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Outline
• Question: how should we wire datacenters? 
• Expanders! 

1. Background on expanders as networks 

2. Can we build expanders with additional 
properties to ease adoption (incremental 
expansion)? 

3. Can other approaches (degree-diameter graphs) 
be viewed as just other expanders?



Expander Graphs as Network 
Topologies



Datacenter Topologies
• What is the “right” topology?  Many competing 

proposals! 
• Surprising result [Jellyfish: Singla et al, NSDI ’12]: 

• Random graphs outperform all of them, on almost every metric! 
• And have other nice properties (incremental expansion)  
• Practical? 

• Can we get the benefits of random graphs without 
randomness? 
• Why are random graphs good?  They’re expanders!
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• Expanders: never get “trapped” in 
a subset of vertices

• Edge expansion:

• Expander: d-regular graph with 
expansion Ω(d)
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Expanders: History

• Widely studied in graph theory / theoretical CS 

• Many, many applications (mostly complexity 
theory) 

• Random graphs are (w.h.p) very good expanders 

• Surprisingly difficult to construct expanders 
deterministically



Data Centers
• Lots of traffic between nodes 

• In a bad topology, might get “stuck” 

• Problem if lots of traffic from one 
section to the rest, not much 
capacity 

• Lots of traffic everywhere, so traffic 
proportional to # vertices 

• Really: want large (edge) expansion! 

• Regular graph (# ports at switches)



Throughput
• Given graph G and traffic demand matrix T, 

throughput is amount we need to scale down all 
demands to make feasible 
• Max concurrent flow 

• Important special case: T is all 1’s (all-to-all traffic) 

• Not the only metric for network quality, but an 
important one 
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Incremental Expansion

Explicit Expanding Expanders.  
Michael Dinitz, Michael Schapira, Asaf Valadarsky.  ESA ‘15



Incremental Expansion

• So let’s use expanders for our data centers! 

• Data centers grow regularly: more servers and racks 
purchased and added 

• Don’t want to completely rewire network every time! 

• Expander on n nodes should have approximately same 
edge set as expander on n+1 nodes
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Random  
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2 
matching, remove, connect to 
new node

• Works great in simulation — only 
theory for uniform random regular 
graphs (Bollobas) 

• Will companies actually use random datacenters? 

• Can we get same guarantees with deterministic 
constructions?
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Expanding Expanders
• Two problems with using existing 

deterministic expanders as data centers 
1. Need to exist for all n (not just primes, 

powers of 2, etc.) 
2. Need to handle incremental 

expansion

• Goal: infinite series of d-regular graphs       
Gd+1, Gd+2, Gd+3, … where: 

1. Gi has i nodes 
2. Each Gi has large edge expansion 

(approx. d/2) 
3. Few edge changes to get from Gi to 

Gi+1 (approx. 3d/2) 

Gn



Explicit Expanding Expanders

Main Result: graphs Gi where: 
• Gi has i nodes 
• Expansion approx. d/3 
• At most 5d/2 edge changes from Gi to Gi+1



Explicit Expanding Expanders

• Still room for improvement! 

• Technicality: use multiple edges / edge weights

Main Result: graphs Gi where: 
• Gi has i nodes 
• Expansion approx. d/3 
• At most 5d/2 edge changes from Gi to Gi+1



2-Lifts
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2-Lifts
• Main tool: 2-Lifts [Bilu-Linial]

• 2-Lift of G: double every vertex, 
replace edge by matching

• Two options for each matching, 
so 2|E| possible 2-lifts

• Thm [BL]: If G an expander, 
random matchings gives good 
expander w.h.p.

• Can be derandomized!
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• Start with d/2-regular expander, 
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• Unsplit neighbors: replace weight 2 
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Our Approach
• “Split” each node one at a time, 

rather than all at once
• Start with d/2-regular expander, 

weights 2
• Inserting new node: split currently 

unsplit node
• Unsplit neighbors: replace weight 2 

edge with two weight 1 edges
• Split neighbors: replace two weight 1 

edges with matching of weight 2 edges
• Nice property: after all nodes split, 

have precisely next BL expander

d/2

d/2 - 1

d/2 - 1



Analysis: Edge Changes
• Split u into u, u’: 

• Unsplit neighbor v: one edge 
of weight 2 → 2 edges of 
weight 1.  Cost 2 

• Split neighbors v, v’: two 
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• Add {u,u’} of weight (# unsplit 
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Analysis: Edge Changes
• Split u into u, u’: 

• Unsplit neighbor v: one edge 
of weight 2 → 2 edges of 
weight 1.  Cost 2 

• Split neighbors v, v’: two 
edges of weight 1 → two 
edges of weight 2, decrease 
{v, v’} by 1.  Cost 5. 

