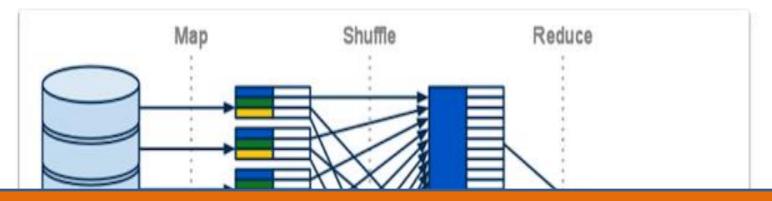


On Scheduling Coflows^[1]

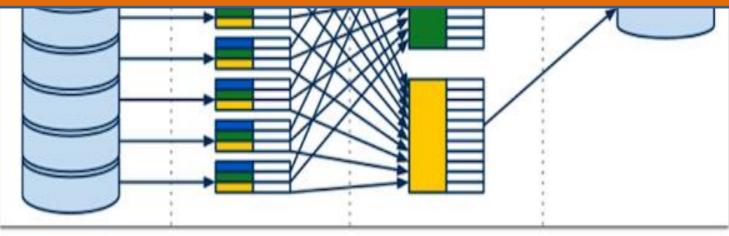
Saba Ahmadi, Samir Khuller, Manish Purohit, Sheng Yang

[1] Appeared in IPCO 2017

Communication is Crucial!

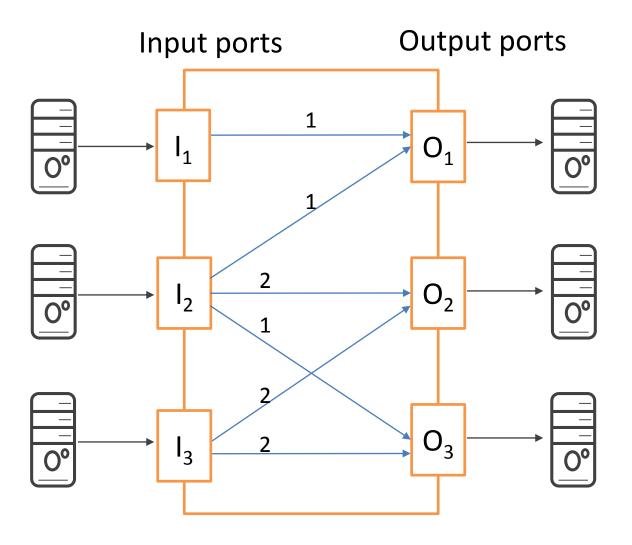


Facebook analytics jobs spend **33%** of their runtime in communication^[1]!

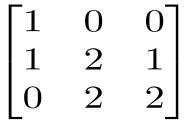


[1] Chowdhury et al. Managing Data Transfers in Computer Clusters with Orchestra, SIGCOMM'2011

Model^[1]



- m×m switch
- Coflows: Collection of Parallel flows for a Common Goal
- Coflow j is presented by a matrix D^j

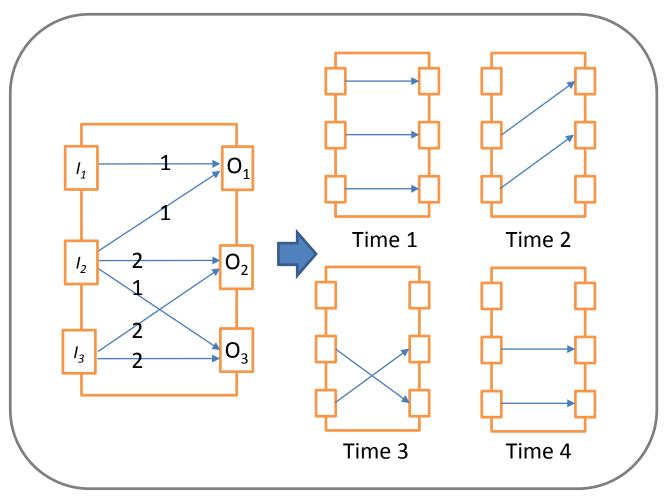


- Capacity Constraint 1 at all ports.
- At any time slot, scheduled flows form a matching.

```
L_{ij} = deg_{G_j}(i)
```

