
Tutorial: Algorithmic Issues in
Network Resource Reservation Problems

Stefan Schmid

Aalborg University, Denmark & TU Berlin, Germany

DIMACS Workshop on Algorithms
for Data Center Networks

”We are at an interesting
inflection point!”
Keynote by George Varghese
at SIGCOMM 2014

A rehash: It’s a great time to be a scientist!

How to exploit
these flexiblities?
How not to shoot

in our feet?
Can be challenging!

Confluence:
innovation!

❏ Datacenter networks, enterprise networks, Internet: a critical
infrastructure of the information society

❏ We have seen a huge shift in scale and applications…

❏ … but many Internet protocols hardly changed!

New Flexiblities: It’s About Time!

Applications: file transfer, email

Goal: connectivity between researchers

Applications: live streaming, IoT, etc.

Goal: quality-of-service, predictable
performance, low latency, …

New
requirements and

challenges!

Opportunity 1 of Network Virtualization:
Overcoming Ossification

❏ Recent concern: Ossification in the
network core

❏ Are computer networks future-proof?

❏ Meet the new requirements of new
applications?

❏ Example Internet-of-Things:

❏ IPv4: ~4.3 billion addresses, Gartner
study: 20+ billion “smart things” by
2020

❏ New security threats: recent DDoS
attack based on IoT (almost 1TB/s,
coming from webcames, babyphones,
etc.)

Innovation!

Innovation?

Innovation!

Opportunity 1 of Network Virtualization:
Overcoming Ossification

❏ Recent concern: Ossification in the
network core

❏ Are computer networks future-proof?

❏ Meet the new requirements of new
applications?

❏ Example Internet-of-Things:

❏ IPv4: ~4.3 billion addresses, Gartner
study: 20+ billion “smart things” by
2020

❏ New security threats: recent DDoS
attack based on IoT (almost 1TB/s,
coming from webcames, babyphones,
etc.)

Innovation!

Innovation?

Innovation!

Opportunity: network
virtualization allows different

computer networks with
different protocol stacks to

cohabit the shared substrate!

Virtual Application 1

Realization and Embedding

Virtualization and Isolation

Quality-of-Service

& Resource

Requirements

Computational

& Storage

Requirements

Opportunity 2: Enable Resource Sharing for Improved Utilization

Virtual Application 2

Virtual Application 1

Realization and Embedding

Virtualization and Isolation

Quality-of-Service

& Resource

Requirements

Computational

& Storage

Requirements

Opportunity 2: Enable Resource Sharing for Improved Utilization

Virtual Application 2

Opportunity: flexible,
fast, and cheap

deployment!

Challenge: How to
provide performance

isolation and
predictable

performance?

Virtual Application 1

Realization and Embedding

Virtualization and Isolation

Quality-of-Service

& Resource

Requirements

Computational

& Storage

Requirements

Opportunity 2: Enable Resource Sharing for Improved Utilization

Virtual Application 2

Opportunity: flexible,
fast, and cheap

deployment!

Challenge: How to
provide performance

isolation and
predictable

performance?

In general: For a predictable application performance, performance
isolation needs to be provided along all involved resources.

Focus Today: The Network

The Network Matters

❏ Cloud-based applications generate significant network traffic

❏ E.g., scale-out databases, streaming, batch processing applications

Example 1: Hadoop Terrasort job

shuffle phase

Example 2: Aggregate Server Traffic
in Google datacenter

Jupiter rising @ SIGCOMM 2015Example 3: More memory-based systems

(network becoming bottleneck again)

The Network Matters

❏ Cloud-based applications generate significant network traffic

❏ E.g., scale-out databases, streaming, batch processing applications

Example 1: Hadoop Terrasort job

As much time is spent on communication: For a predictable application
performance, bandwidth resources need to be reserved explicitly.

shuffle phase

Example 2: Aggregate Server Traffic
in Google datacenter

Jupiter rising @ SIGCOMM 2015Example 3: More memory-based systems

(network becoming bottleneck again)

Example 3: More memory-based systems

(network becoming bottleneck again)

The Network Matters

❏ Cloud-based applications generate significant network traffic

❏ E.g., scale-out databases, streaming, batch processing applications

Example 1: Hadoop Terrasort job

As much time is spent on communication: For a predictable application
performance, bandwidth resources need to be reserved explicitly.

shuffle phase

Example 2: Aggregate Server Traffic
in Google datacenter

Jupiter rising @ SIGCOMM 2015

Ideally, communication should
be local. And bandwidth

reservations along short paths!
An algorithmic problem.

Structure in Traffic Matrix = Optimization Opportunities

❏ At the same time, traffic matrices are often far from random and
uniform, but have a lot of structure and are sparse

Example 1: Often little to no traffic between many racks

Heatmap of rack-to-rack traffic
ProjecToR @ SIGCOMM 2016

Without taking
this structure into

account, some
links may be

overprovisioned
and others

underprovisioned
.

Focus Today: The Network

We will be talking a lot about
bandwidth reservations.
But: Predictable network

performance is about more,
and interference can come in

many flavors!

<remark>

The Many Faces of Performance Interference

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

An Experiment: 2 vSDNs with bw guarantee!

Assume: perfect
performance isolation on

the network!

Consider: 2 SDN-based
virtual networks (vSDNs)

sharing physical resources!

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

vSDN-1vSDN-1
vSDN-1

To enable multi-tenancy,
take existing network

hypervisor (e.g. Flowvisor,
OpenVirteX): provides

network abstraction and
control plane translation!

An Experiment: 2 vSDNs with bw guarantee!

The Many Faces of Performance Interference

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Translation
could include,

e.g., switch
DPID, port

numbers, …

Translation
could include,

e.g., switch
DPID, port

numbers, …

An Experiment: 2 vSDNs with bw guarantee!

The Many Faces of Performance Interference

Intercepts control
plane messages.

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

It turns out: the network hypervisor can
be source of unpredictable performance!

An Experiment: 2 vSDNs with bw guarantee!

The Many Faces of Performance Interference

SDN Network Hypervisor

vSDN-1

controller

vSDN-2

controller

vSDN-2 vSDN-2 vSDN-2

1 packet-in

vSDN-1vSDN-1
vSDN-1

2 translate

packet-in

3 packet-in
4 flow-mod

5 packet-out

7 flow-mod

8 packet-out

6 translate

7 flow-mod
7 flow-mod

Experiment: web latency depends
on hypervisor CPU load!

The Many Faces of Performance Interference

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

The Many Faces of Performance Interference

Performance also depends
on hypervisor type…

(multithreaded or not, which version
of Nagle’s algorithm, etc.)

… number of tenants…

Conclusion: for predictable performance,
need to account for all resources!

But let us now focus on the network itself.

