already
explored

Usual
procedure:



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Decide: Is it worth 
exploring subtree?!

Usual
procedure:



❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Usual trick: Relax! Solve LP (fast!), 
and if relaxed solution (more
general!) not better then best

solution so far: skip it!



Usual trick: Relax! Solve LP (fast!), 
and if relaxed solution (more
general!) not better then best

solution so far: skip it!

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Bottomline: If MIP provides «good
relaxations», large parts of the
search space can be pruned.



A typical MIP formulation:

❏ Introduce binary variables 
map(v,s) to map virtual nodes v
to substrate node s

❏ Introduce flow variables for paths
(say splittable for now)

❏ Ensure flow conservation: all flow
entering a node must leave the
node, unless it is the source or
the destination

Can we at least formulate a “fast” MIP?

v

s

Σu->v fuv = Σv->w fvw

In Out 



Can we at least formulate a “fast” MIP?

63

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

What does this
formula do and why is

it correct? 

In Out 



Can we at least formulate a “fast” MIP?

64

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

If map(s,v)=1, i.e., s mapped to v: 
so flow starts at v, and hence

outgoing flow must be larger than
incoming flow (plus b).

In Out 



Can we at least formulate a “fast” MIP?

65

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

If map(s,v)=0 and map(t,v)=0, i.e., v is
along the path from s to t: then we have
flow conservation: outgoing flow must 
equal incoming flow (here ≥, objective

function will remove unnecessary flow).

In Out 



Can we at least formulate a “fast” MIP?

66

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

If map(t,v)=1, i.e., t mapped to v: so flow
terminates at node v: so no constraint: 

minus infinity (but objective function will 
remove unnecessary flow).

In Out 



Can we at least formulate a “fast” MIP?

67

v: ∑ u fuv – fvu ≥ map(s,v) *b  - map(t,v) * ∞

A

Assume bandwidth b 
requested from node s 

to node t.

We get constraints like:

Will such a MIP 
provide effective

pruning?

If map(t,v)=1, i.e., t mapped to v: so flow
terminates at node v: so no constraint: 

minus infinity (but objective function will 
remove unnecessary flow).

In Out 



What will happen in this example?

em
b

ed
d

in
g?
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s1
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What will happen in this example?
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map(v1, s1)=.5

map(v2, s2)=.5



What will happen in this example?

v1

v2

map(v1, s1)=.5

map(v2, s2)=.5

v1

v1

v2

v2

flow = 0

Minimal flow = 0: fulfills flow conservation! Relaxation useless: does not 
provide any lower bound or indication of good mapping!

flow = 0



What about using randomized rounding?

Recall: classic approxmation approach which: 

(i) computes a solution to the linear relaxation

of the IP, (ii) decomposes this solution into

convex combinations of elementary solutions, 

and (iii)  probabilistically chooses any of the

elementary solutions based on their weight.



❏ Problem 1:  relaxed solutions may not be very
meaningful
❏ see example for splittable flows before

❏ Problem 2: also for unsplittable flows, if using a 
standard Multi-Commodity Flow (MCF) formulation of
VNEP, the integrality gap can be huge
❏ Tree-like VNets are still ok

❏ VNets with cycles: randomized rounding not applicable, since
problem not decomposable

What about using randomized rounding?

The linear solutions can be decomposed into

convex combinations of valid mappings.



Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example: 
u1

u6 u2

u4

u5 u3

VNet

Host
em

b
ed

d
in

g?

i

k j



Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example: 
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

Valid LP solution: virtual node 
mappings sum to 1 and each virtual 
node connects to its neighboring 
node with half a unit of flow…

u1

u6 u2

u4

u5 u3



Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example: 
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

Partial 
Decomposition

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

Impossible to decompose and extract any single valid 
mapping. Intuition: Node i is mapped to u1 and the
only neighboring node that hosts j is u2, so i must be
fully mapped on u1 and j on u2. Similarly, k must be
mapped on u3. But flow of virtual edge (k,i) leaving u3

only leads to u4, so i must be mapped on both u1 and 
u4. This is impossible, even if capacities are infinite.

