
Explicit Expanding Expanders
as Datacenter Topologies

Michael Dinitz
Johns Hopkins University

Based on joint work with Michael Schapira, Gal Shahaf, and Asaf Valadarsky
(Hebrew University of Jerusalem)

Outline
• Question: how should we wire datacenters?
• Expanders!

1. Background on expanders as networks

2. Can we build expanders with additional
properties to ease adoption (incremental
expansion)?

3. Can other approaches (degree-diameter graphs)
be viewed as just other expanders?

Expander Graphs as Network
Topologies

Datacenter Topologies
• What is the “right” topology? Many competing

proposals!
• Surprising result [Jellyfish: Singla et al, NSDI ’12]:

• Random graphs outperform all of them, on almost every metric!
• And have other nice properties (incremental expansion)
• Practical?

• Can we get the benefits of random graphs without
randomness?
• Why are random graphs good? They’re expanders!

Expander Graphs

• Expanders: never get “trapped” in
a subset of vertices

Expander Graphs

• Expanders: never get “trapped” in
a subset of vertices

Expander Graphs

G

X

• Expanders: never get “trapped” in
a subset of vertices

• Edge expansion:

Expander Graphs

G

X
h(G) = min

X⇢V :|X|n/2

|E(X,V \X)|
|X|

• Expanders: never get “trapped” in
a subset of vertices

• Edge expansion:

• Expander: d-regular graph with
expansion Ω(d)

Expander Graphs

G

X
h(G) = min

X⇢V :|X|n/2

|E(X,V \X)|
|X|

Expanders: History

• Widely studied in graph theory / theoretical CS

• Many, many applications (mostly complexity
theory)

• Random graphs are (w.h.p) very good expanders

• Surprisingly difficult to construct expanders
deterministically

Data Centers
• Lots of traffic between nodes

• In a bad topology, might get “stuck”

• Problem if lots of traffic from one
section to the rest, not much
capacity

• Lots of traffic everywhere, so traffic
proportional to # vertices

• Really: want large (edge) expansion!

• Regular graph (# ports at switches)

Throughput
• Given graph G and traffic demand matrix T,

throughput is amount we need to scale down all
demands to make feasible
• Max concurrent flow

• Important special case: T is all 1’s (all-to-all traffic)

• Not the only metric for network quality, but an
important one

Throughput: Theory
• Thm: If T is all-to-all, then any expander has

throughput within O(log d) of the best possible d-
regular graph.

• Thm: For any T, any expander has throughput
within O(log n) of the best possible d-regular graph
(for that T).

• Thm: For any d-regular graph G, there is some T
and d-regular graph G* such that G* has
throughput Ω(log n) more than G.

Throughput: Theory
• Thm: If T is all-to-all, then any expander has

throughput within O(log d) of the best possible d-
regular graph.

• Thm: For any T, any expander has throughput
within O(log n) of the best possible d-regular graph
(for that T).

• Thm: For any d-regular graph G, there is some T
and d-regular graph G* such that G* has
throughput Ω(log n) more than G.

Incremental Expansion

Explicit Expanding Expanders.
Michael Dinitz, Michael Schapira, Asaf Valadarsky. ESA ‘15

Incremental Expansion

• So let’s use expanders for our data centers!

• Data centers grow regularly: more servers and racks
purchased and added

• Don’t want to completely rewire network every time!

• Expander on n nodes should have approximately same
edge set as expander on n+1 nodes

Random
[Jellyfish NSDI’12]

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

• Works great in simulation — only
theory for uniform random regular
graphs (Bollobas)

Random
[Jellyfish NSDI’12]

• Construct expanders randomly

• To add node: choose random d/2
matching, remove, connect to
new node

• Works great in simulation — only
theory for uniform random regular
graphs (Bollobas)

• Will companies actually use random datacenters?

• Can we get same guarantees with deterministic
constructions?