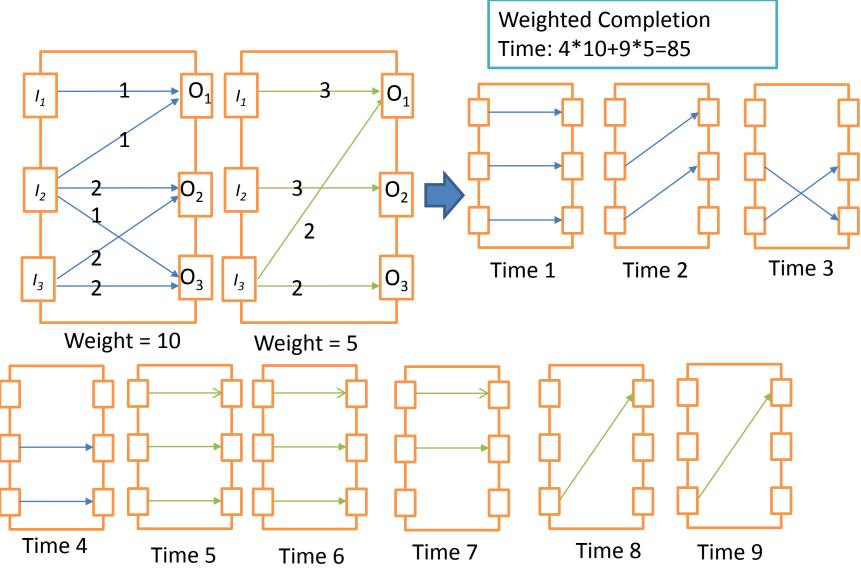
[1] Chowdhury et al. "Coflow: A networking abstraction for cluster applications.(HOTNETS³12)

