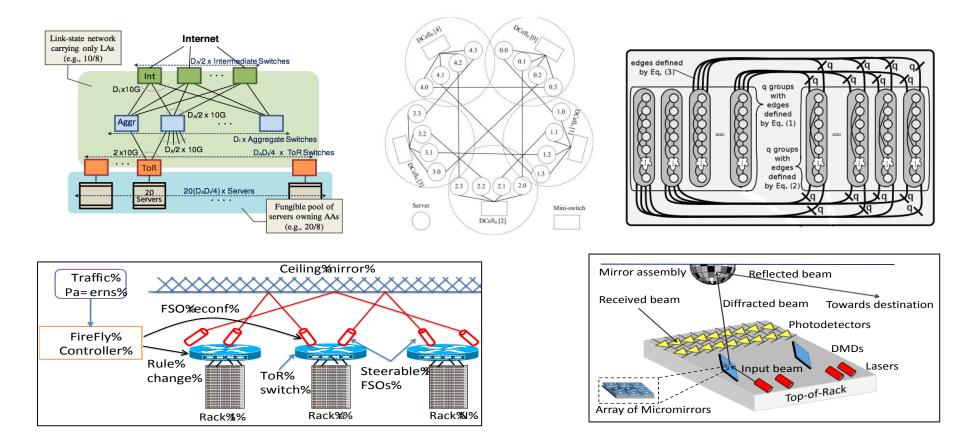
Towards Optimal-Performance Datacenters

HotNets'15 – Xpander: Unveiling the Secrets of High-Performance Datacenters Asaf Valadarsky ³, Michael Dinitz¹, Michael Schapira³

CoNext'16 – Xpander: Towards Optimal-Performance Datacenters Asaf Valadarsky ³, Michael Dinitz¹, Gal Shahaf³, Michael Schapira³

SIGCOMM'17 – Beyond Fat-Trees Without Antennae, Mirrors, and Disco-Balls Simon Kassing², **Asaf Valadarsky**³, Gal Shahaf³, Michael Schapira³, Ankit Singla²



האוניברסיטה העברית בירושלים THE HEBREW UNIVERSITY OF JERUSALEM

Designing A Datacenter Architecture

Network topology? Routing? Congestion Control?

Designing A Datacenter Architecture

Performance

Deployability

- →Throughput
- →Resiliency to failures
- →Path diversity

➡ . . .

→Flow completion time

- →Cabling complexity
- →Operations cost
- →Equipment costs

▶ . . .

→"Easy to reason about"

What Is The "RIGHT" Datacenter Architecture?

???? Jellyfish PERFORMANCE Slim-Fly Small-World Datacenters, Dcell, Bcube, Legup, Hedera, c-Through, etc... FatTree

DEPLOYABILITY

In This (and the next) Talk

• Reaching that upper-right corner entails designing "expander datacenters"

- Xpander: a tangible and <u>near-optimal</u> datacenter design
- <u>Next talk:</u> Theoretical advances in the field of expander datacenters

Expander Datacenters

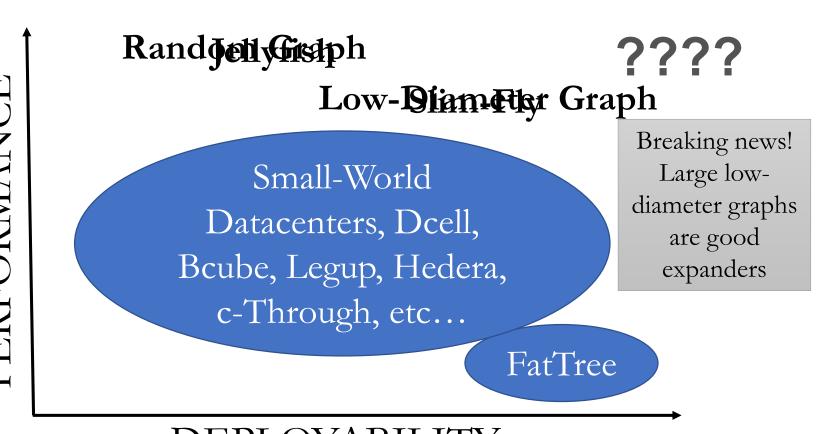
- An expander datacenter architecture:
 - →Utilizes an expander graph as its network topology (*see next slide* + *Michael's talk*)

