EXplicit Expanding Expanders
as Datacenter lopologies

Michael Dinitz
Johns Hopkins University

Based on joint work with Michael Schapira, Gal Shahaf, and Asaf Valadarsky
(Hebrew University of Jerusalem)

Outline

 Question: how should we wire datacenters?

* Expanders!

1. Background on expanders as networks

2. Can we build expanders with additional
properties to ease adoption (incremental
expansion)?

3. Can other approaches (degree-diameter graphs)
be viewed as just other expanders?

Expander Graphs as Network
Topologies

Datacenter lopologies

e What is the ° " topology”? Many competing
proposals!

o Surprising result [Jellyfish: Singla et al, NSDI "12]:

 Random graphs outperform all of them, on almost every metric!
* And have other nice properties ()

 Practical?

e Can we get the benetits of random graphs without
randomness?

 Why are random graphs good? They're expanders!

Expander Graphs

Expander Graphs

* Expanders: never get “trapped” in
a subset of vertices

Expander Graphs

* Expanders: never get “trapped” in
a subset of vertices

o)
o/

Expander Graphs

* Expanders: never get “trapped” in
a subset of vertices

* Edge expansion:

h(G) = min
XCV:|X|<n/2

Expander Graphs

* Expanders: never get “trapped” in
a subset of vertices

* Edge expansion:

h(G) = min
XCV:|X|<n/2

* Expander: d-regular graph with
expansion Q(d)

EXpanders: History

Widely studied in graph theory / theoretical CS

Many, many applications (mostly complexity
theory)

Random graphs are (w.h.p) very good expanders

Surprisingly difficult to construct expanders
deterministically

Data Centers

Lots of traffic between nodes
In a bad topology, might get “stuck”

Problem if lots of traffic from one
section to the rest, not much
capacity

Lots of traffic everywhere, so traffic
proportional to # vertices

Really: want large (edge) expansion!

Regular graph (# ports at switches)

Throughput

e (Given graph G and traffic demand matrix T,
throughput iIs amount we need to scale down all
demands to make feasible

 Max concurrent flow
* Important special case: Tis all 1's (all-to-all traffic)

* Not the only metric for network quality, but an
important one

Throughput: Iheory

e Thm: It Tis all-to-all, then expander has
throughput within O(log d) ot the best possible d-
regular grapnh.

e Thm: For any J, expander has throughput
within O(log n) of the best possible d-regular graph
(for that 7).

 Thm: For any d-regular graph @G, there is some T
and d-regular graph G* such that G* has
throughput Q(log n) more than G.

Throughput: Iheory

e Thm: It Tis all-to-all, then expander has
throughput within O(log d) ot the best possible d-
regular grapnh.

e Thm: For any J, expander has throughput
within O(log n) of the best possible d-regular graph
(for that 7).

 Thm: For any d-regular graph @G, there is some T
and d-regular graph G* such that G* has
throughput Q(log n) more than G.

Incremental Expansion

Explicit Expanding Expanders.
Michael Dinitz, Michael Schapira, Asaf Valadarsky. ESA ‘15

Incremental Expansion

SO let’s use expanders for our data centers!

Data centers grow regularly: more servers and racks
purchased and added

Don't want to completely rewire network every time!

Expander on n nodes should have approximately same
edge set as expander on n+71 nodes

Random
| Jellyfish NSDI'12]

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

* Works great in simulation — only
theory for uniform random regular
graphs (Bollobas)

Random
| Jellyfish NSDI'12]

» Construct expanders randomly

e Jo add node: choose random d/2
matching, remove, connect to
new node

* Works great in simulation — only
theory for uniform random regular
graphs (Bollobas)

* Will companies actually use random datacenters?

« Can we get same guarantees with deterministic
constructions?

EXpanding Expanders

EXpanding Expanders

* Two problems with using existing
deterministic expanders as data centers

1. Need to exist for all n (not just primes,
powers of 2, etc.)

2. Need to handle

EXpanding Expanders

* Two problems with using existing Gn
deterministic expanders as data centers

1. Need to exist for all n (not just primes,
powers of 2, etc.)

2. Need to handle

EXpanding Expanders

* Two problems with using existing Gn
deterministic expanders as data centers

1. Need to exist for all n (not just primes,
powers of 2, etc.)

2. Need to handle

EXpanding Expanders

* Two problems with using existing Gn
deterministic expanders as data centers

1. Need to exist for all n (not just primes,
powers of 2, etc.)

2. Need to handle

EXpanding Expanders

* Two problems with using existing Gn
deterministic expanders as data centers

1. Need to exist for all n (not just primes,
powers of 2, etc.)

2. Need to handle

EXpanding Expanders

* Two problems with using existing Gn
deterministic expanders as data centers

1. Need to exist for all n (not just primes,
powers of 2, etc.)

2. Need to handle

* Goal: infinite series of d-regular graphs
Go’+7, Go’+2, Go’+3, ... wWhere; /

1. Gijhas inodes P

2. Each Gjhas large edge expansion
(approx. d/2)

3. Few edge changes to get from G;to
Gi+1 (approx. 3d/2)

EXplicit Expanding Expanders

Main Result: graphs G, where:
e (Gihas /nodes
* Expansion approx. d/3
o At most 5d/2 edge changes from Gito G

EXplicit Expanding Expanders

Main Result: graphs G, where:
e (Gihas /nodes
* Expansion approx. d/3
o At most 5d/2 edge changes from Gito G

e Still room for improvement!