Model: Scheduling a Single Coflow

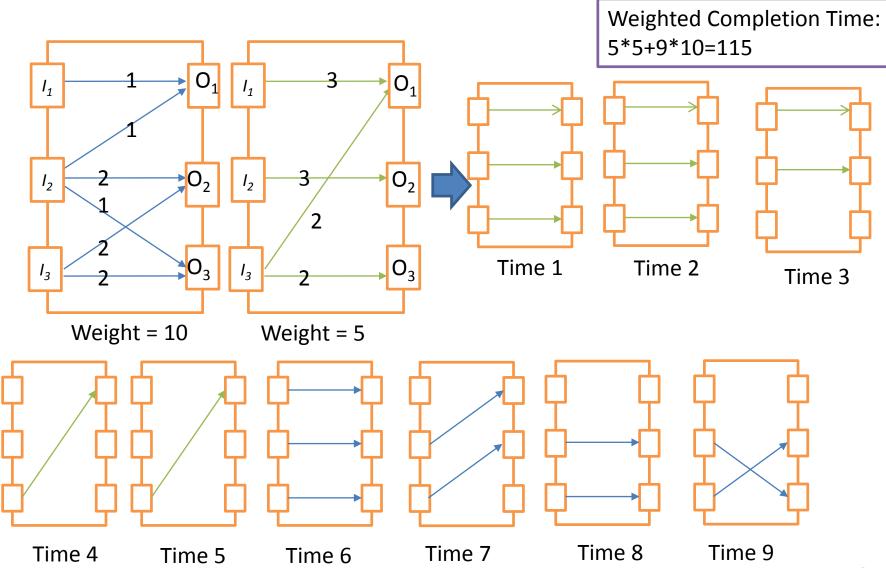


Application of Hall's Theorem

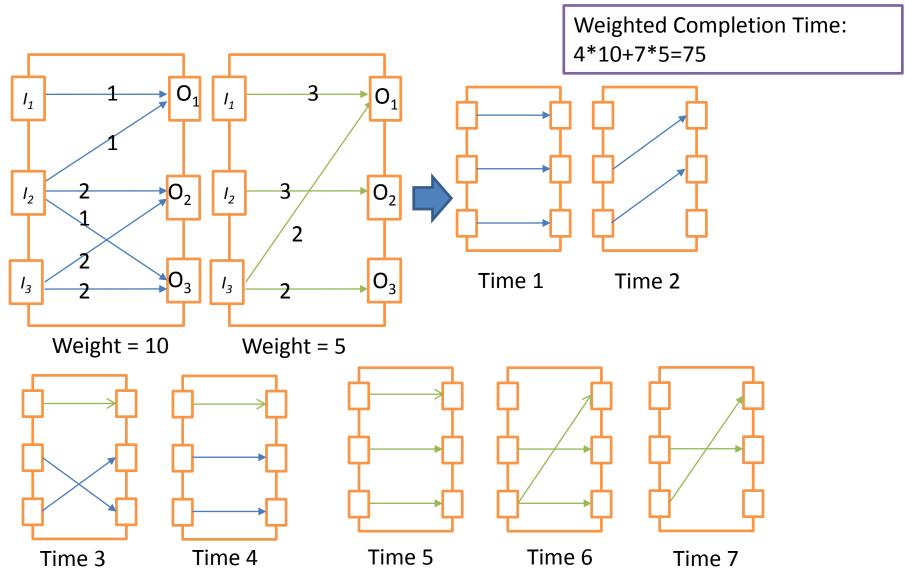
Model: Scheduling Multiple Coflows



Model: Scheduling Multiple Coflows

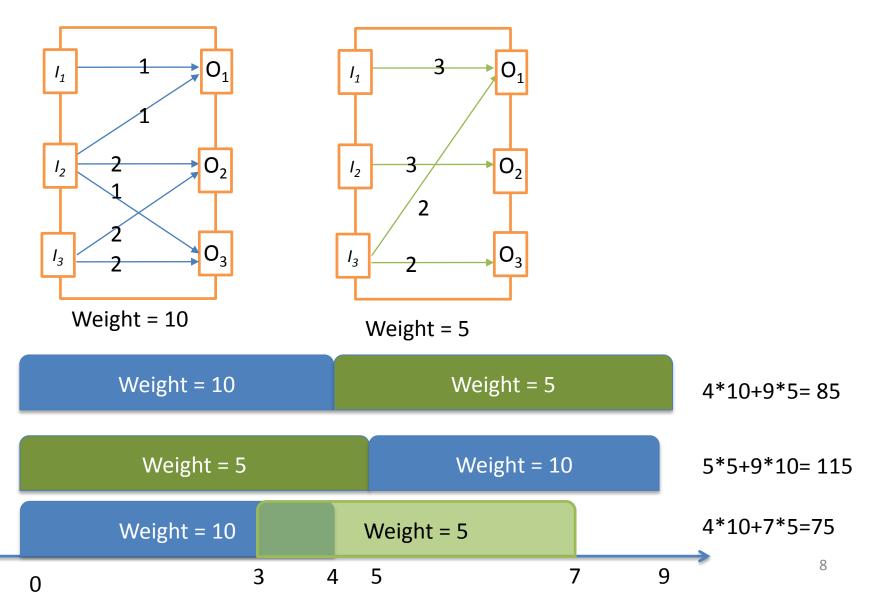


Model: Scheduling Multiple Coflows



Given *n* coflows, find a feasible schedule which minimizes total weighted completion time, i.e $\sum_{j=1}^{n} w_j C_j$

Model



Prior Work

Systems

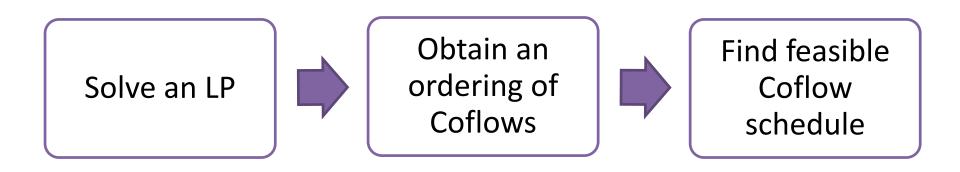
- Chowdhury and Stoica (HOTNETS 2012), Coflow: A Networking Abstraction for Cluster Applications
- Chowdhury, Zhong and Stoica (SIGCOMM 2014), Efficient Coflow Scheduing with Varys
- Chowdhury and Stoica (SIGCOMM 2015), Effective Coflow Scheduling Without Prior Knowledge

Prior Work

Theory

	Deterministic, No release time	Deterministic, With release time	Randomized, No release time	Randomized, With release time
Qiu,Stein and Zhong- SPAA15	64/3	67/3	15.5	16.5
Khuller and Purohit- SPAA16	8	12	$3 + \sqrt{2}$	
This paper- IPCO17	4	5		
Shafiee, Ghaderi – SPAA17	4	5		

Overview of our Approach



Step 1: Solve an LP

 $L_{ij} = deg_{G_j}(i)$ $M = I \cup O$

$$\begin{split} \min \sum_{j \in J} w_j C_j \\ \text{subject to,} \quad C_j \geq r_j + L_{i,j} \\ \sum_{j \in S} L_{i,j} C_j \geq \frac{1}{2} \left(\sum_{j \in S} L_{i,j}^2 + (\sum_{j \in S} L_{i,j})^2 \right) \quad \forall i \in M, \forall S \subseteq J \end{split}$$

How can we get the second constraint?

Step 1: Solve an LP



[1] M. Queyranne. Structure of a simple scheduling polyhedron. Mathematical Programming, 1993.