Expanding Expanders

Expanding Expanders
• Two problems with using existing

deterministic expanders as data centers
1. Need to exist for all n (not just primes,

powers of 2, etc.)
2. Need to handle incremental

expansion

Expanding Expanders
• Two problems with using existing

deterministic expanders as data centers
1. Need to exist for all n (not just primes,

powers of 2, etc.)
2. Need to handle incremental

expansion

Gn

Expanding Expanders
• Two problems with using existing

deterministic expanders as data centers
1. Need to exist for all n (not just primes,

powers of 2, etc.)
2. Need to handle incremental

expansion

Gn

Expanding Expanders
• Two problems with using existing

deterministic expanders as data centers
1. Need to exist for all n (not just primes,

powers of 2, etc.)
2. Need to handle incremental

expansion

Gn

Expanding Expanders
• Two problems with using existing

deterministic expanders as data centers
1. Need to exist for all n (not just primes,

powers of 2, etc.)
2. Need to handle incremental

expansion

Gn

Expanding Expanders
• Two problems with using existing

deterministic expanders as data centers
1. Need to exist for all n (not just primes,

powers of 2, etc.)
2. Need to handle incremental

expansion

• Goal: infinite series of d-regular graphs
Gd+1, Gd+2, Gd+3, … where:

1. Gi has i nodes
2. Each Gi has large edge expansion

(approx. d/2)
3. Few edge changes to get from Gi to

Gi+1 (approx. 3d/2)

Gn

Explicit Expanding Expanders

Main Result: graphs Gi where:
• Gi has i nodes
• Expansion approx. d/3
• At most 5d/2 edge changes from Gi to Gi+1

Explicit Expanding Expanders

• Still room for improvement!

• Technicality: use multiple edges / edge weights

Main Result: graphs Gi where:
• Gi has i nodes
• Expansion approx. d/3
• At most 5d/2 edge changes from Gi to Gi+1

2-Lifts

2-Lifts
• Main tool: 2-Lifts [Bilu-Linial]

• 2-Lift of G: double every vertex,
replace edge by matching

2-Lifts
• Main tool: 2-Lifts [Bilu-Linial]

• 2-Lift of G: double every vertex,
replace edge by matching

2-Lifts
• Main tool: 2-Lifts [Bilu-Linial]

• 2-Lift of G: double every vertex,
replace edge by matching

2-Lifts
• Main tool: 2-Lifts [Bilu-Linial]

• 2-Lift of G: double every vertex,
replace edge by matching

2-Lifts
• Main tool: 2-Lifts [Bilu-Linial]

• 2-Lift of G: double every vertex,
replace edge by matching

2-Lifts
• Main tool: 2-Lifts [Bilu-Linial]

• 2-Lift of G: double every vertex,
replace edge by matching

2-Lifts
• Main tool: 2-Lifts [Bilu-Linial]

• 2-Lift of G: double every vertex,
replace edge by matching

• Two options for each matching,
so 2|E| possible 2-lifts

2-Lifts
• Main tool: 2-Lifts [Bilu-Linial]

• 2-Lift of G: double every vertex,
replace edge by matching

• Two options for each matching,
so 2|E| possible 2-lifts

• Thm [BL]: If G an expander,
random matchings gives good
expander w.h.p.

• Can be derandomized!

Our Approach

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node
d/2

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node
• Unsplit neighbors: replace weight 2

edge with two weight 1 edges
d/2

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node
• Unsplit neighbors: replace weight 2

edge with two weight 1 edges
d/2

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node
• Unsplit neighbors: replace weight 2

edge with two weight 1 edges
d/2

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node
• Unsplit neighbors: replace weight 2

edge with two weight 1 edges
d/2d/2 - 1

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node
• Unsplit neighbors: replace weight 2

edge with two weight 1 edges
d/2

d/2 - 1

d/2 - 1

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node
• Unsplit neighbors: replace weight 2

edge with two weight 1 edges
• Split neighbors: replace two weight 1

edges with matching of weight 2 edges

d/2

d/2 - 1

d/2 - 1

Our Approach
• “Split” each node one at a time,

rather than all at once
• Start with d/2-regular expander,

weights 2
• Inserting new node: split currently

unsplit node
• Unsplit neighbors: replace weight 2

edge with two weight 1 edges
• Split neighbors: replace two weight 1

edges with matching of weight 2 edges
• Nice property: after all nodes split,

have precisely next BL expander

d/2

d/2 - 1

d/2 - 1

Analysis: Edge Changes
• Split u into u, u’:

• Unsplit neighbor v: one edge
of weight 2 → 2 edges of
weight 1. Cost 2

• Split neighbors v, v’: two
edges of weight 1 → two
edges of weight 2, decrease
{v, v’} by 1. Cost 5.