* Technicality: use multiple edges / edge weights

2-LIfts

2-LIfts

« Main tool: 2-Lifts [Bilu-Linial]

e 2-Lift of GG: double every vertex,
replace edge by matching

2-LIfts

« Main tool: 2-Lifts [Bilu-Linial]

e 2-Lift of GG: double every vertex,
replace edge by matching

2-LIfts

« Main tool: 2-Lifts [Bilu-Linial]

e 2-Lift of GG: double every vertex,
replace edge by matching

2-LIfts

« Main tool: 2-Lifts [Bilu-Linial]

e 2-Lift of GG: double every vertex,
replace edge by matching

2-LIfts

« Main tool: 2-Lifts [Bilu-Linial]

e 2-Lift of GG: double every vertex,
replace edge by matching

2-LIfts

« Main tool: 2-Lifts [Bilu-Linial]

e 2-Lift of GG: double every vertex,
replace edge by matching

2-LIfts

« Main tool: 2-Lifts [Bilu-Linial]

e 2-Lift of GG: double every vertex,
replace edge by matching

* Two options for each matching,
so 2IEl possible 2-lifts

2-LIfts

« Main tool: 2-Lifts [Bilu-Linial]

e 2-Lift of GG: double every vertex,
replace edge by matching

* Two options for each matching,
so 2IEl possible 2-lifts

 Thm [BL]: If G an expander,
random matchings gives good
expander w.h.p.

e Can be derandomized!

Our Approach

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

* Unsplit neighbors: replace weight 2
edge with two weight 7 edges

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

* Unsplit neighbors: replace weight 2
edge with two weight 7 edges

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

* Unsplit neighbors: replace weight 2
edge with two weight 7 edges

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

* Unsplit neighbors: replace weight 2
edge with two weight 7 edges

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

* Unsplit neighbors: replace weight 2
edge with two weight 7 edges

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

* Unsplit neighbors: replace weight 2
edge with two weight 7 edges

* Split neighbors: replace two weight 7
edges with matching of weight 2 edges

Our Approach

e “Split” each node one at a time,
rather than all at once

o Start with d/2-regular expander,
weights 2

* Inserting new node: split currently
unsplit node

* Unsplit neighbors: replace weight 2
edge with two weight 7 edges

* Split neighbors: replace two weight 7
edges with matching of weight 2 edges

* Nice property: after all nodes split,
have precisely next BL expander

Analysis: Edge Changes

e Split uinto u, u”

* Unsplit neighbor v: one edge y y u y
of weight 2 = 2 edges of u’
weight 7. Cost 2

* Split neighbors v, v’ two ¥ U ’
edges of weight 1 = two U
edges of weight 2, decrease " " y

{v, v}by 1. Cost 5.

* Add {u,u’} of weight (# unsplit
neighbors)

Analysis: Edge Changes

e Splituinto u, u”

* Unsplit neighbor v: one edge
of weight 2 = 2 edges of
weight 7. Cost 2

* Split neighbors v, v’ two
edges of weight 1 = two
edges of weight 2, decrease
{v, v}by 1. Cost 5.

* Add {u,u’} of weight (# unsplit
neighbors)

u
% , %
4 u V
U
V’ ul V:

Total cost: 3*(unsplit neighbors)
+ 5*(split neighbors)

Know 2*(unsplit) + 2*(split) = d

Future Cuts ,

B
« Cut (A B)

Unsplit UA) @

Future Cuts ,

B
Split S(A) @
Unsplit UA @

F(A) F(B)

« Cut (A B)

CE[S

e Future cut (F(A), F(B)) of next BL expander:
* F(S5(+))=5(+)
e F(U(-)) = U(-)and splits of U(*)

Easy expansion

B F(A) =(=)

A
@ @ F(S(B)

Easy expansion

B F(A) =(=)

A

« Know that w(F(A), F(B)) large (=(d/2) |F(A)|) — argue that w(A, B) close to it

F(S(B))

FU(B))

Easy expansion

A B F(A) F(B)

VY,

« Know that w(F(A), F(B)) large (=(d/2) |F(A)|) — argue that w(A, B) close to it

. 2> _

Easy expansion

F(A) ~(B)
@) @

« Know that w(F(A), F(B)) large (=(d/2) |F(A)|) — argue that w(A, B) close to it

A U(A))) kF(=)

. 2> _

Easy expansion

B F(A) =(=)

A
Um @ ~ UWF(U(B))

« Know that w(F(A), F(B)) large (=(d/2) |F(A)|) — argue that w(A, B) close to it
. 2 _

* 27 W(S(A), UB)) = w(F(S(A)), F(U(B)))

Easy expansion

B F(A) =(=)

A
Um @ ~ UWF(U(B))

« Know that w(F(A), F(B)) large (=(d/2) |F(A)|) — argue that w(A, B) close to it

. 2> _

* 27 W(S(A), UB)) = w(F(S(A)), F(U(B)))

Half the weight, so at least half the expansion (d/4)!

