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tion, synchronized.
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2ach a cycle of size |-+, then it means
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Thls implies that - is the largest edge in a cycle
“of length at most |-+ | and it is safe to remove it.



1€ resulting graph has girth at least

the si he minimum simple cycle.

e that when we re: he largest edge - of a
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, there are no !+ | size or smaller cycles.
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o is the numbers of edges and 1 is the
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| > have removed at most 1 vertices and
each vertex removes less than /1 edges it 1s
“clear that the resulting graph 1s not empty.
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exp(log )
(log @)/
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nilar methods employed for hardness for Buy at
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* 4) Basic but directed spanners.
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(at least for me)

Amir AbeUd and G reg Bodwin. “(i ¢
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of the O(log n)ter =2,
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problems

spanners. Tree spanners

ISzivlidie) (S laidertatalc s, Simple and nice Algorithm by
Dinitz and K uthgame

Fault tolet S: nNew vensiemn

the dlstance from 5 to ;5 under at most f
can fall. Parver and Peleg,

inimum ' so that for any | '

iR CRE=clisi(s u F[-F), Turned to be equivalent to
Set Cover. Parver and Peleg.

y open questions remain here.
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