u1

u6 u2

u4

u5 u3



Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example: 
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

Partial 
Decomposition

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

Impossible to decompose and extract any single valid 
mapping. Intuition: Node i is mapped to u1 and the
only neighboring node that hosts j is u2, so i must be
fully mapped on u1 and j on u2. Similarly, k must be
mapped on u3. But flow of virtual edge (k,i) leaving u3

only leads to u4, so i must be mapped on both u1 and 
u4. This is impossible, even if capacities are infinite.

u1

u6 u2

u4

u5 u3
How to devise a Linear 

Programming formulations, such 

that convex combinations of valid

mappings can be recovered?!



Thank you for your attention!



Thank you for your attention!

Wait a minute! 
These problems need to be solved!

And they often can, even with guarantees. 



❏ Guest graphs may not be general
graphs, but e.g., virtual clusters: very
simple and symmetric, used in 
context of batch processing
❏ k VMs/compute-units/tasks/...

❏ Connected to virtual switch at bandwidth b

Theory vs Practice:
In Practice There is Hope!

vm1 vm2 vm3 vm4 vm5

logical switch

b
b b b b



How to Embed a Virtual Cluster?

Physical switch

Server with 4 VM slots
(3 occupied, 1 free)

Consider host graph:

free

occupied



How to Embed a Virtual Cluster?

Consider guest graph:

b=1

require 2 
cores each

logical switch

n=5



How to Embed a Virtual Cluster?



1. Place logical switch (try all options)



2. Extend network with artificial source s and sink t
1. Place logical switch (try all options)

t

s

cost = 0

cost = 0



2. Extend network with artificial source s and sink t
3. Add capacities (recall that b=1, so each virtual node
needs one unit of capacity)

1. Place logical switch (try all options)

t

s

0
1 2 2 1 2

capacity = how many virtual
nodes (requiring 2 cores) can

be placed?

n=5Capacity = # virtual nodes



t

s

0
1 2 2 1 2

Then: Compute min-cost max flow of size n from s to t
(e.g., successive shortest paths): due to capacity 
constraints at most size n.

n=5



… and assign virtual nodes (and edges) accordingly!

Then: Compute min-cost max flow of size n from s to t
(e.g., successive shortest paths): due to capacity 
constraints at most size n.



In fact: this physical network is even a tree! 
For trees with servers at leaves, even

simpler algorithms are possible. Ideas?

How to Embed a Virtual Cluster?



Dynamic Programming



Dynamic Programming

Bottom-up programming: 
given optimal solution for 

subtrees, can quickly
compute optimal solution for 

entire tree! 



Dynamic Programming

Given optimal embedding for x ∈ {0, 
..., n} virtual nodes in left subtree…

Given optimal embedding for x ∈ {0, 
..., n} virtual nodes in right subtree…



Dynamic Programming

… can compute optimal embedding
of x ∈ {0, ..., n} virtual nodes in 

entire subtree!

Given optimal embedding for x ∈ {0, 
..., n} virtual nodes in left subtree…

Given optimal embedding for x ∈ {0, 
..., n} virtual nodes in right subtree…



Dynamic Programming

Bottom-up «induction». Leaves easy: either x nodes fit server
(cost 0) or not (cost ∞): opt[≤4] = 0 , opt[>4] = ∞



Dynamic Programming

opt(T,x)=min0≤y≤x {opt(left,y)+opt(right,x-y}+bw(T,x)

To compute cost of embedding x nodes in T, place y nodes on the left, x-y 
on the right subtree, and compute cost due to links across root. 

account for bw to n-x 
remaining nodes



Remark on Virtual Cluster Abstraction

❏ Two interpretations: 
❏ Logical switch at unique location

❏ Logical switch can be distributed («Hose model»)

vsb
b

b
b

b

b

Logical Switch Variant Hose Variant

1 2 3 2

3

Aggregated bw in/out 
node at most b.

