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Big Data

The volume of data businesses want to make sense of is increasing

Increasing variety of sources
• Web, mobile, wearables, vehicles, scientific, …

Cheaper disks, SSDs, and memory

Stalling processor speeds



Big Datacenters for Massive Parallelism
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1. Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing, NSDI’2012.



Distributed Data-Parallel Applications

Multi-stage dataflow
• Computation interleaved with communication

Computation Stage (e.g., Map, Reduce)
• Distributed across many machines
• Tasks run in parallel

Communication Stage (e.g., Shuffle)
• Between successive computation stages Map Stage

Reduce Stage

A communication stage cannot complete 
until all the data have been transferred



Communication is Crucial

Performance

As SSD-based and in-memory systems proliferate,
the network is likely to become the primary bottleneck

1. Based on a month-long trace with 320,000 jobs and 150 Million tasks, collected from a 3000-machine Facebook production MapReduce cluster.

Facebook jobs spend ~25% of runtime on average in intermediate comm.1



Faster
Communication

Stages:
Traditional
Networking

Approach

Flow
Transfers data from a source 
to a destination

Independent unit of allocation, 
sharing, load balancing, and/or
prioritization



Existing Solutions

GPS RED

WFQ CSFQ

ECN XCP D2TCPDCTCP

PDQD3

FCP

DeTail pFabric

2005 2010 20151980s 1990s 2000s

RCP

Per-Flow Fairness Flow Completion Time

Independent flows cannot capture the collective communication behavior 
common in data-parallel applications
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Why Do They Fall Short?

Datacenter
Fabric

time
2 4 6

Link to r2

Link to r1

Per-Flow Fair Sharing
Shuffle

Completion
Time = 5

Avg. Flow
Completion
Time = 3.66

3
3

5

3
3

5

s1

s2

s3

r1

r2

1

2

3

1

2

3

Solutions focusing on flow 
completion time cannot further 

decrease the shuffle completion time 



Improve Application-Level Performance1
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1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011.

Slow down faster 
flows to accelerate

slower flows
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Communication abstraction for 
data-parallel applications to 
express their performance goalsCoflow

1. Size of each flow;
2. Total number of flows;
3. Endpoints of individual flows;
4. Dependencies between coflows;



Aggregation

Broadcast

Shuffle
Parallel Flows

All-to-All

Single Flow



How to 
schedule 
coflows 
online …

… for faster
#1 completion

of coflows?

… to meet
#2 more

deadlines?

… for fair
#3 allocation of
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Varys, Aalo & HUG

1. Coflow Scheduler Faster, application-aware data transfers 
throughout the network

2. Global Coordination Consistent calculation and enforcement of 
scheduler decisions

3. The Coflow API Decouples network optimizations from 
applications, relieving developers and end users

1. Efficient Coflow Scheduling with Varys, SIGCOMM’2014.
2. Efficient Coflow Scheduling Without Prior Knowledge, SIGCOMM’2015.
3. HUG: Multi-Resource Fairness for Correlated and Elastic Demands, NSDI’2016.

1 2 3



Benefits of
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1. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012.
2. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013.
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Inter-Coflow Scheduling
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Concurrent Open Shop Scheduling 
with Coupled Resources
• Examples include job scheduling and 

caching blocks
• Solutions use a ordering heuristic
• Consider matching constraints
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Many Problems to Solve

Aalo

Varys
Clairvoyant Objective

HUG
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Coflow-Based Architecture

Centralized master-slave architecture 
• Applications use a client library to 

communicate with the master
Actual timing and rates are determined 
by the coflow scheduler

Master/Coordinator

Network Interface 

f Computation tasks

Local 
Daemon

Local 
Daemon

Local 
Daemon

CoordinationCoflow Scheduler



1. CODA: Toward Automatically Identifying and Scheduling Coflows in the Dark, SIGCOMM’2016.

Coflow API

Change the applications
• At the very least, we need to know 

what a coflow is
• For clairvoyant versions, we need 

more information
Changing the framework can 
enabled ALL jobs to take advantage 
of coflows

DO NOT change the applications1

• Infer coflows from traffic network 
traffic patterns
• Design robust coflow scheduler that 

can tolerate misestimations
Our current solution only works 
for coflows without dependencies; 
we need DAG support!



Performance Benefits of Using Coflows

1. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM’2011
2. Finishing Flows Quickly with Preemptive Scheduling, SIGCOMM’2012
3. pFabric: Minimal Near-Optimal Datacenter Transport, SIGCOMM’2013
4. Decentralized Task-Aware Scheduling for Data Center Networks, SIGCOMM’2014
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The Need for Coordination
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Coordination is necessary to 
determine realtime

• Coflow size (sum);
• Coflow rates (max);
• Partial order of coflows (ordering);

Can be a large source of overhead
• Does not impact too much for large 

coflows in slow networks, but …
How to perform decentralized coflow 
scheduling?



Coflow-Aware Load Balancing

Especially useful in asymmetric topologies
• For example, in the presence of switch or link failures

Provides an additional degree of freedom
• During path selection
• For dynamically determining load balancing granularity

Increased need for coordination, but at an even higher cost



Coflow-Aware Routing

Relevant in topologies w/o full bisection bandwidth
• When topologies have temporary in-network oversubscriptions
• In geo-distributed analytics

Scheduling-only solutions do not work well
• Calls for routing-scheduling joint solutions
• Must take network utilization into account
• Must avoid frequent path changes

Increased need for coordination



Coflows in Circuit-Switched Networks

Circuit switching is relevant again due to the rise of optical networks
• Provides very high bandwidth
• Expensive to setup new circuits

Co-scheduling applications and coflows
• Schedule tasks so that we can reuse already-setup circuits
• Perform in-network aggregation using existing circuits instead of waiting for new 

circuits to be created



Extension to Multiple Resources1

A DAG of coflows is very similar to a 
job DAG of stages

• Same principle applies, but with new 
challenges

Consider both fungible (b/w) and 
non-fungible resources (cores)

• Across the entire DAG

1. Altruistic Scheduling in Multi-Resource Clusters, OSDI2016.



Communication abstraction for 
data-parallel applications to 
express their performance goalsCoflow

Key open challenges
1. Better theoretical understanding
2. Efficient solutions to deal with decentralization, topologies, multi-resource 

settings, estimations over DAG, circuit-switching, etc.
More information

1. Papers: http://www.mosharaf.com/publications/
2. Software/simulator/workloads: https://github.com/coflow