Step 1: Solve the LP

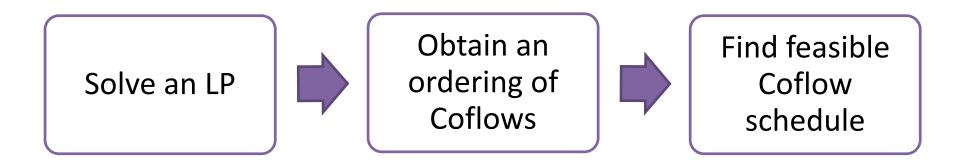
$$\begin{split} \min \sum_{j \in J} w_j C_j \\ \text{subject to,} \quad C_j \geq r_j + L_{i,j} & \forall j \in J, \forall i \in M \\ \hline \sum_{j \in S} L_{i,j} C_j \geq \frac{1}{2} \left(\sum_{j \in S} L_{i,j}^2 + (\sum_{j \in S} L_{i,j})^2 \right) & \forall i \in M, \forall S \subseteq J \end{split}$$

The number of constraints is exponential, we can solve this LP using ellipsoid method.

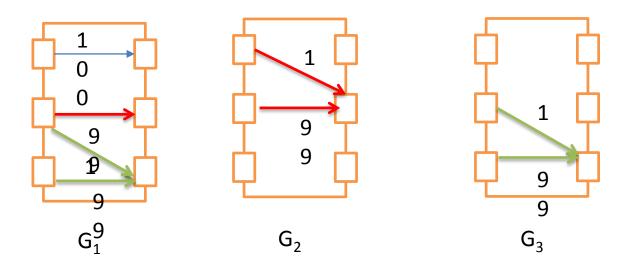
Separation Oracle: Given a solution C, w.l.o.g assume $C_1 \leq C_2 \cdots \leq C_n$. Let $S_1 = \{1\}, S_2 = \{1, 2\}, \ldots, S_n = \{1, 2, \cdots, n\}$. It's sufficient to check whether the constraints are violated for the n sets S_1, \cdots, S_n .

Not Practical!

Overview of our Approach

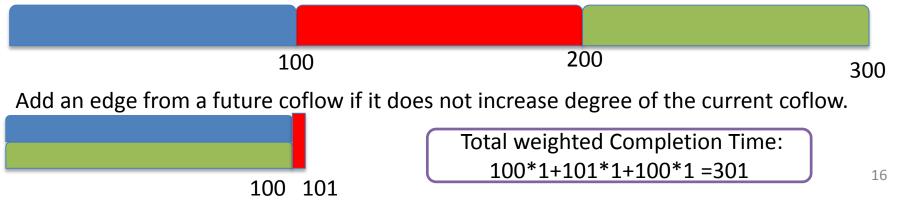


Step 3: Find a Feasible Coflow Schedule

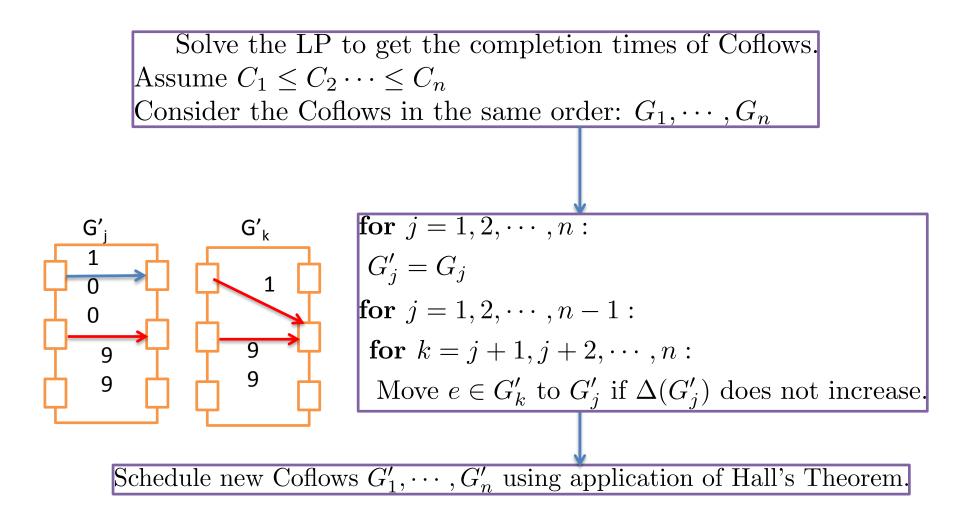


Scheduling coflows sequentially:

