Reusing Network Services Logic to
Improve Network Performance

Yotam Harchol
VMWaAle Research

(This work was done while at the Hebrew University)

Joint work with Anat Bremler-Barr and David Hay

Appeared in ACM SIGCOMM 2016

|
|
rd
S L g
4 i
/) HERZLIYA istestsss
- -:..n_:'.. '::.

'''''''''' This research was supported by the European Research Council ERC Grant agreement no 259085, the Israeli Centers of Research
Excellence (I-CORE) program (Center No. 4/11), and the Neptune Consortium.

Network Functions (Middleboxes)

Monolithic closed black-boxes
X High cost
X Limited provisioning and scalability

Load Balancer

Network Function Virtualization (NFV): Intrusion Prevention
v Reduce cost (by moving to software) S —
V' Improve provisioning and scalability At the cost of:
(by virtualizing software NFs) X Reduced performance
(mainly latency)

2

Network Functions (Middleboxes)

X Limited and separate management
 Different vendors
* No standards
* Separate control plane

Network Functions (Middleboxes)

e Actually, many of these black-boxes are very modular

X Limited functionality and limited innovation
(High entry barriers)

X Similar complex processing steps, no re-use

FZ 1N

128 Www.openboxproject.org

“urrs

[github.com/OpenBoxProject

* OpenBox: A new software-defined framework for network functions
* Decouples network function control from their data plane
* Unifies data plane of multiple network functions

Benefits:
v’ Easier, unified control

OpenBox
Controller

v’ Better performance
(improved latency)

v’ Scalability
v Flexible deployment
v’ Inter-tenant isolation
v’ Innovation

Software Defined Networking

* High cost of middleboxes switches

* Limited provisioning and scalability of middiebexes switches
* Limited management of middiebexes switches

Limited functionality
and limited innovation

Complexpreeessingsteps

distributed algorithms OpenFlow

Controller

40%-60% of the appliances
in large-scale networks

are middleboxes!
[Sherry & Ratnasamy, ‘12]

The OpenBox Framework

Network Functions:
OpenBox Applications

?

@ |

(/_/

Logically-Centralized
OpenBox Controller

OpenBox Service Instances

Additionally:

v lsolation between NFs / multiple tenants
v" Support for hardware accelerators

v Dynamically extend the protocol !

Observation:

Most network functions do

very similar processing
Steps But there is no re-use...

The design the OpenBox framework is based on this observation

Network Function Decomposition

3»« Load Balancer:

Read Header
Packets Classifier

Rewrite
Header

I Intrusion Prevention System:
[

1T 1 | "

Read Header
Packets Classifier
9

Northbound API

Firewall I Load Balancer

\
(Y

=\ O\ T\

|
[
A\

OpenBox
Application

Events,
Load information

Specify processing graph

and block configuration
OpenBox

Controller

Control Plane

Data Plane

£y £ .

OpenBox Service Instances

Logically-Centralized Controller

Multiple tenants P lﬁ(\@

.- — R
run multiple applications V\S@
for multiple policies T 1 V%F
in the same network e /kﬁ&i“/
L@ o

------- S @
Isolation between penBox ... 1 | /;@;/F
applications and tenants pplications ;}/g&i“/

enforced by NB API

y
N kewide vi OpenBox SDN
etwork-wide view Controller Controller
Automatic scaling, provisioning,

placement, and steering
Control Plane
Data Plane

EY Y oD asd .

OpenBox Service Instances SDN Switches

Nalve Graph Merge

(T 11 .
=% Firewall:
=
[]|
Read Header
Packets Classifier
= Alert
.'-';1 I Concatenated Processing Graph:
By

Alert
(Firewall)

Read Header 10us Header
Packets l Classifier | Classifier

Read Header
Packets Classifier

Graph Merge Algorithm

Input Graphs: @

% Fi :
g2 Firewall:

| | |
anas
Y
Read Header
Packets Classifier
Alert

I Intrusion Prevention System:
[

1T 1 | "

Read Header
Packets Classifier
13

Graph Merge Algorithm

Step 1: Normalize graphs to trees

% Firewall:

Y
[[]
Read Header
Packets Classifier

Intrusion Prevention System:

Read Header
Packets Classifier

14

Graph Merge Algorithm

Step 2: Concatenate graphs

Drop Header

Classifier

Read Header
Packets Classifier

Alert
(Firewall)

Header
Classifier

15

Graph Merge Algorithm

Step 3: Merge classifiers

Read
Packets

Alert
(Firewall)

Header
Classifier

16

Graph Merge Algorithm

Step 3: Merge classifiers

Read
Packets

Alert
(Firewall)

Can we change block order?

17

Graph Merge Algorithm

Step 3: Merge classifiers

Read Header
Packets Classifier

Alert
(Firewall)

Alert
(Firewall)

Alert
(Firewall)

Alert
(Firewall)

18

Graph Merge Algorithm

Step 4: Remove redundant block copies
(and rewire connectors accordingly)

Sa

TN
¢

Drop

—
v ~

Read Header
Packets Classifier

Alert
(Firewall)

Alert
(Firewall)

Alert
(Firewall)

Alert
(Firewall)

19

Graph Merge Algorithm

:::::,:: ,,. Merged Processing Graph:
- T T T
Alert o
' (Firewall)
Alert
— D
(Firewall)
Packets SSSHlIE (Firewall) (IPS)
PAVS 30us 2us
Alert 50us \| 10ps
(Firewall)
10us

Total: 104us (22% improvement)

When NOT to Merge?