→Employs multi-path routing to exploit path diversity

Expander Graphs: Intuition

- A graph is called an "expander graph" if it has "good" edge expansion $\lim_{S \subset V, 0 < |S| \le \frac{n}{2}} \frac{EdgesBetween(S, V \setminus S)}{|S|}$
- Intuition: In a d-regular graph, with constant edge expansion *c*, there are at least |S|c links crossing any cut $(S,V\setminus S)$
 - → We want high values of c (ideally $\sim d/2$)
 - \rightarrow Traffic is never bottlenecked at small set of links
 - → Many paths between any source/destination pairs

Expander Datacenters Achieve Near-Optimal Performance


- → Support higher traffic loads
- \rightarrow More resilient to failures
- → Support more servers with less network devices
- → Multiple short-paths between hosts
- → Incrementally expandable

Our Evaluation

- Theoretical analyses
 - Flow- and packet-level simulations
- Experiments on a network emulator
- → Experiments on an SDN-capable network

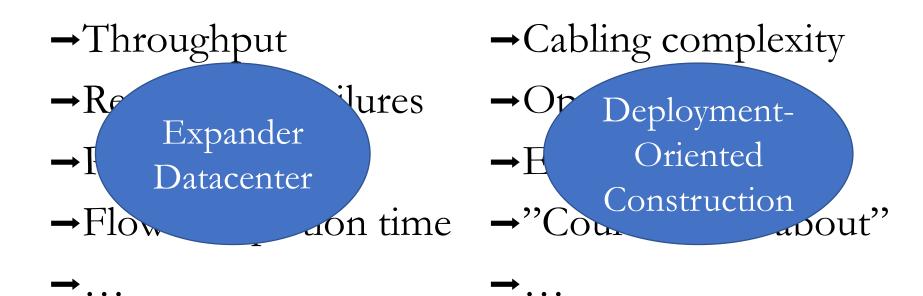
Expander Datacenters <u>ARE</u> The State-Of-The-Art Datacenters

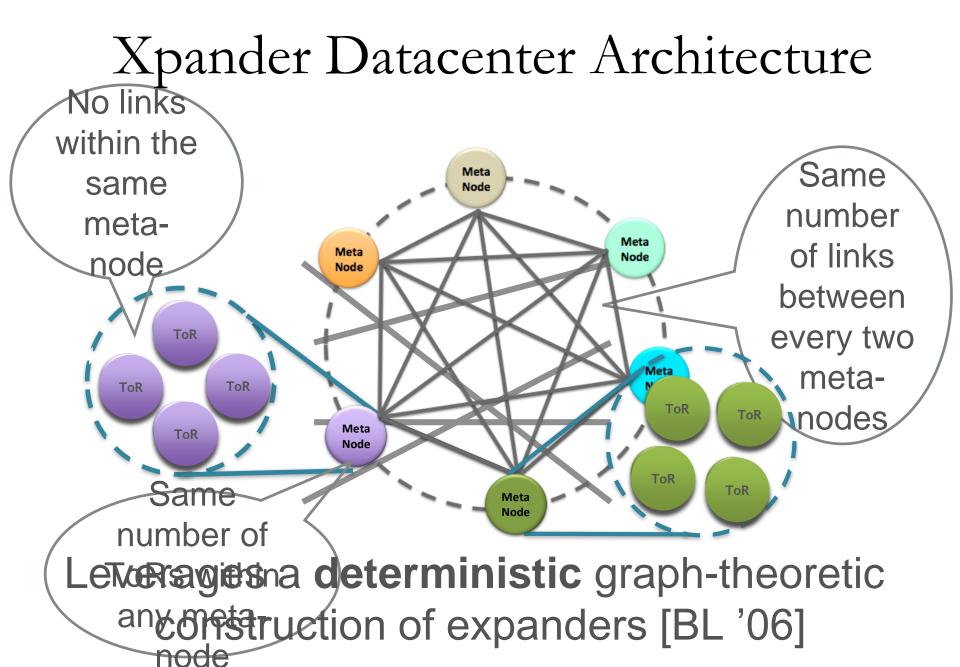
PERFORMANCE

DEPLOYABILITY

CAN WE HAVE IT ALL?