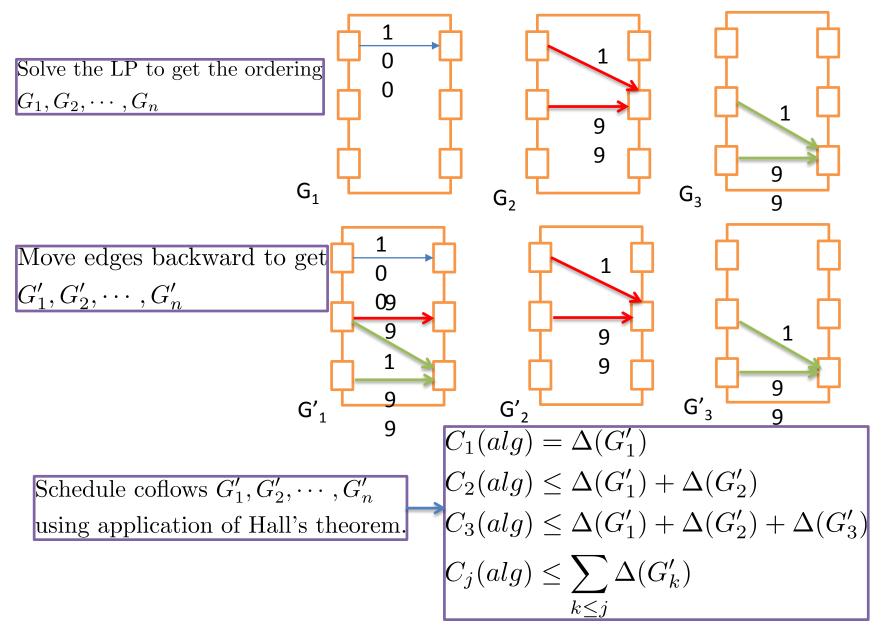
Total weighted completion time = 100*1+200*1+300*1=600



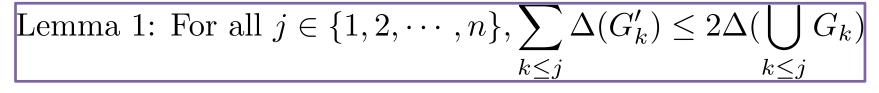
Algorithm

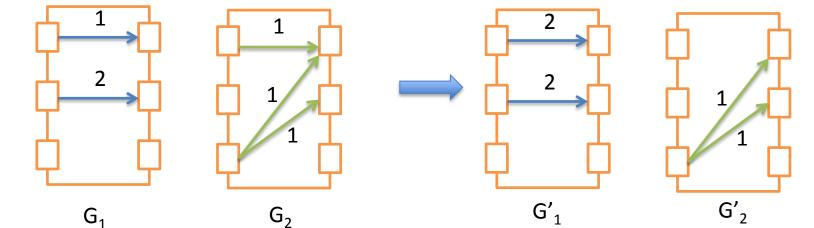


Step 3: Find a Feasible Coflow Schedule



Cost of Algorithm G_1, \dots, G_n : Initial Coflows G'_1, \dots, G'_n : Coflows after moving edges backward.





$$\begin{array}{c} 2\\ 2\\ 1\\ 1\\ G_1 \cup G_2 \end{array}$$

$$j = 2:$$

$$\sum_{k \le j} \Delta(G'_k) = \Delta(G'_1) + \Delta(G'_2) = 2 + 2 = 4$$

$$\Delta(\bigcup_{k \le j} G_k) = \Delta(G_1 \cup G_2) = 3$$

$$\rightarrow \sum_{k \le j} \Delta(G'_k) \le 2\Delta(\bigcup_{k \le j} G_k)$$

Cost of Algorithm:

$$\begin{split} \min \sum_{j \in J} w_j C_j \\ \text{subject to,} \quad C_j \geq r_j + L_{i,j} \\ \sum_{j \in S} L_{i,j} C_j \geq \frac{1}{2} \left(\sum_{j \in S} L_{i,j}^2 + (\sum_{j \in S} L_{i,j})^2 \right) \quad \forall i \in M, \forall S \subseteq J \end{split}$$

Lemma 1: For all
$$j \in \{1, 2, \cdots, n\}, \sum_{k \le j} \Delta(G'_k) \le 2\Delta(\bigcup_{k \le j} G_k)$$

Lemma 2: $C_j \ge \frac{1}{2} \max_i \sum_{k=1}^j L_{i,k} = \frac{1}{2} \Delta(\bigcup_{k \le j} G_k)$
 $L_{ij} = deg_{G_j}(i)$

Theorem 1:

$$C_j(alg) = \sum_{k \le j} \Delta(G'_k) \le 2\Delta(\bigcup_{k \le j} G_k) \le 4C_j$$
$$\sum_{j=1}^n w_j C_j(alg) \le 4\sum_{j=1}^n w_j C_j \le 4OPT$$

Theorem 2: There exists a deterministic combinatorial 5 approximation algorithm for coflow scheduling with release times.

