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These data support the conclusion that attack on L1 leak-
age require a significant amount of server knowledge of the
document set, but are nonetheless possible with less-than-
perfect knowledge.

6. PLAINTEXT RECOVERY ATTACKS
In plaintext recovery attacks, the server’s goal is to learn

the mapping of keywords to the ciphertexts stored by the
SE scheme, for as many keywords as possible. This in turn
allows reconstruction of stored documents, either as a “bag
of words” in appended-keywords schemes, or ordered plain-
text if the document is deterministically encrypted using the
word hashes.

These attacks exploit leakage profiles L2 and L3. For ex-
ample, they apply to searchable encryption schemes that
store encrypted words on a per-document basis using a PRF
or hash function, as in the “in-place” schemes as described
in Section 3.1.1. We show realistic and highly damaging
known-document (passive) and chosen-document (active) at-
tacks in this scenario. The server is required only to know
a small number of stored documents, as described in each
experiment.

6.1 Passive Attacks
This section presents and gives analyses of attacks for

query recovery and keyword-based plaintext recovery by a
passive server that correctly executes the SE scheme algo-
rithms. Attacks are classified by the SE scheme type (sub-
stitution or indexing-based), and how much prior knowledge
of the plaintext document set D the server possesses.

6.1.1 Order of Hashes Known (L3)
To start with a simple case, we consider a scheme in which

the order of appended hashed keywords is not changed from
the order in which the keywords appear in the document.
This is leakage profile L3. In this case, all the indexed key-
words in any known document are immediately revealed to
the server. We present the results of statistical experiments
quantifying the advantage gained by an attacking server in
this scenario.

Random Documents. To determine the fraction of plain-
text keywords learned by an adversarial server that knows
a small number of the stored documents, we computed the
fraction of documents at a given recovery rate, for varying
number of known document and 20 known random docu-
ments, averaged over 10 random trials in each case. Results
for the two datasets, for 2 and 20 known documents, are
summarized in cumulative style in Figure 7. The curves
which fall further to the right are indicative of a larger per-
centage of documents having high keyword recovery rates.
As mentioned, the datasets have over 30,000 and 50,000 doc-
uments, respectively, so even when a very small fraction of
the documents is known to the server, the server can see a
substantial percentage of the words of the stored documents.

These results show that even a small number of known
documents allows the server to recover a significant percent-
age of the documents, enough that a human inspecting the
output in the form of redacted documents may obtain a very
strong sense of its content.

Note that the curve is steeper for the Apache dataset re-
sults. Our hypothesis is that the Apache dataset has a “crit-
ical mass” of vocabulary that is common to most of the doc-
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Figure 7: Plaintext reconstruction rates for the En-
ron dataset from known documents for an in-place
SE scheme with ordered keyword hashes.

The attached contract is ready for signature.

Please print 2 documents and have Atmos execute

both and return same to my attention. I will re-

turn an original for their records after ENA has

signed. Or if you prefer, please provide me with

the name / phone # / address of your customer and

I will Fed X the Agreement.

attach contract signatur pleas print 2 document

have execut both same will origin ena sign prefer

provid name agreement

Figure 8: (Top) An example plaintext email from
the Enron corpus. (Bottom) The stem words recov-
ered by our attack when given 20 randomly selected
known emails.

uments, as the topic of discussion in a software mailing list
is likely to be more uniform than all the emails sent by a
large company’s employees.
To get a sense for the ability of a human attacker to gain

information from this type of reconstruction, we took the
stemmed keywords from a 20-document Enron trial, made a
random selection of several other Enron emails, and printed
out the first occurrence of each matching stem in docu-
ment order, omitting stopwords. A sample is shown in Fig-
ure 8. Note that potentially sensitive information has been
revealed, including the name of a company involved in a
contract.

Known Public Documents. Though choosing documents
at random is important for statistically understanding the
power of attacks, the true source of a known-document at-
tack would likely not be an email chosen uniformly at ran-
dom. A more probable source might be a message that has
a wide distribution, such as a company-wide announcement.
The more recipients an email has, the more likely it is that
its plaintext will become available to an attacker.
To test this, we ran the same experiment with a single

email from the Enron dataset that was sent to 500 recipi-
ents. It was an announcement sent an entire division, four
paragraphs long, with 832 unique keywords, containing an
announcement of an upcoming survey of the organization by
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–  BeBer	
  data	
  sets	
  for	
  simula?ons	
  
–  Query	
  traces	
  
–  Countermeasures	
  

Summary	
  of	
  leakage-­‐abuse	
  aLacks	
  



Part	
  2:	
  	
  
Machine	
  learning	
  model	
  inversion	
  



Machine	
  learning	
  (ML)	
  systems	
  
DB	
  of	
  
data	
  

ML	
  model	
  f	
  

Training	
  

(1)	
  Gather	
  some	
  labeled	
  data	
  

f	
  (	
  x1	
  ,	
  …	
  ,	
  xn	
  )	
  	
  =	
  	
  y	
  

(3)	
  Use	
  f	
  	
  in	
  some	
  applica?on	
  or	
  	
  
	
  	
  	
  	
  	
  	
  publish	
  it	
  for	
  others	
  to	
  use	
  

x1	
  ,	
  …	
  ,	
  xn	
   y	
  

(2)	
  Train	
  ML	
  model	
  	
  f	
  	
  from	
  data	
  

Applica?on	
  



Increasing	
  use	
  of	
  ML	
  

Cloud	
  compu'ng	
  

Medical	
  applica'ons	
  

Facial	
  recogni'on	
  



Privacy	
  concerns	
  in	
  machine	
  learning?	
  