1



Remark on Virtual Cluster Abstraction

❏ Two interpretations: 
❏ Logical switch at unique location

❏ Logical switch can be distributed («Hose model»)

vsb
b

b

b

b

Logical Switch Variant Hose Variant

1 2 3 2

3

Can serve the same communication
patterns! (A polytope of possible

traffic matrices.) 

Example: 

(1,2): b/2

(1,3): b/2

(2,3): b/2

1



Remark on Virtual Cluster Abstraction

❏ Two interpretations: 
❏ Logical switch at unique location

❏ Logical switch can be distributed («Hose model»)

vsb
b

b
b

b

b

Hose Variant

1 2 3 1 2

3

But embedding costs can be different if we do not 
insist on placing the logical switch explicitly! Not on 
trees though, and not in uncapacitated networks: 
without routing restrictions, optimal routing paths
form a tree (SymG=SymT a.k.a. VPN Conjecture). 



The Benefit of Hose Interpretation
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The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

11

1
11

1

Host Graph: A Ring

2

2

2

2

2

2

How to embed as a star?

em
b

ed
d

in
g?

Impossible: need at least 5 units of flow from/to node where star
center is mapped. However, capacity of incident links is only 4.



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

11

1
11

1

Host Graph: A Ring

2

2

2

2

2

2
em

b
ed

d
in

g?

How about hose?



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

2

2

2

2

2

2
em

b
ed

d
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g?

1

2 3

4

56

Node mapping! Now: How to
embed these virtual links?
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Recall: hose has total 
demand at most 1. 



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

em
b

ed
d

in
g?

1

Virtual links from node 1 to {2,3,4,5,6} 
can be implemented along this route: 
fulfills capacity constraints under any

traffic matrix fulfilling hose specification! 

Host Graph: A Ring

1

2 3

4

56

Recall: hose has total 
demand at most 1. 
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Remaining virtual links to
embed for virtual node 2.
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6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b
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1
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56

Can be implemented along
this route: from node 2, 
reach nodes {3,4,5,6}.

Remaining virtual links to
embed for virtual node 2.
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From 3, path reaches {4,5,6}.

Remaining virtual links to
embed for virtual node 3.
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virtual node 4.
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6 5

VNet: VC(n=6,b=1) Host Graph: A Ring
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Route from 4 to {5,6}.

Remaining virtual
links to embed for 

virtual node 4.
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Remaining
virtual link.



The Benefit of Hose Interpretation
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All vitual links mapped to routes!



The Benefit of Hose Interpretation
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VNet: VC(n=6,b=1) Host Graph: A Ring
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56

But wait: 5 paths on link {5,6}! 
Can demand really be satisfied

given link capacity of 2?!
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Link {5,6} is used by routes: (1,5),(2,5),(3,6),(4,6),(5,6).

But by definition of the hose model, any traffic matrix M will respect:

M1,5+M2,5 ≤ 1 and M3,6+M4,6+M5,6 ≤ 1.

Hence Σ Mi,j ≤ 2 holds!



The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

Link {5,6} is used by routes: (1,5),(2,5),(3,6),(4,6),(5,6).

But by definition of the hose model, any traffic matrix M will respect:

M1,5+M2,5 ≤ 1 and M3,6+M4,6+M5,6 ≤ 1.

Hence Σ Mi,j ≤ 2 holds!

Legal embedding! Recall: 
this was impossible with

virtual switch abstraction.



❏ Similar problems arise in many contexts

❏ For example, service chain embeddings: in a service
chain, traffic is steered (e.g., using SDN) through a 
sequence of (virtualized) middleboxes to compose a 
more complex network service

The Many Faces of the VNEP:
E.g., Service Chain Embedding 

s t
cache

firewall
WAN

optimizer
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❏ Similar problems arise in many contexts

❏ For example, service chain embeddings: in a service
chain, traffic is steered (e.g., using SDN) through a 
sequence of (virtualized) middleboxes to compose a 
more complex network service

The Many Faces of the VNEP:
E.g., Service Chain Embedding 

s t
cache

firewall
WAN

optimizer

Interesting implication: routes
from s to t become walks (rather
than simple paths)! How to find 

shortest walks?