Proof of Lemma 1:

 G_1, \cdots, G_n : Initial Coflows

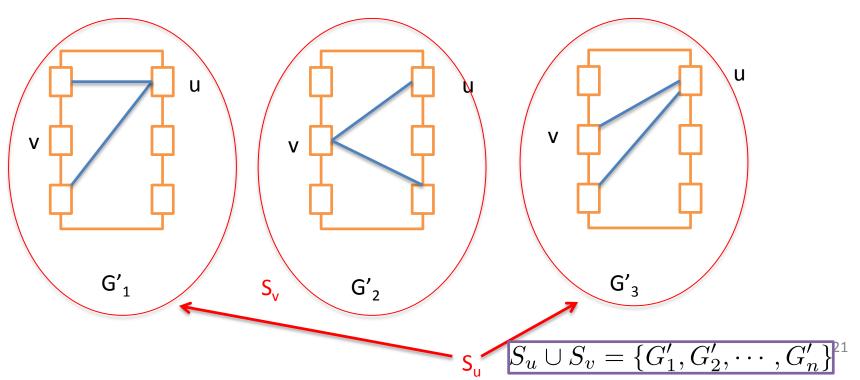
 G'_1, \cdots, G'_n : Coflows after moving edges backward.

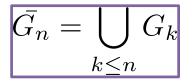
Lemma 1: For all
$$j \in \{1, 2, \cdots, n\}, \sum_{k \leq j} \Delta(G'_k) \leq 2\Delta(\bigcup_{k \leq j} G_k)$$

Proof: For the simple case when j = n we'll show:

$$\sum_{k \le n} \Delta(G'_k) \le 2\Delta(\bigcup_{k \le n} G_k)$$

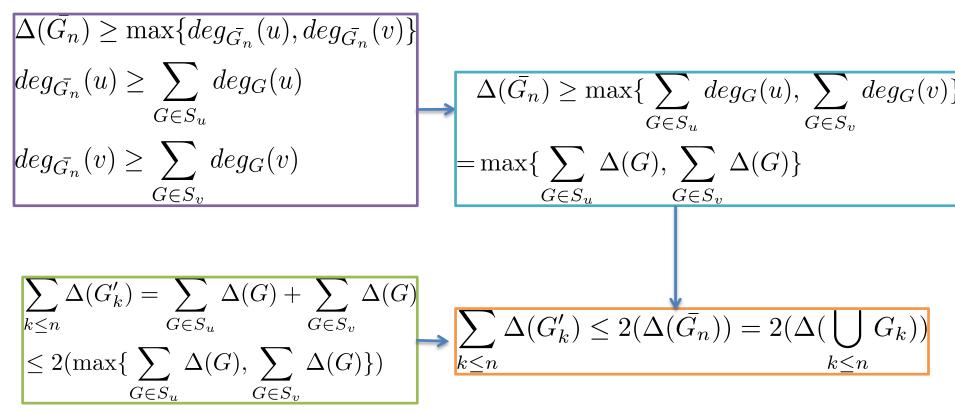
After all edges are moved backward, consider a vertex of maximum degree in G'_n . Assume it's u.





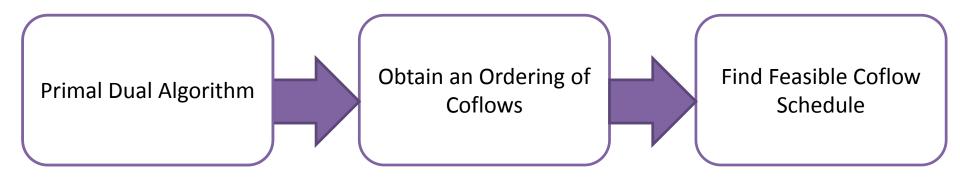
 G_1, \dots, G_n : Initial Coflows G'_1, \dots, G'_n : Coflows after moving edges backward.

 $S_u \subseteq \{G'_1, G'_2, \cdots, G'_n\}$ is the set of modified coflows (after moving edges backward) where u has max degree. $S_v \subseteq \{G'_1, G'_2, \cdots, G'_n\}$ is the set of modified coflows where v has max degree. $S_u \cup S_v = \{G'_1, G'_2, \cdots, G'_n\}$



Can we make it combinatorial?

Overview of Our Approach



Inspired by Davis, Gandhi and Kothari [2013] Mastrolilli, Queyranne, Schulz, Svensson and Uhan [2010]

Primal Dual Algorithm

Primal LP:

 \mathbf{S}

al LP:

$$\begin{array}{c|c} \min \sum_{j \in J} w_j C_j \\ \text{subject to,} \quad C_j \ge r_j + L_{i,j} & \forall j \in J, \forall i \in M \\ \sum_{j \in S} L_{i,j} C_j \ge \frac{1}{2} \left(\sum_{j \in S} L_{i,j}^2 + (\sum_{j \in S} L_{i,j})^2 \right) & \forall i \in M, \forall S \subseteq J \end{array}$$