The Many Faces of Performance Interference

</remark>

mappers
tenant 1

mappers
tenant 2

reducers
tenant 1

reducers
tenant 2

Consider a simple data center hosting two tenants: green and blue

Bandwidth reservations
for predictable
performance!

First Algorithmic Challenge:
Keep the traffic local!

mappers
tenant 1

mappers
tenant 2

reducers
tenant 1

reducers
tenant 2

Bad embedding,
distributed across
pods: reservations
along long paths,
costly shuffling!

Consider a simple data center hosting two tenants: green and blue

First Algorithmic Challenge:
Keep the traffic local!

mappers
tenant 1

mappers
tenant 2

reducers
tenant 1

reducers
tenant 2

Bad embedding,
distributed across
pods: reservations
along long paths,
costly shuffling!

Consider a simple data center hosting two tenants: green and blue

First Algorithmic Challenge:
Keep the traffic local!

Solutions?!

Consider a simple data center hosting two tenants: green and blue

Solution 1: Adjust the Network
Adjust the
network!

mappers
tenant 1

mappers
tenant 2

reducers
tenant 1

reducers
tenant 2

Short
communication

paths!

Consider a simple data center hosting two tenants: green and blue

mappers
tenant 1

reducers
tenant 1

mappers
tenant 2

reducers
tenant 2

Much better
embedding: Locally
clustered within a

rack or pod:
efficient!

Solution 2: Adjust Embedding

mappers
tenant 1

reducers
tenant 1

mappers
tenant 2

reducers
tenant 2

Consider a simple data center hosting two tenants: green and blue

Much better
embedding: Locally
clustered within a

rack or pod:
efficient!

How to compute a minimal
embedding? Known as the Virtual

Network Embedding Problem.

Solution 2: Adjust Embedding

Overview

PART II: Reconfiguring Embeddings

PART I: Static Embeddings

PART III: A request comes seldom alone!

PART I:
Static Embeddings

vm1

vm2

vm3

vm4

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

embedding?

VNet Substrate

vm1

vm2

vm3

vm4

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

embedding?

VNet Substrate

aka “guest
graph”

aka “host
graph”

vm1

vm2

vm3

vm4

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

embedding?

VNet Substrate

aka “guest
graph”

aka “host
graph”

Assume unit demand
and capacity!

vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

embedding?

VNet Substrate

vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate

How to compute 2
shortest paths under
capacity constraints?

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate

Let’s try greedy!
First vm1-vm2.

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate

Let’s try greedy!
First vm1-vm2.

Then vm3-vm4.
Total cost: 6.

vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate

A better solution:
cost 5!

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate

Joint optimization of 2 flows is already a challenging
combinatorial problem! If demand=capacity=1:
shortest 2-disjoint paths problem.

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

vm1

vm2

vm3

vm4

❏ Let’s start simple: assume node mappings are given

❏ 2 dimensions of flexibility:
❏ Mapping of virtual nodes (to physical nodes)

❏ Mapping of virtual links (to paths)

The Virtual Network Embedding Problem

vm1 vm4

vm3

vm2

embedding?

VNet Substrate

Joint optimization of 2 flows is already a challenging
combinatorial problem! If demand=capacity=1:
shortest 2-disjoint paths problem.

Embedding the 2 virtual links
boils down to computation of
2 shortest paths!

Hasn’t this problem been
solved a generation ago?!

❏ Essentially a 2-disjoint shortest paths problem: a deep
combinatorial problem
❏ NP-hard on directed graphs

❏ For undirected graphs:

❏ Feasibililty more or less understood: Robertson&Seymour

❏ Shortest paths: recent breakthrough, first polytime randomized
algorithm (still slow: a theoretical result)

❏ We are still looking for polytime deterministic algorithms!

Mapping virtual links: Already hard!

s1

t2

t1

s2

Bad news: The Virtual Network Embedding Problem is hard
even if endpoints are already mapped and given.

Therefore: Mapping Virtual Links is Challenging

But maybe at least
mapping nodes is simple?

❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Guest

Host

❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Cost 5

Guest

Host

❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Cost 2

Guest

Host

❏ Let’s start simple again: assume paths are trivial, e.g., the
physical network (host graph) is a line

Mapping Virtual Nodes

embedding?

Minimizing the sum of virtual link
lengths is a Minimum Linear

Arrangement Problem (MinLA)!
NP-hard.

Therefore: VNEP is Hard “in Both Dimensions”!

Known? Why is SIP NP-hard?

❏ We have seen examples that:
❏ mapping virtual links is hard (even if nodes are given)

❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)

❏ We have seen examples that:
❏ mapping virtual links is hard (even if nodes are given)

❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)
❏ The SIP problem: Given two graphs G,H, determine whether G contains a subgraph that is

isomorphic to H?

❏ NP-hard: “does G contain an n-node cycle?” is a Hamilton cycle problem (each node visited
exactly once), a solution to “does G contain a k-clique?” solves maximum clique problem, etc.

Therefore: VNEP is Hard “in Both Dimensions”!

❏ We have seen examples that:
❏ mapping virtual links is hard (even if nodes are given)

❏ mapping virtual nodes is hard (even if links are trivial)

❏ Remark: the VNEP can also be seen as a generalization of the
Subgraph Isomorphism Problem (SIP)
❏ The SIP problem: Given two graphs G,H, determine whether G contains a subgraph that is

isomorphic to H?

❏ NP-hard: “does G contain an n-node cycle?” is a Hamilton cycle problem (each node visited
exactly once), a solution to “does G contain a k-clique?” solves maximum clique problem, etc.

Therefore: VNEP is Hard “in Both Dimensions”!

So if SIP is hard, why is
VNEP hard?

❏ Observe: VNEP is a generalization of SIP

❏ For example:

Can VNet G=(V,E) be embedded in H at cost |E|?

(I.e., each virtual edge has length 1.)



Is G a subgraph of H?

NP-Hardness: From SIP to VNEP

?

Note: It is possible to embed a guest graph G on a host graph H, even
though G is not a minor of H:

Remark: Graph Minors

Assume planar host graph H:
K5 and K3,3 minor-free…

… but it is possible to embed
non-planar guest graph G=K5!

Can we at least formulate a “fast” MIP?

?

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

One that provides
good relaxations!

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Initially: no variables set

subset of variables set

all variables set: infeasible,
feasible, optimal?

Usual
procedure:

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Assume: best
feasible so far!

Assume:

best (still
unknown)

Assume:

already
explored

Usual
procedure:

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Decide: Is it worth
exploring subtree?!

Usual
procedure:

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Usual trick: Relax! Solve LP (fast!),
and if relaxed solution (more
general!) not better then best

solution so far: skip it!

Usual trick: Relax! Solve LP (fast!),
and if relaxed solution (more
general!) not better then best

solution so far: skip it!