Waypoints!



Routing Through Waypoints

s t

❏ Traditionally: routes form simple paths (e.g., shortest paths)

❏ Novel aspect: routing through middleboxes may require
more general paths, with loops: a walk

How to compute a 
shortest route 

through a waypoint?



Walking Through Waypoints

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Assume unit capacity and 
demand for simplicity!



Walking Through Waypoints

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Greedy fails: choose shortest path from s to w… 

Assume unit capacity and 
demand for simplicity!



s

wt

Greedy fails: … now need long path from w to t

❏ Computing shortest routes through waypoints
is non-trivial!

Walking Through Waypoints

Assume unit capacity and 
demand for simplicity!



s

wt

Greedy fails: … now need long path from w to t

Total length: 
2+6=8

❏ Computing shortest routes through waypoints
is non-trivial!

Walking Through Waypoints

Assume unit capacity and 
demand for simplicity!



s

wt

A better solution: jointly optimize the two segments!

Total length: 
4+2=6

❏ Computing shortest routes through waypoints
is non-trivial!

Walking Through Waypoints

Assume unit capacity and 
demand for simplicity!



s

wt

A better solution: jointly optimize the two segments!

Total length: 
4+2=6

❏ Computing shortest routes through waypoints
is non-trivial!

Walking Through Waypoints

How hard can it be?

Assume unit capacity and 
demand for simplicity!



NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2) 

to shortest walk (s,w,t) problem

Recall: computing 2-
disjoint paths NP-hard 
on directed graphs.

We show: If waypoint 
routing was be in P, 
we could solve it fast. 
Contradiction! 



s1

s2

t1

t2

w

•Reduction: To 
find shortest 
paths (s1,t1), 
(s2,t2), introduce 
waypoint w and 
connect t1 to s2

via w…. 

Reduction: From joint shortest paths (s1,t1),(s2,t2) 

to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem



s1

s2

t1

t2

w

•Reduction: To 
find shortest 
paths (s1,t1), 
(s2,t2), introduce 
waypoint w and 
connect t1 to s2

via w…. 

Reduction: From joint shortest paths (s1,t1),(s2,t2) 

to shortest walk (s,w,t) problem

… and ask for 
shortest waypoint 
route (s1,w,t2)

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem



s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2) 

to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths ProblemThe walk (s1,w,t2) walk defines a (s1,t1) 

and a (s2,t2) path pair before/after the 
waypoint! Solves original problem: 

Contradiction!

•Reduction: To 
find shortest 
paths (s1,t1), 
(s2,t2), introduce 
waypoint w and 
connect t1 to s2

via w…. 

… and ask for 
shortest waypoint 
route (s1,w,t2)



What about waypoint routes on 
undirected networks?



❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks

What about waypoint routes on 
undirected networks?



❏ Indeed, algorithm exists: We can reduce to edge-
disjoint paths to compute a waypoint route!

What about waypoint routes on 
undirected networks?

•How?

❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks

s tw

Walks Edge-Disjoint Paths

22



❏ Indeed, algorithm exists: We can reduce to edge-
disjoint paths to compute a waypoint route!

❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks

What about waypoint routes on 
undirected networks?

s tw s tw

Walks

•Replace capacitated 
links with parallel links! 

Edge-Disjoint Paths

22



❏ Indeed, algorithm exists: We can reduce to edge-
disjoint paths to compute a waypoint route!

❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks

What about waypoint routes on 
undirected networks?

s tw s tw
22

Walks

•Replace capacitated 
links with parallel links! 

•Shortest paths (s,w),(w,t) will 
give shortest (s,w,t) path!

Edge-Disjoint Paths



Fast and Shortest Waypoint Routing on 
Undirected Networks: Suurballe’s Algorithm



❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

Fast and Shortest Waypoint Routing on 
Undirected Networks: Suurballe’s Algorithm

ts



❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

Fast and Shortest Waypoint Routing on 
Undirected Networks: Suurballe’s Algorithm

ts

•How to compute a 
shortest (s,w,t) route 
with this algorithm??



