
A survey on approximating 

graph spanners

Guy Kortsarz, Rutgers 

Camden



Unweighted  undirected k-spanners 

Peleg and Ullman 1987

• Input: An undirected graph G(V,E)

and an integer k

• Required: a subgraph G’ so that for every u

and v  V:

Dist
G’

(u,v)/Dist
G

(u,v)≤ k    

•DATA  COMPRESSION 



An example of  a 2-spanner

• The original graph:



A 2-spanner

• Easy to check the new distance for every pair is 

at most twice the original  distance.



Why dealing with edges is 

enough?

k k
k



Why dealing with edges is 

enough?

k k
k

Distance 3 becomes 3k



An alternative definition

• Find a subgraph G’(V,E’) so that for every edge 

e in  E-E’, adding e must close a cycle of  size at 

most k+1.

• More general variants in which the above is not 

true.

• The case of  general lengths over the edges.

• Then a k-spanner must be a k-spanner with 

respect to weighted distance.



Applications

• In geometry.

• Small routing tables: spanners have less edges. Thus 
smaller tables. But not much larger distance

• Synchronizers: make non synchronized distributed 
computation, synchronized.

• Parallel distributed and streaming algorithms.

• Distance oracles. Handle queries about distance 
between two vertices quick by preprocessing.

• Property testing

• Minimum time broadcast.



2-spanners

• There is a difficulty. Unlike k≥3 there are not 

necessarily 2 spanners with few edges.

• The only 2-spanners of  a complete bipartite 

graph is the graph itself.

• Like in 2-SAT and 2-Coloring and other 

problems, 2-spanners is different than the rest.



For k at least 3 there are spanners 

with few edges

• As we shall see: 3-spanners with O(n*sqrt{n})
edges always exist, and the same goes for 4-
spanners. And this is tight.

• The larger k is, the smaller is the upper bound 

on the number of  edges in the best spanner.

• Remarkable fact:  maximum number of  edges in 
a graph with girth g not known.

• Maybe for 40 years the upper and lower bound 
are quite far!



Heaviest edge on a short cycle

For example a 4-spanner,  only the edge 9 can be 

removed, while maintaining a 4-spanner

9
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A generalization of  the Kruskal 

algorithm:

• Sort the edges of  the graph in increasing 
weights.

c(e1) ≤ c(e2) ≤ c(e3) ≤……….. ≤ c(em)

• Go over all edges from small cost to large.

• For the next edge ei, if  the edge does not close a 
cycle of  length at most k+1 with  previously 
added edges, add ei to G’ or else i=i+1

• This algorithm is due to I. Althofer, G. Das, D. 
Dobkin, D. Joseph, and J. Soares. 1993



The resulting graph is a k-spanner

• If  an edge e is missing, then by construction, 
this edge is the most heavy edge in a cycle of  
length at most k+1.

• This is because we go over edges in non 
decreasing costs.

• If  we reach a cycle of  size k+1, then it means 
that previous edges were not removed.

• This implies that e is the largest edge in a cycle 
of  length at most k+1 and it is safe to remove it.



Girth k+2

• We observe that the resulting  graph has girth at least 

k+2

• The girth is the size of  the minimum simple cycle.

• Observe that when we reach  the largest edge e of  a 

cycle with at most  k+1 edges, this edge  will be 

removed.

• Therefore, there are no k+1 size or smaller cycles.

• Graphs with large girth have “few’’ edges. 



Example: graphs with girth 5 and 6

• We show that graphs with girth 5 and 6 have 
O(n*sqrt{n}) edges.

• First remove all vertices of  degree strictly 
smaller than m/n.

• Here m is the numbers of  edges and n is the 
number of  vertices.

• Since we have removed at most n vertices and 
each vertex removes less than m/n edges it is 
clear that the resulting graph is not empty.



Two layers BFS graph

• All the vertices seen below are distinct as 

otherwise there is a cycle of  length at most 4.

m/n

(m/n)-1 (m/n)-1



Number of  edges 

• This implies that m/n(m/n-1)≤ n, or m2/n2-m/n ≤n

• As m/n<n we get that m2/n2<2n or m2<2n3

• Thus m=O(n sqrt{n})

• A matching lower bound. A graph of  girth 6 that has 
Ω(n*sqrt{n}) edges.

• A projective plane for our needs is a bipartite graph 
with n vetices on each side and  degree Ө(sqrt{n}) 

thus contains Ө(n*sqrt{n}) edges.