❏ Recall: Mixed Integer Program (MIP)
❏ Linear objective function (e.g., minimize embedding footprint)

❏ Linear constraints (e.g., do not violate capacity constraints)

❏ Solved, e.g., with branch-and-bound search tree

Can we at least formulate a “fast” MIP?

Bottomline: If MIP provides «good
relaxations», large parts of the
search space can be pruned.

A typical MIP formulation:

❏ Introduce binary variables
map(v,s) to map virtual nodes v
to substrate node s

❏ Introduce flow variables for paths
(say splittable for now)

❏ Ensure flow conservation: all flow
entering a node must leave the
node, unless it is the source or
the destination

Can we at least formulate a “fast” MIP?

v

s

Σu->v fuv = Σv->w fvw

In Out

Can we at least formulate a “fast” MIP?

63

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

What does this
formula do and why is

it correct?

In Out

Can we at least formulate a “fast” MIP?

64

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

If map(s,v)=1, i.e., s mapped to v:
so flow starts at v, and hence

outgoing flow must be larger than
incoming flow (plus b).

In Out

Can we at least formulate a “fast” MIP?

65

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

If map(s,v)=0 and map(t,v)=0, i.e., v is
along the path from s to t: then we have
flow conservation: outgoing flow must
equal incoming flow (here ≥, objective

function will remove unnecessary flow).

In Out

Can we at least formulate a “fast” MIP?

66

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

If map(t,v)=1, i.e., t mapped to v: so flow
terminates at node v: so no constraint:

minus infinity (but objective function will
remove unnecessary flow).

In Out

Can we at least formulate a “fast” MIP?

67

v: ∑ u fuv – fvu ≥ map(s,v) *b - map(t,v) * ∞

A

Assume bandwidth b
requested from node s

to node t.

We get constraints like:

Will such a MIP
provide effective

pruning?

If map(t,v)=1, i.e., t mapped to v: so flow
terminates at node v: so no constraint:

minus infinity (but objective function will
remove unnecessary flow).

In Out

What will happen in this example?

em
b

ed
d

in
g?

v1

v2

s1

s2

What will happen in this example?

v1

v2

s1

s2

map(v1, s1)=.5

map(v2, s2)=.5

What will happen in this example?

v1

v2

map(v1, s1)=.5

map(v2, s2)=.5

v1

v1

v2

v2

flow = 0

Minimal flow = 0: fulfills flow conservation! Relaxation useless: does not
provide any lower bound or indication of good mapping!

flow = 0

What about using randomized rounding?

Recall: classic approxmation approach which:

(i) computes a solution to the linear relaxation

of the IP, (ii) decomposes this solution into

convex combinations of elementary solutions,

and (iii) probabilistically chooses any of the

elementary solutions based on their weight.

❏ Problem 1: relaxed solutions may not be very
meaningful
❏ see example for splittable flows before

❏ Problem 2: also for unsplittable flows, if using a
standard Multi-Commodity Flow (MCF) formulation of
VNEP, the integrality gap can be huge
❏ Tree-like VNets are still ok

❏ VNets with cycles: randomized rounding not applicable, since
problem not decomposable

What about using randomized rounding?

The linear solutions can be decomposed into

convex combinations of valid mappings.

Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example:
u1

u6 u2

u4

u5 u3

VNet

Host
em

b
ed

d
in

g?

i

k j

Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example:
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

i

k j

Valid LP solution: virtual node
mappings sum to 1 and each virtual
node connects to its neighboring
node with half a unit of flow…

u1

u6 u2

u4

u5 u3

Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example:
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

Partial
Decomposition

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

Impossible to decompose and extract any single valid
mapping. Intuition: Node i is mapped to u1 and the
only neighboring node that hosts j is u2, so i must be
fully mapped on u1 and j on u2. Similarly, k must be
mapped on u3. But flow of virtual edge (k,i) leaving u3

only leads to u4, so i must be mapped on both u1 and
u4. This is impossible, even if capacities are infinite.

u1

u6 u2

u4

u5 u3

Non-Decomposability

❏ Relaxations of classic MCF formulation cannot be decomposed
into convex combinations of valid mappings (so we need
different formulations!)

❏ Example:
u1

u6 u2

u4

u5 u3

.5i

.5k .5j

.5i

.5j .5k

LP Solution

Partial
Decomposition

i

k j

u1

u2

u4

u3

.5i

.5j

.5i

.5k

Impossible to decompose and extract any single valid
mapping. Intuition: Node i is mapped to u1 and the
only neighboring node that hosts j is u2, so i must be
fully mapped on u1 and j on u2. Similarly, k must be
mapped on u3. But flow of virtual edge (k,i) leaving u3

only leads to u4, so i must be mapped on both u1 and
u4. This is impossible, even if capacities are infinite.

u1

u6 u2

u4

u5 u3
How to devise a Linear

Programming formulations, such

that convex combinations of valid

mappings can be recovered?!

Thank you for your attention!

Thank you for your attention!

Wait a minute!
These problems need to be solved!

And they often can, even with guarantees.

❏ Guest graphs may not be general
graphs, but e.g., virtual clusters: very
simple and symmetric, used in
context of batch processing
❏ k VMs/compute-units/tasks/...

❏ Connected to virtual switch at bandwidth b

Theory vs Practice:
In Practice There is Hope!

vm1 vm2 vm3 vm4 vm5

logical switch

b
b b b b

How to Embed a Virtual Cluster?

Physical switch

Server with 4 VM slots
(3 occupied, 1 free)

Consider host graph:

free

occupied

How to Embed a Virtual Cluster?

Consider guest graph:

b=1

require 2
cores each

logical switch

n=5

How to Embed a Virtual Cluster?

1. Place logical switch (try all options)

2. Extend network with artificial source s and sink t
1. Place logical switch (try all options)

t

s

cost = 0

cost = 0

2. Extend network with artificial source s and sink t
3. Add capacities (recall that b=1, so each virtual node
needs one unit of capacity)

1. Place logical switch (try all options)

t

s

0
1 2 2 1 2

capacity = how many virtual
nodes (requiring 2 cores) can

be placed?

n=5Capacity = # virtual nodes

t

s

0
1 2 2 1 2

Then: Compute min-cost max flow of size n from s to t
(e.g., successive shortest paths): due to capacity
constraints at most size n.

n=5

… and assign virtual nodes (and edges) accordingly!

Then: Compute min-cost max flow of size n from s to t
(e.g., successive shortest paths): due to capacity
constraints at most size n.

In fact: this physical network is even a tree!
For trees with servers at leaves, even

simpler algorithms are possible. Ideas?

How to Embed a Virtual Cluster?

Dynamic Programming

Dynamic Programming

Bottom-up programming:
given optimal solution for

subtrees, can quickly
compute optimal solution for

entire tree!