When cross product is too large:

* Two d-dimensional classifiers: A —n rules, B— m rules

» Classification is logarithmic with # of rules, exponential with dimension
* Serial classification time: (logn)?~1+ (logm)%~1

* Cross product: n - m rules (worst case)

* Single classifier worst case time:

d—2
log(n-m) *~t = (logn)*~*+(logm)*~'+ Z (d : 1) ((logn)! + (logm)4~t-1)
> (logn)?~! + (logm)?~1 =

When most packets won’t go through both classifiers:

itimate traffic
r
A u

21

OpenBox Data Plane Processing

Cachin S—

reporine
Terminals — Normalization

Classification

S
Queue Management

w
De/compression [

“ Transactions

Header Modification

22

OpenBox Data Plane Processing

erminas

Classification

Decompress

P ow!.es data

e Pr
De/compression

* Controlled by

Caching S—
oo

Normalization

OpenBox Service Instanc
Virtual or P

Queue Management

M' lize the logic of network functiow
the logical ed OpenBox controller w w
Transactions

Header Modification

23

Distributed Data Plane

[—

—
Header

w Metadata —

5 4

OpenBox Service Instance P OpenBox Service Instance

Hardware Software
(TCAM)

E.g., an OpenFlow switch
with encapsulation features
(e.g., NSH, Geneve, FlowTags)

Split Processing Graph

HW Instance:

Read Header | Write _|[Encapsulate
Packets Classifier Metadata Metadata

SW Instance:

— LCETD Decapsulate] | Read
Packets Metadata | Metadata

25

Distributed Data Plane

I ::é:?: OpenBox

SV P Applications

OpenBox
Controller

Extensible Data Plane

ﬁ Option 2:
Software module injection

= NEW
T~
= - IR

Custom

ma’
ﬁ software
ﬁ module (signed)

OpenBox l
Controller

On the fly
No need to recompile

Control Plane
No need to redeploy

Data Plane

Option 1: OpenBox Service Instances

New hardware implementation
Supports encapsulation

27

Scalable & Reliable Data Plane

Scalability Provisioning Reliability

OpenBox
Controller

=
Hypervisor [
Ny
_’

v

28

Hypervisor

OpenBox Protocol:

Block Hierarchy

Abstract Processing Block

e B

Hello
é}ﬁ Supported implementations: :>
Service HeaderClassifier:
TCAMClassifier, TrieClassifier
Instance [V Controller

SetProcessingGraphRequest

-

Use TCAMClassifier in graph

29

Future Work: Infrastructure Support

* Infrastructure can help VNFs
— Provide high performance (e.g., hardware accelerators)
— Reuse processing (e.g., packet switching, “outsourced” services)

* Challenge: Design a system, define a protocol to offload processing
from VNFs to infrastructure

e Gradual solution, easier to adopt for existing VNFs

Offloading |
Controller -----------------------
VN VNF Other VNE
VM VM

30

Implementation

o github.com/OpenBoxProject

Java-based OpenBox Controller

7500 LoCs Northbound API 2

(Java) REST Graph Network Management /\ \Vi@ﬁ?
client/server Aggregator Manager API /vﬁ&/“/
/Qs D

Control Plane

Data Plane

Generic wrapper for execution engines (Python)

Software OpenBox : : 5500 LoCs
Service Instance Uil doi Elnz (Python)
J J Click-based execution engine (C++) J J
2400 LoCs for plugin (C++)

(Plug here other execution engines. E.g., ClickNP [SIGCOMM ‘16])

31

Performance Improvement

Without OpenBox With OpenBox
VM1
VM1 VM2 OBI1: FW+IPS
Firgw:ull IPS 1 E’
,_f' -
& o O = @»
s P [
mr T e ~
VM2
OBI2: FW+IPS
Standalone VM NF Pipeline
900 P 80 900 140
800 70 800 ® O 120
‘g 700 60 2 700 <3
o) —_ o] 600 100 —_—
= 000 50 4 = o 2
+ 500 20 3 + 500 >
< 400 20 & < 400 60 o
3 300 k& 3 300 0 3
£ 200 20 = 200
100 10 100 20
0 O | == Throughput 0 With With 0
. ithout I 32
Firewall IPS @ Latency OpenBox OpenBox

Related Work

e Orthogonal to OpenBox:
— NF traffic steering (e.g., SIMPLE [SIGCOMM ’14])
— NF orchestration (e.g., Stratos, OpenMano, OpenStack)
— Runtime platforms (e.g., xOMB [ANCS “12], ClickNP [SIGCOMM ‘16])

* Similar Motivation:
— CoMb [NSDI “12] — focuses on resource sharing and placement
— E2 [SOSP ‘15] — composition framework for virtual NFs
— Slick [SOSR ’15] — focuses on the placement of data plane units

* Only OpenBox provides:
— Core processing decomposition and reuse
— Standardization and full decoupling of NF control and data planes

33

Conclusions

* Network functions are currently a real challenge in large scale

networks

* By decoupling the data plane processing of NFs their control

logic we:

— Reduce costs

— Enhance performance

— Improve scalability

— Increase reliability

— Provide inter-tenant isolation
— Allow easier innovation

e There is still work to do...

OpenBox
! Applications

OpenBox
Controller

Control Plane

Data Plane

y 'y
= 3 = - £ = ”

OpenBox Service Instances

Questions?

THANK YOU!

(7" Play with OpenBox on a Mininet VM:
e github.com/OpenBoxProject/openbox-mininet

35