$$\begin{array}{c|c} \min \sum_{j \in J} w_j C_j \\ \alpha_{i,j} C_j \ge \alpha_{i,j} (r_j + L_{i,j}) & \forall j \in J, \forall i \in M \\ \beta_{i,S} \sum_{j \in S} L_{i,j} C_j \ge \beta_{i,S} \frac{1}{2} \left(\sum_{j \in S} L_{i,j}^2 + (\sum_{j \in S} L_{i,j})^2 \right) & \forall i \in M, \forall S \subseteq J \end{array}$$
Dual LP:

$$\begin{array}{c|c} \max \sum_{j \in J} \sum_{i \in M} \alpha_{i,j} (r_j + L_{i,j}) + \sum_{i \in M} \sum_{S \subseteq J} \beta_{i,S} \frac{1}{2} \left(\sum_{j \in S} L_{i,j}^2 + (\sum_{j \in S} L_{i,j})^2 \right) \\ \text{ubject to,} \quad \sum_{i \in M} \alpha_{i,j} + \sum_{i \in M} \sum_{S \mid j \in S} L_{i,j} \beta_{i,S} \le w_j \\ \forall j \in J \end{array}$$

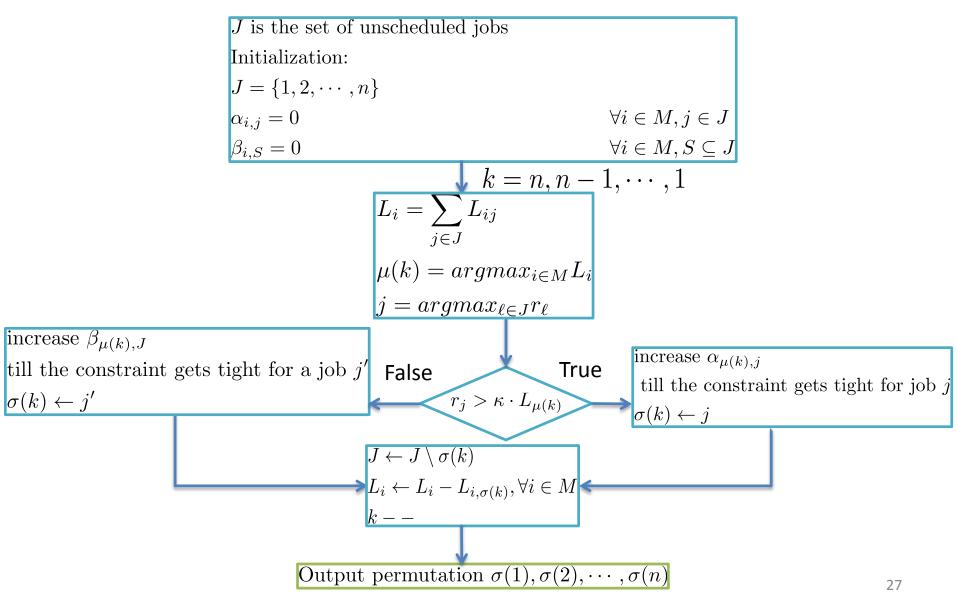
$$\alpha_{i,j} \ge 0$$

$$\beta_{i,S} > 0$$

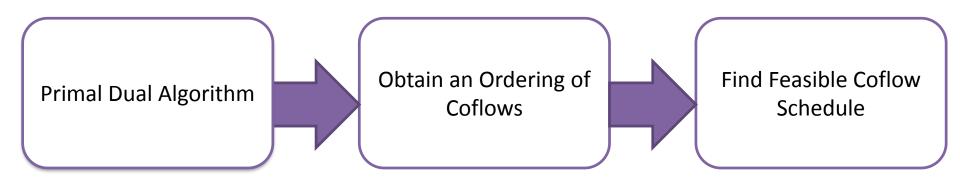
$$\forall j \in J, i \in M$$
$$\forall i \in M, \forall S \subseteq J$$

Exponential number of variables Polynomial number of constraints

Primal Dual Algorithm



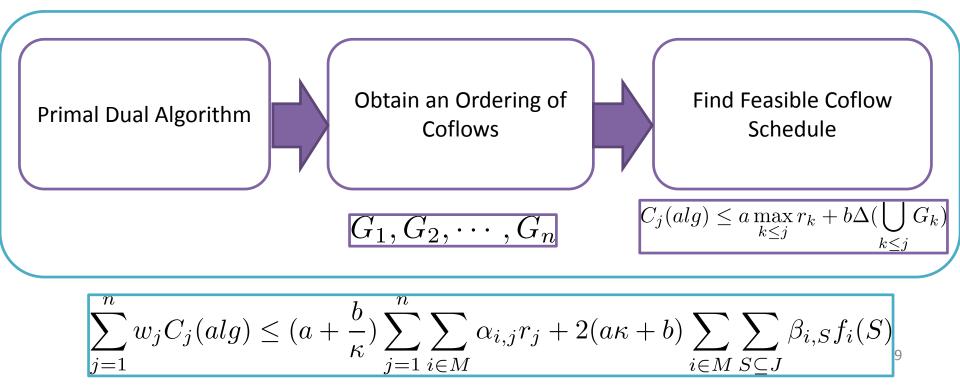
Overview of our Approach



Cost of Combinatorial Algorithm $f_i(S) = \frac{\sum_{j \in S} L_{i,j}^2 + (\sum_{j \in S} L_{i,j})^2}{2}$