Dynamic Programming

Given optimal embedding for x ∈ {0,
..., n} virtual nodes in left subtree…

Given optimal embedding for x ∈ {0,
..., n} virtual nodes in right subtree…

Dynamic Programming

… can compute optimal embedding
of x ∈ {0, ..., n} virtual nodes in

entire subtree!

Given optimal embedding for x ∈ {0,
..., n} virtual nodes in left subtree…

Given optimal embedding for x ∈ {0,
..., n} virtual nodes in right subtree…

Dynamic Programming

Bottom-up «induction». Leaves easy: either x nodes fit server
(cost 0) or not (cost ∞): opt[≤4] = 0 , opt[>4] = ∞

Dynamic Programming

opt(T,x)=min0≤y≤x {opt(left,y)+opt(right,x-y}+bw(T,x)

To compute cost of embedding x nodes in T, place y nodes on the left, x-y
on the right subtree, and compute cost due to links across root.

account for bw to n-x
remaining nodes

Remark on Virtual Cluster Abstraction

❏ Two interpretations:
❏ Logical switch at unique location

❏ Logical switch can be distributed («Hose model»)

vsb
b

b
b

b

b

Logical Switch Variant Hose Variant

1 2 3 2

3

Aggregated bw in/out
node at most b.

1

Remark on Virtual Cluster Abstraction

❏ Two interpretations:
❏ Logical switch at unique location

❏ Logical switch can be distributed («Hose model»)

vsb
b

b

b

b

Logical Switch Variant Hose Variant

1 2 3 2

3

Can serve the same communication
patterns! (A polytope of possible

traffic matrices.)

Example:

(1,2): b/2

(1,3): b/2

(2,3): b/2

1

Remark on Virtual Cluster Abstraction

❏ Two interpretations:
❏ Logical switch at unique location

❏ Logical switch can be distributed («Hose model»)

vsb
b

b
b

b

b

Hose Variant

1 2 3 1 2

3

But embedding costs can be different if we do not
insist on placing the logical switch explicitly! Not on
trees though, and not in uncapacitated networks:
without routing restrictions, optimal routing paths
form a tree (SymG=SymT a.k.a. VPN Conjecture).

The Benefit of Hose Interpretation

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

11

1
11

1

Host Graph: A Ring

2

2

2

2

2

2
em

b
ed

d
in

g?

How to embed as a star?

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

11

1
11

1

Host Graph: A Ring

2

2

2

2

2

2

How to embed as a star?

em
b

ed
d

in
g?

Impossible: need at least 5 units of flow from/to node where star
center is mapped. However, capacity of incident links is only 4.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

11

1
11

1

Host Graph: A Ring

2

2

2

2

2

2
em

b
ed

d
in

g?

How about hose?

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

2

2

2

2

2

2
em

b
ed

d
in

g?

1

2 3

4

56

Node mapping! Now: How to
embed these virtual links?

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

2

2

2

2

2

2
em

b
ed

d
in

g?

1

2 3

4

56
1

Recall: hose has total
demand at most 1.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1)

em
b

ed
d

in
g?

1

Virtual links from node 1 to {2,3,4,5,6}
can be implemented along this route:
fulfills capacity constraints under any

traffic matrix fulfilling hose specification!

Host Graph: A Ring

1

2 3

4

56

Recall: hose has total
demand at most 1.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

Remaining virtual links to
embed for virtual node 2.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

Can be implemented along
this route: from node 2,
reach nodes {3,4,5,6}.

Remaining virtual links to
embed for virtual node 2.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

Remaining virtual links to
embed for virtual node 3.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

From 3, path reaches {4,5,6}.

Remaining virtual links to
embed for virtual node 3.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

Remaining virtual
links to embed for

virtual node 4.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

Route from 4 to {5,6}.

Remaining virtual
links to embed for

virtual node 4.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

Remaining
virtual link.

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

All vitual links mapped to routes!

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

But wait: 5 paths on link {5,6}!
Can demand really be satisfied

given link capacity of 2?!

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

Link {5,6} is used by routes: (1,5),(2,5),(3,6),(4,6),(5,6).

But by definition of the hose model, any traffic matrix M will respect:

M1,5+M2,5 ≤ 1 and M3,6+M4,6+M5,6 ≤ 1.

Hence Σ Mi,j ≤ 2 holds!

The Benefit of Hose Interpretation

1

2 3

4

6 5

VNet: VC(n=6,b=1) Host Graph: A Ring

em
b

ed
d

in
g?

1

2 3

4

56

Link {5,6} is used by routes: (1,5),(2,5),(3,6),(4,6),(5,6).

But by definition of the hose model, any traffic matrix M will respect:

M1,5+M2,5 ≤ 1 and M3,6+M4,6+M5,6 ≤ 1.

Hence Σ Mi,j ≤ 2 holds!

Legal embedding! Recall:
this was impossible with

virtual switch abstraction.

❏ Similar problems arise in many contexts

❏ For example, service chain embeddings: in a service
chain, traffic is steered (e.g., using SDN) through a
sequence of (virtualized) middleboxes to compose a
more complex network service

The Many Faces of the VNEP:
E.g., Service Chain Embedding

s t
cache

firewall
WAN

optimizer

❏ Similar problems arise in many contexts

❏ For example, service chain embeddings: in a service
chain, traffic is steered (e.g., using SDN) through a
sequence of (virtualized) middleboxes to compose a
more complex network service

The Many Faces of the VNEP:
E.g., Service Chain Embedding

s t
cache

firewall
WAN

optimizer

Waypoints!

❏ Similar problems arise in many contexts

❏ For example, service chain embeddings: in a service
chain, traffic is steered (e.g., using SDN) through a
sequence of (virtualized) middleboxes to compose a
more complex network service

The Many Faces of the VNEP:
E.g., Service Chain Embedding

s t
cache

firewall
WAN

optimizer

Interesting implication: routes
from s to t become walks (rather
than simple paths)! How to find

shortest walks?

Waypoints!

Routing Through Waypoints

s t

❏ Traditionally: routes form simple paths (e.g., shortest paths)

❏ Novel aspect: routing through middleboxes may require
more general paths, with loops: a walk

How to compute a
shortest route

through a waypoint?

Walking Through Waypoints

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Assume unit capacity and
demand for simplicity!

Walking Through Waypoints

s

❏ Computing shortest routes through waypoints
is non-trivial!

wt

Greedy fails: choose shortest path from s to w…

Assume unit capacity and
demand for simplicity!

s

wt

Greedy fails: … now need long path from w to t

❏ Computing shortest routes through waypoints
is non-trivial!

Walking Through Waypoints

Assume unit capacity and
demand for simplicity!

s

wt

Greedy fails: … now need long path from w to t

Total length:
2+6=8

❏ Computing shortest routes through waypoints
is non-trivial!