• Add {u,u’} of weight (# unsplit
neighbors)

u v v
u
u’

v’

u

u’

v

v’
u

v
k k-1

Analysis: Edge Changes
• Split u into u, u’:

• Unsplit neighbor v: one edge
of weight 2 → 2 edges of
weight 1. Cost 2

• Split neighbors v, v’: two
edges of weight 1 → two
edges of weight 2, decrease
{v, v’} by 1. Cost 5.

• Add {u,u’} of weight (# unsplit
neighbors)

u v v
u
u’

v’

u

u’

v

v’
u

v
k k-1

Total cost: 3*(unsplit neighbors)
 + 5*(split neighbors)

Know 2*(unsplit) + 2*(split) = d

Future Cuts
• Cut (A, B)

A B

S(A) S(B)

U(A) U(B)

Split

Unsplit

Future Cuts
• Cut (A, B)

A B

S(A) S(B)

U(A) U(B)

F(A) F(B)

F(S(A)) F(S(B))

F(U(A)) F(U(B))

Split

Unsplit

• Future cut (F(A), F(B)) of next BL expander:
• F(S(･)) = S(･)

• F(U(･)) = U(･) and splits of U(･)

Easy expansion
A B

S(A) S(B)

U(A) U(B)

F(A) F(B)

F(S(A)) F(S(B))

F(U(A)) F(U(B))

Easy expansion

• Know that w(F(A), F(B)) large (≈(d/2) |F(A)|) — argue that w(A, B) close to it

A B

S(A) S(B)

U(A) U(B)

F(A) F(B)

F(S(A)) F(S(B))

F(U(A)) F(U(B))

Easy expansion

• Know that w(F(A), F(B)) large (≈(d/2) |F(A)|) — argue that w(A, B) close to it
• 2 * w(U(A), U(B)) = w(F(U(A), F(U(B)))

A B

S(A) S(B)

U(A) U(B)

F(A) F(B)

F(S(A)) F(S(B))

F(U(A)) F(U(B))

Easy expansion

• Know that w(F(A), F(B)) large (≈(d/2) |F(A)|) — argue that w(A, B) close to it
• 2 * w(U(A), U(B)) = w(F(U(A), F(U(B)))
• w(S(A), S(B)) = w(F(S(A)), F(S(B)))

A B

S(A) S(B)

U(A) U(B)

F(A) F(B)

F(S(A)) F(S(B))

F(U(A)) F(U(B))

Easy expansion

• Know that w(F(A), F(B)) large (≈(d/2) |F(A)|) — argue that w(A, B) close to it
• 2 * w(U(A), U(B)) = w(F(U(A), F(U(B)))
• w(S(A), S(B)) = w(F(S(A)), F(S(B)))
• 2 * w(S(A), U(B)) = w(F(S(A)), F(U(B)))

A B

S(A) S(B)

U(A) U(B)

F(A) F(B)

F(S(A)) F(S(B))

F(U(A)) F(U(B))

Easy expansion

• Know that w(F(A), F(B)) large (≈(d/2) |F(A)|) — argue that w(A, B) close to it
• 2 * w(U(A), U(B)) = w(F(U(A), F(U(B)))
• w(S(A), S(B)) = w(F(S(A)), F(S(B)))
• 2 * w(S(A), U(B)) = w(F(S(A)), F(U(B)))

A B

S(A) S(B)

U(A) U(B)

F(A) F(B)

F(S(A)) F(S(B))

F(U(A)) F(U(B))

Half the weight, so at least half the expansion (d/4)!

Real expansion
• Use fact that fewer vertices than in future cut

• Combine with Expander Mixing Lemma, get
expansion d/3
• Need to use strong spectral expansion
• Fact: there are graphs in sequence with 𝝀2 ≈ d/2, so

cannot get expansion bound directly from Cheeger

Conclusion (Part II)

• Can get good incremental expansion by
incrementally 2-lifting
• Can even do this to any starting expander

• Many open questions
• Tight or improved bounds?
• Heterogeneous nodes? Edges?