Lemma 3: If there is an algorithm that generates a feasible coflow schedule such that for any coflow j, $C_j(alg) \leq a \max_{k \leq j} r_k + b\Delta(\bigcup_{k \leq j} G_k)$ for some constants a and b, then the total cost of the schedule is bounded as follows.

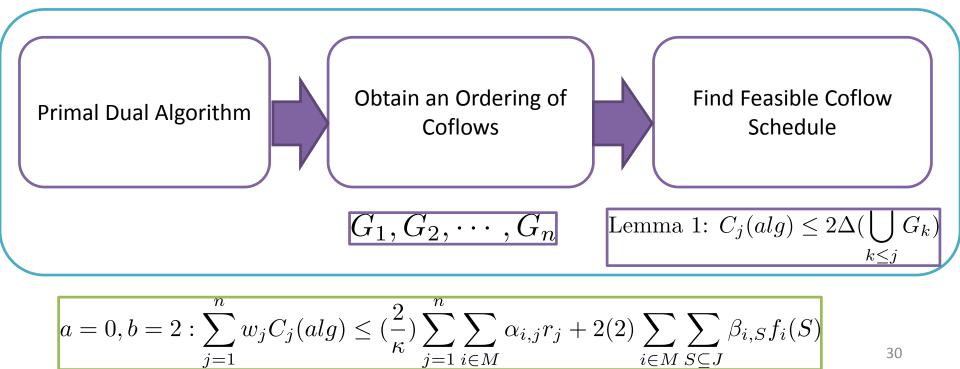
$$\sum_{j} w_j C_j(alg) \le (a + \frac{b}{\kappa}) \sum_{j=1}^n \sum_{i \in M} \alpha_{i,j} r_j + 2(a\kappa + b) \sum_{i \in M} \sum_{S \subseteq J} \beta_{i,S} f_i(S)$$



Cost of Combinatorial Algorithm $f_i(S) = \frac{\sum_{j \in S} L_{i,j}^2 + (\sum_{j \in S} L_{i,j})^2}{2}$

Lemma 3: If there is an algorithm that generates a feasible coflow schedule such that for any coflow j, $C_j(alg) \leq a \max_{k \leq j} r_k + b\Delta(\bigcup_{k \leq j} G_k)$ for some constants a and b, then the total cost of the schedule is bounded as follows.

$$\sum_{j} w_j C_j(alg) \le (a + \frac{b}{\kappa}) \sum_{j=1}^n \sum_{i \in M} \alpha_{i,j} r_j + 2(a\kappa + b) \sum_{i \in M} \sum_{S \subseteq J} \beta_{i,S} f_i(S)$$



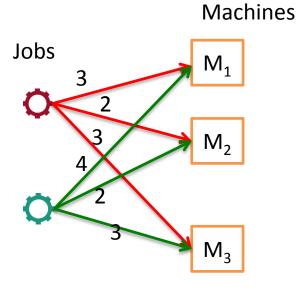
Cost of Combinatorial Algorithm

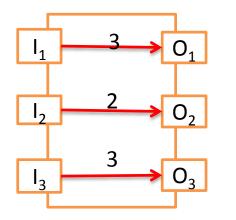
$$\frac{2}{\kappa} = 2(2) \to \kappa = \frac{1}{2}$$

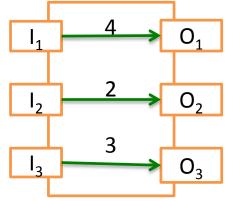
$$\sum_{j=1}^{n} w_j C_j(alg) \le 4 \Big(\sum_{j=1}^{n} \sum_{i \in M} \alpha_{i,j} r_j + \sum_{i \in M} \sum_{S \subseteq J} \beta_{i,S} f_i(S) \Big) \le 4OPT$$

5-approximation algorithm for coflow scheduling with release times!4-approximation algorithm for coflow scheduling without release times!3-approximation combinatorial algorithm for concurrent open shop with release times!

Concurrent Open Shop







Coflow scheduling generalizes concurrent open shop.

Open Problems

- Considering flow time instead of completion time.
- Since coflow scheduling generalizes concurrent open shop, it is NP-hard to approximate it within a factor better than (2-ε)^[1]. We have an approximation factor of 4!

Thank You!