Walking Through Waypoints

Assume unit capacity and
demand for simplicity!

s

wt

A better solution: jointly optimize the two segments!

Total length:
4+2=6

❏ Computing shortest routes through waypoints
is non-trivial!

Walking Through Waypoints

Assume unit capacity and
demand for simplicity!

s

wt

A better solution: jointly optimize the two segments!

Total length:
4+2=6

❏ Computing shortest routes through waypoints
is non-trivial!

Walking Through Waypoints

How hard can it be?

Assume unit capacity and
demand for simplicity!

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

Recall: computing 2-
disjoint paths NP-hard
on directed graphs.

We show: If waypoint
routing was be in P,
we could solve it fast.
Contradiction!

s1

s2

t1

t2

w

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2

via w….

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2

via w….

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

… and ask for
shortest waypoint
route (s1,w,t2)

NP-hard on Directed Networks:
Reduction from Disjoint Paths Problem

s1

s2

t1

t2

w

Reduction: From joint shortest paths (s1,t1),(s2,t2)

to shortest walk (s,w,t) problem

NP-hard on Directed Networks:
Reduction from Disjoint Paths ProblemThe walk (s1,w,t2) walk defines a (s1,t1)

and a (s2,t2) path pair before/after the
waypoint! Solves original problem:

Contradiction!

•Reduction: To
find shortest
paths (s1,t1),
(s2,t2), introduce
waypoint w and
connect t1 to s2

via w….

… and ask for
shortest waypoint
route (s1,w,t2)

What about waypoint routes on
undirected networks?

❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks

What about waypoint routes on
undirected networks?

❏ Indeed, algorithm exists: We can reduce to edge-
disjoint paths to compute a waypoint route!

What about waypoint routes on
undirected networks?

•How?

❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks

s tw

Walks Edge-Disjoint Paths

22

❏ Indeed, algorithm exists: We can reduce to edge-
disjoint paths to compute a waypoint route!

❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks

What about waypoint routes on
undirected networks?

s tw s tw

Walks

•Replace capacitated
links with parallel links!

Edge-Disjoint Paths

22

❏ Indeed, algorithm exists: We can reduce to edge-
disjoint paths to compute a waypoint route!

❏ Reduction from disjoint paths no longer works: disjoint
paths problem not NP-hard on undirected networks

What about waypoint routes on
undirected networks?

s tw s tw
22

Walks

•Replace capacitated
links with parallel links!

•Shortest paths (s,w),(w,t) will
give shortest (s,w,t) path!

Edge-Disjoint Paths

Fast and Shortest Waypoint Routing on
Undirected Networks: Suurballe’s Algorithm

❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

Fast and Shortest Waypoint Routing on
Undirected Networks: Suurballe’s Algorithm

ts

❏ Suurballe’s algorithm: finds two (edge-)disjoint shortest
paths between same endpoints:

Fast and Shortest Waypoint Routing on
Undirected Networks: Suurballe’s Algorithm

ts

•How to compute a
shortest (s,w,t) route
with this algorithm??

❏ Reduction to Suurballe’s algorithm:

t

s

wG

Waypoint Routing on Steroids

•To find shortest (s,w,t)
route…

❏ Reduction to Suurballe’s algorithm:

t

s

wS+ T+

G

Waypoint Routing on Steroids

•… connect S+ to s and t,
and w to T+…

❏ Reduction to Suurballe’s algorithm:

t

s

wS+ T+

G

Waypoint Routing on Steroids

•… ask Suurballe for 2 disjoint
paths from S+ to T+…

❏ Reduction to Suurballe’s algorithm:

t

s

wG

Waypoint Routing on Steroids

•.. and hence also (s,w,t).

❏ Reduction to Suurballe’s algorithm:

s2

s1

S+ T+

G

Waypoint Routing on Steroids

Can’t I use Suurballe to efficiently
compute disjoint paths as well?!

t2

t1

❏ Reduction to Suurballe’s algorithm:

s2

s1

S+ T+

G

Waypoint Routing on Steroids

No! Solves a much easier
problem: 2 routes from

{s1,s2} to {t1,t2}.

t2

t1

❏ Remark 1: Suurballe is actually for directed substrate
graphs, so need gadget to transform problem in right form:

y

x

u v u v

❏ Remark 2: Suurballe: actually vertex disjoint
❏ Suurballe & Tarjan: edge disjoint

Remarks: Under the rug…

❏ Remark 1: Suurballe is actually for directed substrate
graphs, so need gadget to transform problem in right form:

y

x

u v u v

❏ Remark 2: Suurballe: actually vertex disjoint
❏ Suurballe & Tarjan: edge disjoint

Remarks: Under the rug…

Conclusion: exploiting traffic
engineering flexibilities is non-trivial!

PART II:
Dynamic Embeddings

❏ E.g., changing bandwidth demand: map
reduce application cycles through
phases of high and low bandwidth
requirements

❏ E.g., long-running applications (e.g.,
streaming) change in popularity

❏ E.g., job churn: jobs terminate, new
ones arrive

❏ E.g., large elephant flow degree,
changing over time (cf ProjecToR at
SIGCOMM 2016)

Real Communication Patterns Change over Time

Bandwidth utilization of 3 different runs of
the same TeraSort workload (without

interference)

❏ E.g., changing bandwidth demand: map
reduce application cycles through
phases of high and low bandwidth
requirements

❏ E.g., long-running applications (e.g.,
streaming) change in popularity

❏ E.g., job churn: jobs terminate, new
ones arrive

❏ E.g., large elephant flow degree,
changing over time (cf ProjecToR at
SIGCOMM 2016)

Real Communication Patterns Change over Time

Bandwidth utilization of 3 different runs of
the same TeraSort workload (without

interference)

Ideally, we want to place frequently
communicating nodes close: may require

adaptions over time!

❏ E.g., changing bandwidth demand: map
reduce application cycles through
phases of high and low bandwidth
requirements

❏ E.g., long-running applications (e.g.,
streaming) change in popularity

❏ E.g., job churn: jobs terminate, new
ones arrive

❏ E.g., large elephant flow degree,
changing over time (cf ProjecToR at
SIGCOMM 2016)

Real Communication Patterns Change over Time

Bandwidth utilization of 3 different runs of
the same TeraSort workload (without

interference)

Ideally, we want to place frequently
communicating nodes close: may require

adaptions over time!Adjust the
network!

Migrate and
collocate!

Communication @ time t:

Essentially An Online RePartitioning Problem

How to embed pattern across =4
servers (or racks, pods, etc.) of size k=4?

Communication @ time t:

Essentially An Online RePartitioning Problem

Communication @ time t:Most communication within
cluster (intra-cluster)…

… little inter-cluster
communication.