• The main property: every pair of vertices in the 
same side share exactly 1 neighbor.



Girth 6

• There could not be a cycle of  size 4:

A cycle of  length 4 implies that two vertices on 

the same side share two neighbors. 

Contradiction



Girth 6

• There could not be a cycle of  size 4:

Therefore girth 6



General bounds on  the minimum 

number of  edges for a given girth

• It is known that there is always a 
2k-1 spanner with O(n1+1/k) edges.

• Using this formula: 3-spanners
needs k=2. This gives the correct 
and tight O(n* sqrt{n}) upper 
bound on the number of  edges in 
a 3-spanner.



Approximating spanners

• There are only very few 
approximations.

• Length 1 arbitrary costs 2-spanners.

• O(log d) approximation with d the 
average degree for minimum cost 2-
spanners.

• As we shall see such an approximation 
does not exist for  k≥3.



An O(log(|E|/|V|) ) ratio for 

k=2 for arbitrary weight  

• Due to K, Peleg 1992.

• For a vertex v look at the graph induced by N(v)

• Find a desnsest subgraph S(v) in N(v)

• Return the edges from v to S(v) that is the most 

dense set over all v and iterate

S



The problem we need to solve is the 

densest subgraph

• Let e(S), SN(v) be the number of  
edges in the graph induced by S.

• This problem requires finding a 
subset of  the vertices with 
maximum density e(S)/|S| and 
can be solved exactly via flow. This 
implies an O(log d) ratio for d the 
average degree.



The problem we need to solve is the 

densest subgraph

• A faster algorithm, approximates the 
best density by 2 but gets O(n) time 
and not flow time. Adds 2 to the ratio 
(so negligible).

• Was done by K,Peleg in 1992. Also 
Charikar 1998.

• Very extensively cited in social 
networks. Almost always attribute the 
result to Charikar.



How hard is it to approximate 

spanners for k≥3?

• Strong hardness is exp(log 1- n)

• Weak hardness is (log n)/k

• K. 98. First hardness. Weak hardness for w(e)=l(e)=1. 

• Tight for k=2.

• Later similar methods employed for hardness for Buy at 
Bulk.

• Elkin Peleg: Strong hardness for: 

• 1) General length

• 2) Weights=1 and general length 

• 3)Unit length, arbitrary weights, k≥3 
• 4) Basic but directed spanners.



Only basic spanners from now on

• From now on,  edges have weights and lengths 

1.

• Thus  the results presented from now on are 

only for basic spanners.

• In fact giving a similar result for arbitrary 

weights  already  unknown for some of  the 

problems in later slides.

• And none of  the algorithms to follow work on 

general lengths. 



A question posed in 1992

• Is undirected the basic spanner problem strongly hard?

• In ICALP 2012 Dinitz, K, Raz : k≥3  is Labelcover-

Hard (means only polynomial ratio is possible).

• Second important result: Labelcover  with large girth is 

as hard as Labelcover

• Its rare (for me) to solve a 20 years old problem.



A technique employed for 

approximating directed Steiner 

Forest
• Feldman, K. and Nutov. 2009.

The following situation:

s t

At most n2/5

vertices in every 

layer

LP flow at least 

¼ between 

every pair s,t



An edge with large xe

• Between every two layers there is at most n4/5

edges.

• Let xe be the largest capacity. Thus via every 

edge at most xe  flow unit pass from s to t.

• The total flow between s and t is at least ¼.

• Therefore n4/5
* xe≥ ¼

• Therefore there is an edge of  value about 

1/4n4/5

• Iterative rounding gives ratio n4/5



Approximating directed spanners

• Krauthgamer and Dinitz 2012, employed (part 
of) our techniques to get an n2/3 approximation 
for directed k-spanners. The techniques was 
(re)invented independently.

• Improvement: non iterative but randomized 
rounding gets about n1/2 ratio. Very clever trick!

• Due to Berman, Bhattacharyya, Makarychev,  
Raskhodnikova, Yaroslavtsev.  2013.



Other results

• For k=3 they get ratio n1/3 for the directed case. 
Note that even for undirected graphs n1/2 is 
trivial but n1/3 not.

• They also improve the result for Directed 
Steiner forest. The new best ratio is n2/3.

• Can we show a better integrality gap for the 
natural LP?

• The answer is no.



Dinitz and Zhang 2016

• Ratio n1/3   for  k=4

• The ADDJ upper bound and the integrality gaps 

of  the natural LP are not that far.