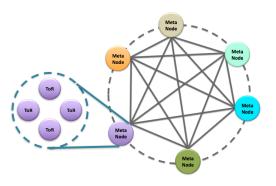
A well structured design


Near optimal performance


YES! :)

Designing A Datacenter Architecture

Performance



Xpander Datacenter Architecture

Routing

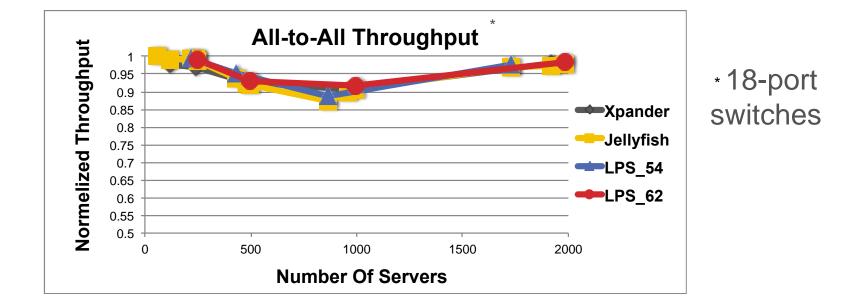
K-Shortest Paths

Congestion Control

DCTCP [SIGCOMM'10]

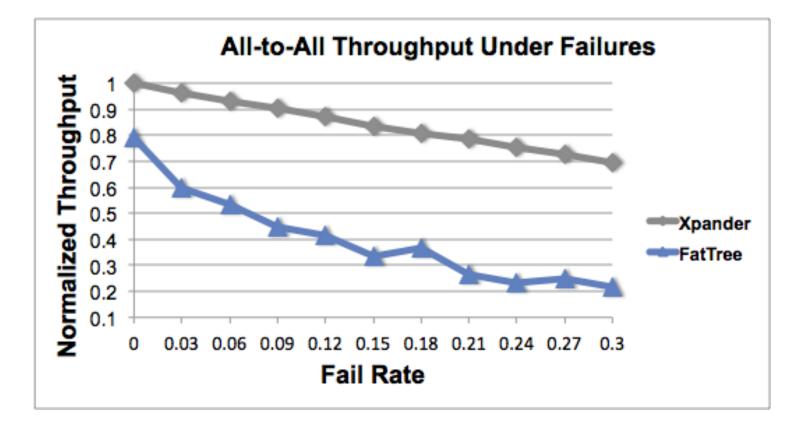
Expander datacenters Achieve Near-Optimal performance

- → Support higher traffic loads
- → More resilient to failures
- Support more servers with less network devices
- → Multiple short-paths between hosts
- → Incrementally expandable


Datacenter Throughput

• How much traffic can a datacenter network support?

• The network is modelled as a capacitated graph G=(V,E,c) coupled with a demand matrix D


- o The *maximum-concurrent-flow* α_D is the maximum α such that each commodity in D sends exactly an α of its demand
- oCommon selections of D: All-to-All, Permutation, Many-to-One, and One-to-Many

Near Optimal All-To-All Throughput

Theorem: In the all-to-all setting, the throughout of any *d*-regular expander *G* on *n* vertices is within a factor of O(log*d*) of that of the throughput-optimal *d*-regular graph on n vertices