A classic (hard) combinatorial problem!

Essentially An Online RePartitioning Problem

Communication @ time t+1:Communication @ time t:

3

1

5

2

6
4

❏ Now assume: changes in communication pattern!

❏ E.g., more communication (1,3),(3,4),(2,5) but less (5,6)

Essentially An Online RePartitioning Problem

Communication @ time t:

3

1

5

2

6
4

❏ Now assume: changes in communication pattern!

❏ E.g., more communication (1,3),(3,4),(2,5) but less (5,6)

1

5

Makes sense that
nodes 1 and 5

change clusters!

Communication @ time t+1:

Essentially An Online RePartitioning Problem

Consider a simple network, e.g., a single switch (e.g., a rack):

A Simple Model for the Tutorial

servers („clusters“)

si
ze

k
(„

sl

o
ts

“)

Consider a simple network, e.g., a single switch (e.g., a rack):

A Simple Model for the Tutorial

0

1

α
Costs: 0,1,α

Consider a simple network, e.g., a single switch (e.g., a rack):

A Simple Model for the Tutorial

0

1

α

Objective: minimize total communication and migration cost!

More precisely: competitive ratio ρ = cost(ON)/cost(OPT)

Costs: 0,1,α

Consider a simple network, e.g., a single switch (e.g., a rack):

A Simple Model for the Tutorial

0

1

α

Objective: minimize total communication and migration cost!

More precisely: competitive ratio ρ = cost(ON)/cost(OPT)

Nice: If competitive ratio is low, there is no need to develop
any sophisticated prediction models (which may be wrong

anyway)! The guarantee holds in the worst-case.

Costs: 0,1,α

Consider a simple network, e.g., a single switch (e.g., a rack):

A Simple Model for the Tutorial

0

1

α

Objective: minimize total communication and migration cost!

More precisely: competitive ratio ρ = cost(ON)/cost(OPT)

Nice: If competitive ratio is low, there is no need to develop
any sophisticated prediction models (which may be wrong

anyway)! The guarantee holds in the worst-case.

“Prediction is difficult,
especially about the future.”

Nils Bohr

Adversarial Models

❏ Chooses request distribution D

❏ Requests sampled i.i.d. from D

❏ Cannot react to online algo

Weak adversary Strong adversary

❏ Can generate arbitrary request
sequence σ

❏ Knows and can react to online algo

Adversarial Models

❏ Chooses request distribution D

❏ Requests sampled i.i.d. from D

❏ Cannot react to online algo

Weak adversary Strong adversary

❏ Can generate arbitrary request
sequence σ

❏ Knows and can react to online algo

The Crux: Algorithmic Challenges

❏ Do not know D resp. σ ahead of time

❏ Upon each communication request (u,v):

❏ Migrate u and v together? «Rent-or-buy»: migration cost should be amortized

❏ Migrate where? u to v, v to u, both to a third cluster?

❏ If cluster is full already: what to evict?

Example: Special Case k=2

Clusters of size 2:
Need to find pairs!

Clusters of size 2:
Need to find pairs!

Clusters of size 2: A new
type of online

rematching problem!

Example: Special Case k=2

It is hard to compete under !

❏ Assume two clusters: for
offline algorithm they are of
size k…

OFF:

It is hard to compete under !

❏ Assume two clusters: for
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1
even (augmentation)!

OFF: ON:

extra space!

It is hard to compete under !

❏ Assume two clusters: for
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1
even (augmentation)!

OFF: ON:

E.g., ON can even
collocate all except

for one!

It is hard to compete under !

OFF: ON:

What is the achievable
competitive ratio?

❏ Assume two clusters: for
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1
even (augmentation)!

E.g., ON can even
collocate all except

for one!

It is hard to compete under !

❏ Assume two clusters: for
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1
even (augmentation)!

For the sake of lower bound, let us
restrict the adversary more: can only ask
for node pairs taken from a cyclic order:

k pairs (resp. links) in total!

It is hard to compete under !

❏ Assume two clusters: for
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1
even (augmentation)!

OFF: ON:

Ouch! Cost 1 for
each request.

Adversary can always
request an inter-cluster

link: always exists!

It is hard to compete under !

❏ Assume two clusters: for
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1
even (augmentation)!

OFF: ON:

Ouch! Cost 1 for
each request.

Note: adversarial strategy only
depends on ON. So ON cannot

learn anything about OFF!

Adversary can always
request an inter-cluster

link: always exists!

It is hard to compete under !

❏ Assume two clusters: for
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1
even (augmentation)!

OFF: ON:

Ouch! Cost 1 for
each request.What is the

cost of OFF?

Note: adversarial strategy only
depends on ON. So ON cannot

learn anything about OFF!

Adversary can always
request an inter-cluster

link: always exists!

It is hard to compete under !

❏ Assume two clusters: for
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1
even (augmentation)!

OFF: ON:

Ouch! Cost 1 for
each request.Move to configuration i є {1,…,k}

which is asked the least.
Averaging argument: At least k
times less communiation cost!

It is hard to compete under !

❏ Assume two clusters: for
offline algorithm they are of
size k…

❏ … whereas online algorithm
can use clusters of size 2k-1
even (augmentation)!

OFF: ON:

Ouch! Cost 1 for
each request.

Lower bound of Ω(k) for competitive

ratio, despite big augmentation!

Move to configuration i є {1,…,k}

which is asked the least.
Averaging argument: At least k
times less communiation cost!

A Simple O(n2) Upper Bound At least it does not
depend on time! 

❏ Algorithm DET:

❏ Based on «growing communication components»

❏ Cycles through phases

❏ Initially in each phase: empty graph of n nodes

A Simple O(n2) Upper Bound

❏ Algorithm DET:

❏ Based on «growing communication components»

❏ Cycles through phases

❏ Initially in each phase: empty graph of n nodes

❏ For each inter-cluster request for ON: insert edge

A Simple O(n2) Upper Bound

❏ Algorithm DET:

❏ Based on «growing communication components»

❏ Cycles through phases

❏ Initially in each phase: empty graph of n nodes

❏ For each inter-cluster request for ON: insert edge

❏ Induces a «communication component»: edge
weight = # requests

A Simple O(n2) Upper Bound

weight =

requests

❏ Algorithm DET:

❏ Based on «growing communication components»

❏ Cycles through phases

❏ Initially in each phase: empty graph of n nodes

❏ For each inter-cluster request for ON: insert edge

❏ Induces a «communication component»: edge
weight = # requests

❏ If an edge (u,v) weight reaches α, DET

repartitions nodes, so that all edges which have
reached α so far are in same cluster!