❏ Reduction to Suurballe’s algorithm:

t

s

wG

Waypoint Routing on Steroids

•To find shortest (s,w,t) 
route…



❏ Reduction to Suurballe’s algorithm:

t

s

wS+ T+

G

Waypoint Routing on Steroids

•… connect S+ to s and t, 
and w to T+…



❏ Reduction to Suurballe’s algorithm:

t

s

wS+ T+

G

Waypoint Routing on Steroids

•… ask Suurballe for 2 disjoint 
paths from S+ to T+…



❏ Reduction to Suurballe’s algorithm:

t

s

wG

Waypoint Routing on Steroids

•.. and hence also (s,w,t).



❏ Reduction to Suurballe’s algorithm:

s2

s1

S+ T+

G

Waypoint Routing on Steroids

Can’t I use Suurballe to efficiently 
compute disjoint paths as well?!

t2

t1



❏ Reduction to Suurballe’s algorithm:

s2

s1

S+ T+

G

Waypoint Routing on Steroids

No! Solves a much easier 
problem: 2 routes from 

{s1,s2} to {t1,t2}.

t2

t1



❏ Remark 1: Suurballe is actually for directed substrate
graphs, so need gadget to transform problem in right form:

y

x

u v u v

❏ Remark 2: Suurballe: actually vertex disjoint
❏ Suurballe & Tarjan: edge disjoint

Remarks: Under the rug…



❏ Remark 1: Suurballe is actually for directed substrate
graphs, so need gadget to transform problem in right form:

y

x

u v u v

❏ Remark 2: Suurballe: actually vertex disjoint
❏ Suurballe & Tarjan: edge disjoint

Remarks: Under the rug…

Conclusion: exploiting traffic 
engineering flexibilities is non-trivial!



PART II:
Dynamic Embeddings



❏ E.g., changing bandwidth demand: map
reduce application cycles through
phases of high and low bandwidth
requirements

❏ E.g., long-running applications (e.g., 
streaming) change in popularity

❏ E.g., job churn: jobs terminate, new
ones arrive

❏ E.g., large elephant flow degree, 
changing over time (cf ProjecToR at 
SIGCOMM 2016)

Real Communication Patterns Change over Time

Bandwidth utilization of 3 different runs of 
the same TeraSort workload (without 

interference)
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❏ E.g., changing bandwidth demand: map
reduce application cycles through
phases of high and low bandwidth
requirements

❏ E.g., long-running applications (e.g., 
streaming) change in popularity

❏ E.g., job churn: jobs terminate, new
ones arrive

❏ E.g., large elephant flow degree, 
changing over time (cf ProjecToR at 
SIGCOMM 2016)

Real Communication Patterns Change over Time

Bandwidth utilization of 3 different runs of 
the same TeraSort workload (without 

interference)

Ideally, we want to place frequently 
communicating nodes close: may require 

adaptions over time!Adjust the 
network!

Migrate and 
collocate!



Communication @ time t:

Essentially An Online RePartitioning Problem

How to embed pattern across   =4 
servers (or racks, pods, etc.) of size k=4?



Communication @ time t:

Essentially An Online RePartitioning Problem



Communication @ time t:Most communication within
cluster (intra-cluster)…

… little inter-cluster 
communication.

A classic (hard) combinatorial problem!

Essentially An Online RePartitioning Problem



Communication @ time t+1:Communication @ time t:

3

1

5

2

6
4

❏ Now assume: changes in communication pattern!

❏ E.g., more communication (1,3),(3,4),(2,5) but less (5,6)

Essentially An Online RePartitioning Problem



Communication @ time t:

3

1

5

2

6
4

❏ Now assume: changes in communication pattern!

❏ E.g., more communication (1,3),(3,4),(2,5) but less (5,6)

1

5

Makes sense that
nodes 1 and 5 

change clusters!