Resilience To Failures

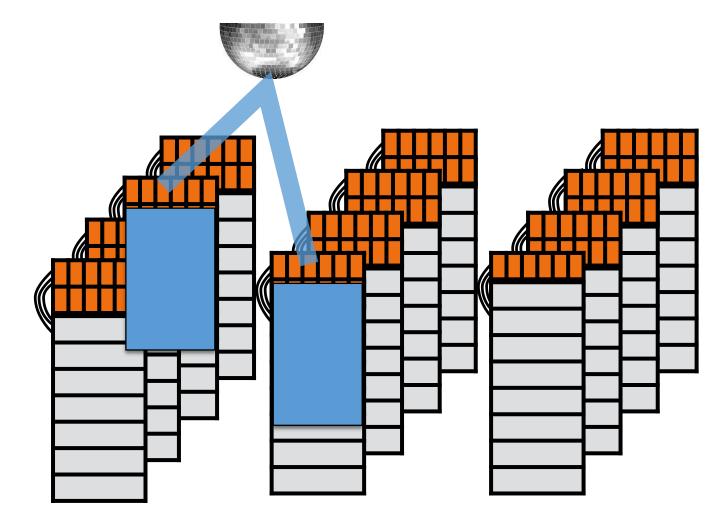
>=1), any two vertices are connected by exactly d edge-disjoint

Datacenter Traffic

Datacenter traffic is unpredictable

 Olifferent tenants want different things
 Ovarying degree of mixture between long and short flows

- With different types of skewness (i.e., percentage of chatty servers)
 - oCould range between a uniform to highly skewed distributions


Near-Optimal Throughput Even Against Adversarial Traffic!

<u>**Theorem 1:**</u> Throughput of any expander on *n* vertices is a logarithmic (in *n*) factor away from the optimum with respect to any traffic pattern

<u>Theorem 2</u>: For any *d*-regular graph *G* on *n* vertices there is some traffic matrix under which the throughput of *G* is a logarithmic (in *n*) factor away from the optimum

Distance from Optimum	Xpander
throughput<80%	<1%
80% ≤ throughput <85%	2.3%
85% ≤ throughput <90%	16.14%
90% ≤ throughput <95%	44.48%
95% ≤ throughput	36.61%

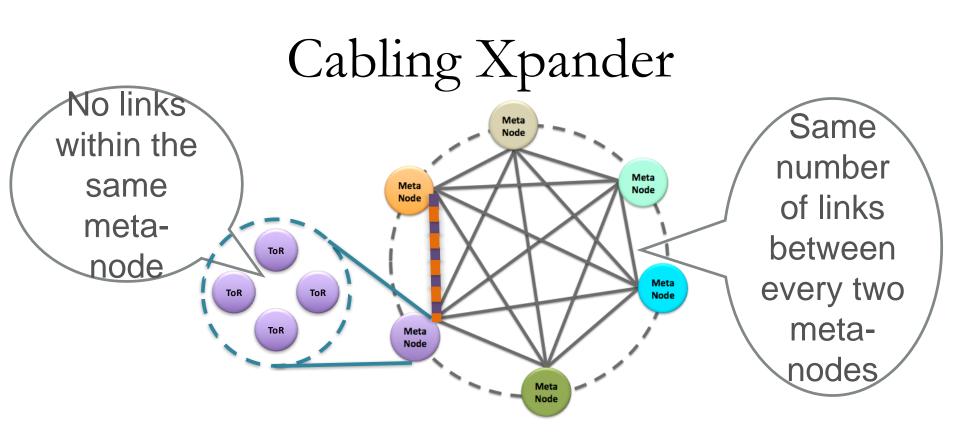
Dynamic Networks: Set Up Network Connections On The Fly

Are Static Networks Irrelevant?

• Are fewer but flexible ports better than many cheaper static ones?

We show that Xpander attains performance comparable to state-of-the-art dynamic networks at a comparable cost!

This and more in our new SIGCOMM paper $\textcircled{\odot}$


Deploying A New Datacenter Architecture

• Need to address the concerns of IT managing the datacenter, mainly:

 Keeping changes to the protocol stack to a minimum: DCTCP as the congestion control mechanism and K-Shortest paths routing

• Minimize cabling complexity (see next slide)

• Have the ability to increase the datacenter size More on this in Michael's talk (coming up next)

- → Place ToRs of each meta-node in close proximity
- → Bundle cables between two meta-nodes
- → Use color-coding to distinguish between different meta-nodes and bundles of cables

Conclusion

- We show that expander datacenters outperform traditional datacenters
- ✓ Sheds light on past results about random and lowdiameter datacenter networks
- We present **Xpander**, a novel datacenter architecture
- ✓ Suggests a <u>tangible</u> alternative to today's datacenter architectures
- ✓ Achieves <u>near-optimal</u> performance