A Simple O(n2) Upper Bound

α

❏ Algorithm DET:

❏ Based on «growing communication components»

❏ Cycles through phases

❏ Initially in each phase: empty graph of n nodes

❏ For each inter-cluster request for ON: insert edge

❏ Induces a «communication component»: edge
weight = # requests

❏ If an edge (u,v) weight reaches α, DET

repartitions nodes, so that all edges which have
reached α so far are in same cluster!

❏ If this is not possible: phase ends

A Simple O(n2) Upper Bound

Components cannot be
partitioned perfectly (first

component alone too large)!

❏ Algorithm DET:

❏ Based on «growing communication components»

❏ Cycles through phases

❏ Initially in each phase: empty graph of n nodes

❏ For each inter-cluster request for ON: insert edge

❏ Induces a «communication component»: edge
weight = # requests

❏ If an edge (u,v) weight reaches α, DET

repartitions nodes, so that all edges which have
reached α so far are in same cluster!

❏ If this is not possible: phase ends

A Simple O(n2) Upper Bound

Competitive
ratio?

A Simple O(n2) Upper Bound

❏ Analysis (costs per phase):
❏ Observe: edge weights always ≤ α: once reach α, their

endpoints will always be collocated (by algorithm definition)

A Simple O(n2) Upper Bound

❏ Analysis (costs per phase):
❏ Observe: edge weights always ≤ α: once reach α, their

endpoints will always be collocated (by algorithm definition)

❏ α-edges form a forest (so at most n many!): once two nodes
(u,v) are connected by a path of α–edges, they are in a single

cluster and will no longer communicate across clusters

Impossible: u and v already
collocated by definition!

u v

A Simple O(n2) Upper Bound

❏ Analysis (costs per phase):
❏ Observe: edge weights always ≤ α: once reach α, their

endpoints will always be collocated (by algorithm definition)

❏ α-edges form a forest (so at most n many!): once two nodes
(u,v) are connected by a path of α–edges, they are in a single

cluster and will no longer communicate across clusters

❏ Thus: ON cost per phase:

❏ At most 1 reorganization per α-edge (at most n α-
edges), so n times reconfig cost n·α, so n2α

❏ Communication cost: at most α per edge (at most n2

many), so also at most n2α

u v

A Simple O(n2) Upper Bound

❏ Analysis (costs per phase):
❏ Observe: edge weights always ≤ α: once reach α, their

endpoints will always be collocated (by algorithm definition)

❏ α-edges form a forest (so at most n many!): once two nodes
(u,v) are connected by a path of α–edges, they are in a single

cluster and will no longer communicate across clusters

❏ Thus: ON cost per phase:

❏ At most 1 reorganization per α-edge (at most n α-
edges), so n times reconfig cost n·α, so n2α

❏ Communication cost: at most α per edge (at most n2

many), so also at most n2α

❏ Costs of OFF per phase:

❏ If OFF migrates any node, it pays at least α

❏ If not, it pays communication cost at least α: the

grown components do not fit clusters (intra-cluster
edges only): definition of «end-of-phase»!

u v

Upper bound of O(n2α/α)=O(n2) for

competitive ratio!

Known Results So Far

❏ Case k=2 („online rematching“): constant competitive ratio

❏ General case: with a little bit of augmentation: O(k log k)
possible
❏ Recall Ω(k) lower bound

❏ Nice: independent of number of clusters!

❏ Practically relevant: # VM slots per server usually small

What about ?

What about ?

❏ Recall: weak adversary cannot choose request
sequence but only the distribution
❏ Adversary needs to sample i.i.d. from this distribution

❏ Moreover: Adversary knows (deterministic or randomized)
«learning» algorithm, i.e., chooses worst distribution

Any ideas?

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

Waiting can be very costly: maybe
start configuration is very bad and
others similarly good: takes long to

learn, not competitive! Need to move
early on, away from bad locations!

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

❏ Naive idea 2: Pro-actively always move to the lowest
cost configuration seen so far

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

❏ Naive idea 2: Pro-actively always move to the lowest
cost configuration seen so far

Bad: if requests are uniform at
random, you should not move at all!

Migration costs cannot be
amortized. Crucial difference to

classic distribution learning
problems: guessing costs!

The Crux: Joint Optimization of Efficient
Learning and Searching

❏ Naive idea 1: Take it easy and first learn distribution
❏ Do not move but just sample requests in the beginning: until

exact distribution has been learned whp

❏ Then move to the best location for good

❏ Naive idea 1: Pro-actively always move to the lowest
cost configuration seen so far
❏ Bad, e.g., if requests are distributed uniformly at random: better

not to move at all (moving costs cannot be amortized)

Only move when it pays off! But
e.g., how to differentiate

between uniform and „almost
uniform“ distribution?

Example Learning Algorithm for Ring:
Rotate Locally!

❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

Define conditions for
configurations: if met, never go

back to it (we can afford it
w.h.p.: seen enough samples)

Example Learning Algorithm for Ring:
Rotate Locally!

❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

If current
configuration is

eliminated, go to
nearby configuration
(in directed manner:
no frequent back and

forth)!

Example Learning Algorithm for Ring:
Rotate Locally!

❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

If current
configuration is

eliminated, go to
nearby configuration
(in directed manner:
no frequent back and

forth)!

Growing radius
strategy: allow to
move further only
once amortized!

Example Learning Algorithm for Ring:
Rotate Locally!

❏ Mantra of our algorithm: Rotate!

❏ Rotate early, but not too early!

❏ And: rotate locally

If current
configuration is

eliminated, go to
nearby configuration
(in directed manner:
no frequent back and

forth)!

Growing radius
strategy: allow to
move further only
once amortized!

log(n)-competitive
w.h.p.

Example Learning Algorithm for Ring:
Rotate Locally!

PART III:
Embeddings over Time

A VNet seldom comes alone!

Time

Infrastructure

VNets

199

Which ones to accept
and embed?

Admission control!

A VNet seldom comes alone!

Time

Different flavors of VNets:

❏ Node mappings given or subject to optimization

❏ Different routing and traffic models

❏ Different prices and durations

❏ …

Infrastructure

VNets

200

Which ones to accept
and embed?

Admission control!

Different flavors of VNets:

❏ Node mappings given or subject to optimization

❏ Different routing and traffic models

❏ Different prices and durations

❏ …

A VNet seldom comes alone!

Time

Infrastructure

VNets

201

Which ones to accept
and embed?

Admission control!

Can be solved by online
approximation
framework by

Buchbinder and Naor.

Different VNet Flavors

❏ Traffic models

Customer Pipe

Traffic matrix:
Bandwidth per
VM pair (u,v)

Hose Model

Per VM
bandwidth:
polytope of traffic
matrices.

Aggregate Ingress

ingress outgress ingress
Only ingress
specified: e.g.,
support multicast
etc.