• Interesting proof: builds its own type of  Min-

Rep and uses the fact that Min-Rep is hard for 

large super girth several times.

• I would guess that the ratio of  ADDJ will not be 

easily improved if  at all.



Preservers

• The input contains a collection of  pairs {x,y} 

and you want minimum edges G’ so that the 

distance between every x,y is the same as in G.

• A paper by Chlamtac, Dinitz,  K, and 

Laekhanukit, SODA 2017.

• Ratio O(n3/5 ) approximation for preservers.

• There is a big problem. The inequality opt≥n-1 

does not hold.



How to overcome this

• The SODA 2017  paper introduced  junction 

trees at the last stage.

• Junction trees are trees that connect many s,t 

pairs so that all paths from s,t for every pair goes 

via the same vertex r.

• Invented in relation to Buy at Bulk.

• Namely when the relative cost of  items goes 

down if  you buy many.



Why do the junction trees help

• Instead of  bounding the cost by n-1

you bound the cost by the number of  

terminal pairs connected, times the 

maximum length.

• It has some small tricks like applying a 

different algorithm if  the number of  

pairs is Ω(n4/5 ).



Approximation Steiner Forest 

with distance bounds 

• Input: Given the pairs{s,t}  each pair has a 

distance bound D(s,t) 

• Objective: find a minimum cost solution so that 

the distance between every pair of  vertices s,t is 

at most D(s,t).

• The same approximation ratio: O(n3/5 ) 



Getting back to Directed Steiner 

Forest

• First sub-linear ratio by Feldman, Kortsarz, 

Nutov , 2009, O(n4/5 ).

• Berman et al, 2013, improved the ratio to   

O(n2/3 ) using their clever randomized rounding 

method.

• Using our additional junction tree and threshold  

trick we improve Berman et al to O(n3/5 ) 

(however recall that our result is for the 

unweighted case).  SODA 2017.



The message of  this last paper

• Introducing junction tress can help 

approximating spanner problems. 

The first time junction trees ever 

used in spanners.

• A second message is that it seems 

that additive spanners are harder to 

approximate than usual spanners.



Additive spanners

• Aingworth, Chekuri, Indyk, Motwani 1996. For 

any graph,  n∙ sqt{n} edges  +2 spanners.

• Chechik. +4 spanners always exists with

O(n7/5 ) 2013.

• Baswana, Kavitha, Mehlhorn, Pettie show: 

Always exists +6, O(n4/3) 2010 (before +4).

• Can we continue with this hobby for k=8, k=10 

and so on?



Surprise (at least for me)

• Amir Abboud and Greg Bodwin. 2016

• The O(n4/3) can not be not be improved.

• There are large µ, so that µ, additive spanners 

requires Ω(n4/3) edges.

• The last result for k=6 is best possible for much 

higher k.

• How do additive spanners compare to spanners 

for approximation? Turns out: Also harder.



The case of  k=1

• We gave the first lower bound. SODA 2017.

• If  we have edges of  cost 0 this is easy.

• We can not show that its hard to spann edges 

because of  the O(log n) for k=2.

• Dividing edges brings new edges that need to be 

spanned. Feels like catch 22.

• Overcoming that by making the new paths 

added  the same Labelcover hard. CDLK, 

SODA 2017.



For k=O(polylog(n))

• Again  Labercover hard. Harder proof.

• Additive spanners are harder to aproximate than 

spanners.

• Any +1 spanner is a 2-spanner but +1 spanner 

much harder

• Also O(log n) spanner has constant ratio but 

additive polylog(n) spanner is Labelcover hard.

• The +1 spanners result surprised me. 



Open problems 

• Transitive closure spanners. Tree spanners 

• Fault tolerant spanners. Simple and nice Algorithm by 
Dinitz and Krauthgamer.

• Fault tolerant spanners:  new version 

• Preserve the distance  from s to G-s under at most f  
edges that can fall. Parver and Peleg.

• Find a minimum H so that for any |F|≤f,  

dist(s,u,G-F)=dist(s,u,H-F). Turned to be equivalent  to 
Set Cover. Parver and Peleg.

• Many open questions remain here.



It is not possible to predict the 

future. Did you know that?

• Peleg and Ulman invented spanners in 1987.

• There was nothing.  Only some results from 

geometry.

• I would imagine Peleg and Ulman did not expect 

the extent of  which this subject will develop 

back then.