Communication @ time t+1:

Essentially An Online RePartitioning Problem



Consider a simple network, e.g., a single switch (e.g., a rack):

A Simple Model for the Tutorial

servers („clusters“)
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Objective: minimize total communication and migration cost!

More precisely: competitive ratio ρ = cost(ON)/cost(OPT)  

Nice: If competitive ratio is low, there is no need to develop 
any sophisticated prediction models (which may be wrong 

anyway)! The guarantee holds in the worst-case.
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Consider a simple network, e.g., a single switch (e.g., a rack):

A Simple Model for the Tutorial

0

1

α

Objective: minimize total communication and migration cost!

More precisely: competitive ratio ρ = cost(ON)/cost(OPT)  

Nice: If competitive ratio is low, there is no need to develop 
any sophisticated prediction models (which may be wrong 

anyway)! The guarantee holds in the worst-case.

“Prediction is difficult, 
especially about the future.”

Nils Bohr



Adversarial Models

❏ Chooses request distribution D

❏ Requests sampled i.i.d. from D

❏ Cannot react to online algo

Weak adversary Strong adversary

❏ Can generate arbitrary request
sequence σ

❏ Knows and can react to online algo



Adversarial Models

❏ Chooses request distribution D

❏ Requests sampled i.i.d. from D

❏ Cannot react to online algo

Weak adversary Strong adversary

❏ Can generate arbitrary request
sequence σ

❏ Knows and can react to online algo

The Crux: Algorithmic Challenges

❏ Do not know D resp. σ ahead of time

❏ Upon each communication request (u,v):

❏ Migrate u and v together? «Rent-or-buy»: migration cost should be amortized

❏ Migrate where? u to v, v to u, both to a third cluster?

❏ If cluster is full already: what to evict? 



Example: Special Case k=2

Clusters of size 2: 
Need to find pairs!



Clusters of size 2: 
Need to find pairs!

Clusters of size 2: A new
type of online 

rematching problem!

Example: Special Case k=2
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OFF: ON:

What is the achievable 
competitive ratio?
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even (augmentation)!

E.g., ON can even
collocate all except

for one!



It is hard to compete under       !    

❏ Assume two clusters: for 
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1 
even (augmentation)!

For the sake of lower bound, let us 
restrict the adversary more: can only ask 
for node pairs taken from a cyclic order:  

k pairs (resp. links) in total!
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It is hard to compete under       !    

❏ Assume two clusters: for 
offline algorithm they are of
size k…
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It is hard to compete under       !    

❏ Assume two clusters: for 
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1 
even (augmentation)!

OFF: ON:

Ouch! Cost 1 for 
each request.

Lower bound of Ω(k) for competitive

ratio, despite big augmentation! 

Move to configuration i є {1,…,k} 

which is asked the least. 
Averaging argument: At least k 
times less communiation cost!



A Simple O(n2) Upper Bound At least it does not 
depend on time! 
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❏ Algorithm DET:

❏ Based on «growing communication components»

❏ Cycles through phases

❏ Initially in each phase: empty graph of n nodes

❏ For each inter-cluster request for ON: insert edge

❏ Induces a «communication component»: edge
weight = # requests

❏ If an edge (u,v) weight reaches α, DET 

repartitions nodes, so that all edges which have
reached α so far are in same cluster!

❏ If this is not possible: phase ends

A Simple O(n2) Upper Bound

Competitive 
ratio?
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A Simple O(n2) Upper Bound

❏ Analysis (costs per phase):
❏ Observe: edge weights always ≤ α: once reach α, their

endpoints will always be collocated (by algorithm definition)

❏ α-edges form a forest (so at most n many!): once two nodes
(u,v) are connected by a path of α–edges, they are in a single

cluster and will no longer communicate across clusters

❏ Thus: ON cost per phase: 

❏ At most 1 reorganization per α-edge (at most n α-
edges), so n times reconfig cost n·α, so n2α

❏ Communication cost: at most α per edge (at most n2  

many), so also at most n2α

❏ Costs of OFF per phase: 

❏ If OFF migrates any node, it pays at least α

❏ If not, it pays communication cost at least α: the

grown components do not fit clusters (intra-cluster 
edges only): definition of «end-of-phase»!

u v

Upper bound of O(n2α/α)=O(n2) for 

competitive ratio! 