Real expansion

e Use fact that fewer vertices than in future cut

 Combine with Expander Mixing Lemma, get
expansion d/3

 Need to use strong spectral expansion

e Fact: there are graphs in sequence with A2~ d/2, so
cannot get expansion bound directly from Cheeger

Conclusion (Part I

 Can get good incremental expansion by
incrementally 2-lifting

* (Can even do this to starting expander

 Many open questions
* Tight or improved bounds?

* Heterogeneous nodes? Edges?

Degree-Diameter Graphs as
EXpanders

Large Fixed-Diameter Graphs are Good Expanders.
Michael Dinitz, Michael Schapira, Gal Shahaf. arXiv ‘17

Different Intuitions

e Expanders
 (Good because data can’t get “bottlenecked” anywhere

* Ensure this by making cuts “large”

e Alternative

e Long paths are wasteful: flow of size a uses (length x a)
total capacity

e S0 minimize distances: try to make diameter small

Degree-Diameter Graphs

Degree-Diameter Graphs

* Three parameters: size n, degree d, diameter k
* What are the extremal graphs?

 Fix d, k. What is largest possible value of n?

* “Degree/Diameter problem”

Degree-Diameter Graphs

* Three parameters: size n, degree d, diameter k
* What are the extremal graphs?

 Fix d, k. What is largest possible value of n?

* “Degree/Diameter problem”

* “Intuitively, the best known degree-diameter topologies should
support a large number of servers with high network bandwidth
and low cost (small degree)... Thus, we propose the best-
known degree-diameter graphs as a benchmark for
comparison.” — Singla et al, NSD| "12

 Slim Fly [Besta-Hoefler, SC '14]: Uses near-optimal degree-diameter
graphs for k=2 (MMS graphs) and k=3 (BDF and Delorme graphs)

INnformal Result

* SO what are the “best” datacenter topologies”

 Optimal expanders (Ramanujan graphs)? Or optimal degree-
diameter graphs (Moore graphs)?

* Similar performance in simulation (degree-diameter graphs
slightly worse)

INnformal Result

* SO what are the “best” datacenter topologies”

 Optimal expanders (Ramanujan graphs)? Or optimal degree-
diameter graphs (Moore graphs)?

* Similar performance in simulation (degree-diameter graphs
slightly worse)

Informal result: Any sufficiently good degree-
diameter graph is a good expander!

INnformal Result

* SO what are the “best” datacenter topologies”

 Optimal expanders (Ramanujan graphs)? Or optimal degree-
diameter graphs (Moore graphs)?

* Similar performance in simulation (degree-diameter graphs
slightly worse)

Informal result: Any sufficiently good degree-
diameter graph is a good expander!

* S0 finding good degree-diameter graphs involves
finding good expanders

 Expanders already very good — just use them

Moore Bound

* Fix d, k. Obvious upper bound on n:

1 ada d(d-1) d(d-1)¢

Moore Bound

* Fix d, k. Obvious upper bound on n:

pap=1+d+dd—1)+dd—1)2%+--+d(d— 1)

k—1
=1+d) (d—1)
1=0

1 d d(d-1) d(d-1)

Moore Bound

* Fix d, k. Obvious upper bound on n:

pap=1+d+dd—1)+dd—1)2%+--+d(d— 1)

k—1
=1+d) (d—1)
1=0

 Not achievable in general

* |Lots of work by graph theorists

o Can get arbitrarily close (as n gets
large) for k=2, 3, 5

1 ada dd-1) a(a-1y

Formal Results

e Algebraic / spectral expansion: A(G) = second
largest eigenvalue of ad]. matrix

« Cheeger inequality: h(G) = (d-1(G))/2

Formal Results

e Algebraic / spectral expansion: A(G) = second
largest eigenvalue of ad]. matrix

« Cheeger inequality: h(G) = (d-1(G))/2

Theorem: Any graph with degree d, diameter k, and
n>(1-€) ugkhas A(G) < O(ek) d

heorem: Any graph with degree d, diameter k, and
n > Uak- O(d¥?) has A(G) = O(d"?)

Techniques

e Connection to

 Formal polynomials Pi(x), where Py(A)is matrix giving #
“Irreducible walks” of length t

Theorem: Let G be graph with degree d, diameter
k, and size n. Then for every nontrivial eigenvalue A,

k
ZPt()\) < Ud g — TN
t=0

Conclusion (Part 1)

 Expanders and degree/diameter graphs two different
proposals, from different intuitions

 But and good degree/diameter graph is a good
expander!

e Suggests that good performance of degree/diameter graphs
of good expansion

 EXxpanders easier to construct: just use a good expander

* Open questions:
 What is true relationship”? No reason to think our bounds tight

 Moore bound possibly weak: is an optimal degree/diameter graph a
good expander even if not close to Moore”?

Thanks!