• Add {u,u’} of weight (# unsplit 
neighbors)

u v v
u
u’

v’

u

u’

v

v’
u

v
k k-1

Total cost: 3*(unsplit neighbors) 
     + 5*(split neighbors) 

Know 2*(unsplit) + 2*(split) = d
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Future Cuts
• Cut (A, B)

A B

S(A) S(B)

U(A) U(B)

F(A) F(B)

F(S(A)) F(S(B))

F(U(A)) F(U(B))

Split

Unsplit

• Future cut (F(A), F(B)) of next BL expander: 
• F(S(･)) = S(･) 

• F(U(･)) = U(･) and splits of U(･)



Easy expansion
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Easy expansion

• Know that w(F(A), F(B))  large (≈(d/2) |F(A)|) — argue that w(A, B) close to it
• 2 * w(U(A), U(B)) = w(F(U(A), F(U(B)))
• w(S(A), S(B)) = w(F(S(A)), F(S(B)))
• 2 * w(S(A), U(B)) = w(F(S(A)), F(U(B)))

A B

S(A) S(B)

U(A) U(B)

F(A) F(B)

F(S(A)) F(S(B))

F(U(A)) F(U(B))

Half the weight, so at least half the expansion (d/4)!



Real expansion
• Use fact that fewer vertices than in future cut 

• Combine with Expander Mixing Lemma, get 
expansion d/3 
• Need to use strong spectral expansion 
• Fact: there are graphs in sequence with 𝝀2 ≈ d/2, so 

cannot get expansion bound directly from Cheeger



Conclusion (Part II)

• Can get good incremental expansion by 
incrementally 2-lifting 
• Can even do this to any starting expander 

• Many open questions 
• Tight or improved bounds? 
• Heterogeneous nodes?  Edges?



Degree-Diameter Graphs as 
Expanders

Large Fixed-Diameter Graphs are Good Expanders.  
Michael Dinitz, Michael Schapira, Gal Shahaf.  arXiv ‘17



Different Intuitions

• Expanders  
• Good because data can’t get “bottlenecked” anywhere 
• Ensure this by making cuts “large” 

• Alternative  
• Long paths are wasteful:  flow of size 𝛼 uses (length × 𝛼) 

total capacity 
• So minimize distances: try to make diameter small
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Degree-Diameter Graphs
• Three parameters: size n, degree d, diameter k
• What are the extremal graphs?

• Fix d, k.  What is largest possible value of n?

• “Degree/Diameter problem”
• “Intuitively, the best known degree-diameter topologies should 

support a large number of servers with high network bandwidth 
and low cost (small degree)... Thus, we propose the best-
known degree-diameter graphs as a benchmark for 
comparison.” — Singla et al, NSDI ’12

• Slim Fly [Besta-Hoefler, SC ’14]: Uses near-optimal degree-diameter 
graphs for k=2 (MMS graphs) and k=3 (BDF and Delorme graphs)
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Informal Result
• So what are the “best” datacenter topologies? 

• Optimal expanders (Ramanujan graphs)? Or optimal degree-
diameter graphs (Moore graphs)? 

• Similar performance in simulation (degree-diameter graphs 
slightly worse)

Informal result: Any sufficiently good degree-
diameter graph is a good expander!

• So finding good degree-diameter graphs involves 
finding good expanders 

• Expanders already very good — just use them
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Moore Bound
• Fix d, k.  Obvious upper bound on n:

1 d d(d-1) d(d-1)2

Moore bound: 

• Not achievable in general 
• Lots of work by graph theorists 
• Can get arbitrarily close (as n gets 

large) for k = 2, 3, 5

µd,k = 1 + d+ d(d� 1) + d(d� 1)2 + · · ·+ d(d� 1)k�1

= 1 + d
k�1X

i=0

(d� 1)i
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Formal Results
• Algebraic / spectral expansion: 𝝀(G) = second 

largest eigenvalue of adj. matrix 
• Cheeger inequality: h(G) ≥ (d-𝝀(G))/2

Theorem: Any graph with degree d, diameter k, and 
n ≥ (1-ε) μd,k has 𝝀(G) ≤ O(ε1/k) d

Theorem: Any graph with degree d, diameter k, and 
n ≥ μd,k - O(dk/2) has 𝝀(G) = O(d1/2)



Techniques
• Connection to Geronimus Polynomials 

• Formal polynomials Pt(x), where Pt(A) is matrix giving # 
“irreducible walks” of length t

Theorem: Let G be graph with degree d, diameter 
k, and size n.  Then for every nontrivial eigenvalue λ, 

�����

kX

t=0

Pt(�)

�����  µd,k � n



Conclusion (Part III)
• Expanders and degree/diameter graphs two different 

proposals, from different intuitions 

• But and good degree/diameter graph is a good 
expander! 
• Suggests that good performance of degree/diameter graphs because 

of good expansion 
• Expanders easier to construct: just use a good expander 

• Open questions: 
• What is true relationship? No reason to think our bounds tight 
• Moore bound possibly weak: is an optimal degree/diameter graph a 

good expander even if not close to Moore?



Thanks!