Degree-Diameter Graphs as
Expanders

Large Fixed-Diameter Graphs are Good Expanders.
Michael Dinitz, Michael Schapira, Gal Shahaf. arXiv ‘17

Different Intuitions

• Expanders
• Good because data can’t get “bottlenecked” anywhere
• Ensure this by making cuts “large”

• Alternative
• Long paths are wasteful: flow of size 𝛼 uses (length × 𝛼)

total capacity
• So minimize distances: try to make diameter small

Degree-Diameter Graphs

Degree-Diameter Graphs
• Three parameters: size n, degree d, diameter k
• What are the extremal graphs?

• Fix d, k. What is largest possible value of n?

• “Degree/Diameter problem”

Degree-Diameter Graphs
• Three parameters: size n, degree d, diameter k
• What are the extremal graphs?

• Fix d, k. What is largest possible value of n?

• “Degree/Diameter problem”
• “Intuitively, the best known degree-diameter topologies should

support a large number of servers with high network bandwidth
and low cost (small degree)... Thus, we propose the best-
known degree-diameter graphs as a benchmark for
comparison.” — Singla et al, NSDI ’12

• Slim Fly [Besta-Hoefler, SC ’14]: Uses near-optimal degree-diameter
graphs for k=2 (MMS graphs) and k=3 (BDF and Delorme graphs)

Informal Result
• So what are the “best” datacenter topologies?

• Optimal expanders (Ramanujan graphs)? Or optimal degree-
diameter graphs (Moore graphs)?

• Similar performance in simulation (degree-diameter graphs
slightly worse)

Informal Result
• So what are the “best” datacenter topologies?

• Optimal expanders (Ramanujan graphs)? Or optimal degree-
diameter graphs (Moore graphs)?

• Similar performance in simulation (degree-diameter graphs
slightly worse)

Informal result: Any sufficiently good degree-
diameter graph is a good expander!

Informal Result
• So what are the “best” datacenter topologies?

• Optimal expanders (Ramanujan graphs)? Or optimal degree-
diameter graphs (Moore graphs)?

• Similar performance in simulation (degree-diameter graphs
slightly worse)

Informal result: Any sufficiently good degree-
diameter graph is a good expander!

• So finding good degree-diameter graphs involves
finding good expanders

• Expanders already very good — just use them

Moore Bound
• Fix d, k. Obvious upper bound on n:

1 d d(d-1) d(d-1)2

Moore Bound
• Fix d, k. Obvious upper bound on n:

1 d d(d-1) d(d-1)2

Moore bound:
µd,k = 1 + d+ d(d� 1) + d(d� 1)2 + · · ·+ d(d� 1)k�1

= 1 + d
k�1X

i=0

(d� 1)i

Moore Bound
• Fix d, k. Obvious upper bound on n:

1 d d(d-1) d(d-1)2

Moore bound:

• Not achievable in general
• Lots of work by graph theorists
• Can get arbitrarily close (as n gets

large) for k = 2, 3, 5

µd,k = 1 + d+ d(d� 1) + d(d� 1)2 + · · ·+ d(d� 1)k�1

= 1 + d
k�1X

i=0

(d� 1)i

Formal Results
• Algebraic / spectral expansion: 𝝀(G) = second

largest eigenvalue of adj. matrix
• Cheeger inequality: h(G) ≥ (d-𝝀(G))/2

Formal Results
• Algebraic / spectral expansion: 𝝀(G) = second

largest eigenvalue of adj. matrix
• Cheeger inequality: h(G) ≥ (d-𝝀(G))/2

Theorem: Any graph with degree d, diameter k, and
n ≥ (1-ε) μd,k has 𝝀(G) ≤ O(ε1/k) d

Theorem: Any graph with degree d, diameter k, and
n ≥ μd,k - O(dk/2) has 𝝀(G) = O(d1/2)

Techniques
• Connection to Geronimus Polynomials

• Formal polynomials Pt(x), where Pt(A) is matrix giving #
“irreducible walks” of length t

Theorem: Let G be graph with degree d, diameter
k, and size n. Then for every nontrivial eigenvalue λ,

�����

kX

t=0

Pt(�)

����� µd,k � n

Conclusion (Part III)
• Expanders and degree/diameter graphs two different

proposals, from different intuitions

• But and good degree/diameter graph is a good
expander!
• Suggests that good performance of degree/diameter graphs because

of good expansion
• Expanders easier to construct: just use a good expander

• Open questions:
• What is true relationship? No reason to think our bounds tight
• Moore bound possibly weak: is an optimal degree/diameter graph a

good expander even if not close to Moore?

Thanks!