Known Results So Far

❏ Case k=2 („online rematching“): constant competitive ratio

❏ General case: with a little bit of augmentation: O(k log k) 
possible
❏ Recall Ω(k) lower bound

❏ Nice: independent of number of clusters!

❏ Practically relevant: # VM slots per server usually small
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What about           ?

❏ Recall: weak adversary cannot choose request
sequence but only the distribution
❏ Adversary needs to sample i.i.d. from this distribution

❏ Moreover: Adversary knows (deterministic or randomized) 
«learning» algorithm, i.e., chooses worst distribution

Any ideas?
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early on, away from bad locations!
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amortized. Crucial difference to

classic distribution learning
problems: guessing costs!



The Crux: Joint Optimization of Efficient 
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

❏ Naive idea 1: Pro-actively always move to the lowest
cost configuration seen so far
❏ Bad, e.g., if requests are distributed uniformly at random: better

not to move at all (moving costs cannot be amortized)

Only move when it pays off! But 
e.g., how to differentiate

between uniform and „almost
uniform“ distribution?
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configurations: if met, never go
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w.h.p.: seen enough samples) 
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❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

If current
configuration is

eliminated, go to
nearby configuration
(in directed manner: 
no frequent back and 

forth)!

Growing radius
strategy: allow to
move further only
once amortized!

log(n)-competitive
w.h.p.

Example Learning Algorithm for Ring: 
Rotate Locally!



PART III:
Embeddings over Time
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Different flavors of VNets:

❏ Node mappings given or subject to optimization

❏ Different routing and traffic models

❏ Different prices and durations

❏ …

A VNet seldom comes alone!

Time

Infrastructure

VNets

201

Which ones to accept
and embed? 

Admission control!

Can be solved by online 
approximation
framework by

Buchbinder and Naor.



Different VNet Flavors

❏ Traffic models

Customer Pipe

Traffic matrix: 
Bandwidth per 
VM pair (u,v)

Hose Model

Per VM 
bandwidth: 
polytope of traffic 
matrices.

Aggregate Ingress

ingress outgress ingress
Only ingress 
specified: e.g., 
support multicast 
etc.

❏ Routing models

Tree

Steiner tree
embedding

Single Path

Unsplittable 
paths

Multi-Path

Splittable paths
(more capacity)

Relay costs: e.g., depending on packet rate
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Formulate the packing 
(dual) LP: Maximize profit

(Note: dynamic LP!)

Applying Buchbinder&Naor
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Algorithm

If cheap: accept and 
update primal variables 
(always feasible solution)

Applying Buchbinder&Naor
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Else reject

Applying Buchbinder&Naor
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Computationally hard!
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Primal and Dual 

Algorithm

Computationally hard!

Use your favorite 
approximation algorithm! If 
competitive ratio ρ and 
approximation r, overall 
competitive ratio ρ*r. 

Applying Buchbinder&Naor



Online VNet Admission Control

Algorithm comes in 2 flavors:

❏ Bicriteria guarantees: Obtain constant fraction of the optimal 
benefit while augmenting resources by a logarithmic factor. 

❏ Fractional guarantees resp. limited resource consumption:
The online algorithm achieves a logarithmic competitive 
ratio without resource augmentation, but either:

❏ may serve a fraction of a request (associated benefit is 
assumed to be the same fraction of the benefit of the request)

❏ the allowed traffic patterns of a request consumes at most a 
logarithmic fraction of every resource (in which case the 
algorithm rejects the request or fully embeds it)



Summary

❏ Predictable performance requires isolation of all resources

❏ Static embeddings

❏ Reconfiguring embeddings

❏ Embeddings over time
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