❏ Routing models

Tree

Steiner tree
embedding

Single Path

Unsplittable
paths

Multi-Path

Splittable paths
(more capacity)

Relay costs: e.g., depending on packet rate

Primal and Dual

Algorithm

Applying Buchbinder&Naor

Primal and Dual

Algorithm

Formulate the packing
(dual) LP: Maximize profit

(Note: dynamic LP!)

Applying Buchbinder&Naor

Primal and Dual

Algorithm

s.t. constraints

Applying Buchbinder&Naor

Primal and Dual

Algorithm
Buchbinder&Naor

Applying Buchbinder&Naor

Primal and Dual

Algorithm

optimal embedding!

Applying Buchbinder&Naor

Primal and Dual

Algorithm

Embedding cost vs profit?

Applying Buchbinder&Naor

Primal and Dual

Algorithm

If cheap: accept and
update primal variables
(always feasible solution)

Applying Buchbinder&Naor

Primal and Dual

Algorithm

Else reject

Applying Buchbinder&Naor

Primal and Dual

Algorithm

Computationally hard!

Applying Buchbinder&Naor

Primal and Dual

Algorithm

Computationally hard!

Use your favorite
approximation algorithm! If
competitive ratio ρ and
approximation r, overall
competitive ratio ρ*r.

Applying Buchbinder&Naor

Online VNet Admission Control

Algorithm comes in 2 flavors:

❏ Bicriteria guarantees: Obtain constant fraction of the optimal
benefit while augmenting resources by a logarithmic factor.

❏ Fractional guarantees resp. limited resource consumption:
The online algorithm achieves a logarithmic competitive
ratio without resource augmentation, but either:

❏ may serve a fraction of a request (associated benefit is
assumed to be the same fraction of the benefit of the request)

❏ the allowed traffic patterns of a request consumes at most a
logarithmic fraction of every resource (in which case the
algorithm rejects the request or fully embeds it)

Summary

❏ Predictable performance requires isolation of all resources

❏ Static embeddings

❏ Reconfiguring embeddings

❏ Embeddings over time

Further Reading
Network Hypervisor Performance:

❏ Logically Isolated, Actually Unpredictable? Measuring Hypervisor Performance in Multi-Tenant SDNs Arsany
Basta, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid. ArXiv Technical Report, May 2017.

Virtual Network Embedding:

❏ Beyond the Stars: Revisiting Virtual Cluster Embeddings Matthias Rost, Carlo Fuerst, and Stefan Schmid. ACM
SIGCOMM Computer Communication Review (CCR), July 2015.

❏ Service Chain and Virtual Network Embeddings: Approximations using Randomized Rounding
Matthias Rost and Stefan Schmid. ArXiv Technical Report, April 2016.

❏ Charting the Complexity Landscape of Waypoint Routing Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko
Jacob, and Stefan Schmid.
ArXiv Technical Report, May 2017

❏ Competitive and Deterministic Embeddings of Virtual Networks
Guy Even, Moti Medina, Gregor Schaffrath, and Stefan Schmid.
Journal Theoretical Computer Science (TCS), Elsevier, 2013.

Online Collocation:

❏ Online Balanced Repartitioning
Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid.
30th International Symposium on Distributed Computing (DISC), Paris, France, September 2016.

❏ Competitive Clustering of Stochastic Communication Patterns on the Ring
Chen Avin, Louis Cohen, and Stefan Schmid.
5th International Conference on Networked Systems (NETYS), Marrakech, Morocco, May 2017

Network Design:

❏ Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
ArXiv Technical Report, May 2017.

https://net.t-labs.tu-berlin.de/~stefan/vsdn-hypervisor.pdf
https://net.t-labs.tu-berlin.de/~stefan/ccr15emb.pdf
https://net.t-labs.tu-berlin.de/~stefan/arxiv-service-chains.pdf
https://net.t-labs.tu-berlin.de/~stefan/ordered-waypoint-routing.pdf
http://www.sciencedirect.com/science/article/pii/S0304397512009577?v=s5
https://net.t-labs.tu-berlin.de/~stefan/disc16repartition.pdf
https://net.t-labs.tu-berlin.de/~stefan/netys17learn.pdf
https://net.t-labs.tu-berlin.de/~stefan/net-design.pdf

Further Reading
Network Hypervisor Performance:

❏ Logically Isolated, Actually Unpredictable? Measuring Hypervisor Performance in Multi-Tenant SDNs Arsany
Basta, Andreas Blenk, Wolfgang Kellerer, and Stefan Schmid. ArXiv Technical Report, May 2017.

Virtual Network Embedding:

❏ Beyond the Stars: Revisiting Virtual Cluster Embeddings Matthias Rost, Carlo Fuerst, and Stefan Schmid. ACM
SIGCOMM Computer Communication Review (CCR), July 2015.

❏ Service Chain and Virtual Network Embeddings: Approximations using Randomized Rounding
Matthias Rost and Stefan Schmid. ArXiv Technical Report, April 2016.

❏ Charting the Complexity Landscape of Waypoint Routing Saeed Akhoondian Amiri, Klaus-Tycho Foerster, Riko
Jacob, and Stefan Schmid.
ArXiv Technical Report, May 2017

❏ Competitive and Deterministic Embeddings of Virtual Networks
Guy Even, Moti Medina, Gregor Schaffrath, and Stefan Schmid.
Journal Theoretical Computer Science (TCS), Elsevier, 2013.

Online Collocation:

❏ Online Balanced Repartitioning
Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid.
30th International Symposium on Distributed Computing (DISC), Paris, France, September 2016.

❏ Competitive Clustering of Stochastic Communication Patterns on the Ring
Chen Avin, Louis Cohen, and Stefan Schmid.
5th International Conference on Networked Systems (NETYS), Marrakech, Morocco, May 2017

Network Design:

❏ Demand-Aware Network Designs of Bounded Degree
Chen Avin, Kaushik Mondal, and Stefan Schmid.
ArXiv Technical Report, May 2017.

Hypervisor performance and
interference analysis

Star vs Hose embedding
Including decomposability
(study of integrality gap)

Relationship to disjoint paths

A model and analysis motivated
by ProjectToR

Adaptive VM migration to
minimize communication costs

Online primal-dual

https://net.t-labs.tu-berlin.de/~stefan/vsdn-hypervisor.pdf
https://net.t-labs.tu-berlin.de/~stefan/ccr15emb.pdf
https://net.t-labs.tu-berlin.de/~stefan/arxiv-service-chains.pdf
https://net.t-labs.tu-berlin.de/~stefan/ordered-waypoint-routing.pdf
http://www.sciencedirect.com/science/article/pii/S0304397512009577?v=s5
https://net.t-labs.tu-berlin.de/~stefan/disc16repartition.pdf
https://net.t-labs.tu-berlin.de/~stefan/netys17learn.pdf
https://net.t-labs.tu-berlin.de/~stefan/net-design.pdf