DB	
  of	
  
data	
  

ML	
  model	
  f	
  

Training	
  

x1	
  ,	
  …	
  ,	
  xn	
   y	
  

Applica?on	
  

Release	
  of	
  sensi?ve	
  data?	
  
Even	
  de-­‐iden?fied	
  data	
  dangerous	
  

	
   	
  [Sweeney	
  ‘00]	
  	
  
	
   	
  [Naranayan	
  &	
  Shma?kov	
  ‘08]	
  …	
  	
  

k-­‐anonymity	
  	
  [Sweeney	
  ‘02]	
  
Differen?al	
  privacy	
  	
  	
  	
  

	
   	
  [Dwork,	
  McSherry,	
  Nissim,	
  Smith	
  ‘06]	
  
	
   	
  …	
  

Overarching	
  lesson:	
  	
  
Don’t	
  release	
  sensi?ve	
  data	
  sets	
  
without	
  due	
  care	
  



Privacy	
  concerns	
  in	
  machine	
  learning?	
  
DB	
  of	
  
data	
  

ML	
  model	
  f	
  

Training	
  

x1	
  ,	
  …	
  ,	
  xn	
   y	
  

Applica?on	
  

Release	
  of	
  sensi?ve	
  data?	
  
Even	
  de-­‐iden?fied	
  data	
  dangerous	
  

	
   	
  [Sweeney	
  ‘00]	
  	
  
	
   	
  [Naranayan	
  &	
  Shma?kov	
  ‘08]	
  …	
  	
  

k-­‐anonymity	
  	
  [Sweeney	
  ‘02]	
  
Differen?al	
  privacy	
  	
  	
  	
  

	
   	
  [Dwork,	
  McSherry,	
  Nissim,	
  Smith	
  ‘06]	
  
	
   	
  …	
  

What	
  about	
  risks	
  related	
  to	
  	
  
adversarial	
  access	
  to	
  (just)	
  model	
  f?	
  

[Ateniese	
  et	
  al.	
  2013]:	
  	
  Determine	
  one	
  bit	
  of	
  info	
  	
  
about	
  DB	
  given	
  ability	
  to	
  download	
  f	
  



New	
  privacy	
  concerns	
  in	
  ML	
  

(2)	
  Decision	
  trees	
  trained	
  from	
  lifestyle	
  surveys	
  
	
   	
  Predict	
  marital	
  infidelity	
  of	
  training	
  set	
  members	
  

(3)	
  Neural	
  networks	
  for	
  facial	
  recogni?on	
  
	
   	
  Recover	
  recognizable	
  images	
  of	
  training	
  set	
  members	
  	
  

Preliminary	
  inves?ga?on	
  of	
  countermeasures	
  
	
   	
  DifferenIal	
  privacy	
  
	
   	
  SensiIve-­‐feature-­‐aware	
  CART	
  decision	
  trees	
  
	
   	
  Rounded	
  confidence	
  values	
  

(1)	
  Linear	
  regression	
  for	
  personalized	
  medicine	
  
	
   	
  Predict	
  genotypes	
  of	
  paIents	
  

Model	
  inversion	
  aBacks:	
  
[Fredrikson,	
  Lantz,	
  Lin,	
  Jha,	
  	
  
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  Page,	
  R.	
  –	
  Security	
  `14]	
  
[Fredrikson,	
  Jha,	
  R.	
  –	
  CCS	
  `15]	
  



Privacy	
  in	
  pharmacogene'cs	
  

Case	
  study	
  in	
  context	
  of	
  personalized	
  medicine	
  

IWPC	
  study:	
  
•  Linear	
  regression	
  based	
  classifier	
  	
  
•  Trained	
  on	
  demographics,	
  health	
  history,	
  

and	
  gene?c	
  markers	
  	
  
•  Predicts	
  ini?al	
  dose	
  of	
  	
  warfarin	
  
•  [IWPC]	
  researchers	
  showed	
  evidence	
  that	
  

this	
  outperformed	
  clinical	
  prac?ce	
  

[Fredrikson,	
  Lantz,	
  Lin,	
  Jha,	
  Page,	
  R.	
  –	
  Security	
  `14]	
  

Data	
  set	
  is	
  publicly	
  available	
  (in	
  de-­‐iden?fied	
  form),	
  but	
  similar	
  data	
  sets	
  must	
  be	
  private	
  





Warfarin	
  model	
  inversion	
  aLack	
   Linear	
  
regression	
  
model	
  f	
  

f	
  (	
  x1	
  ,	
  …	
  ,	
  xn	
  )	
  	
  =	
  	
  y	
  

Demographic	
  informa?on	
  
Health	
  history	
  
Genotype	
  

Suggested	
  ini?al	
  dose	
  
of	
  warfarin	
  

Target	
  person’s	
  
genotype	
  

Info	
  on	
  x1	
  ,	
  …	
  ,	
  xn-­‐1	
  
Stable	
  dose	
  y’	
  	
  (y’	
  ≠	
  y)	
  
Model	
  f	
  

Model	
  inversion	
  
algorithm	
  

[Fredrikson,	
  Lantz,	
  Lin,	
  Jha,	
  Page,	
  R.	
  –	
  Security	
  `14]	
  



Warfarin	
  model	
  inversion	
  aLack	
  

xn	
  takes	
  on	
  values	
  in	
  set	
  	
  {v1,…,vs}	
  
(1)	
  Compute	
  feasible	
  set	
  of	
  input	
  vectors:	
  
	
  	
   	
   	
  z1	
  =	
  (x1,…,xn-­‐1,v1)	
  

	
   	
  z2	
  =	
  (x1,…,xn-­‐1,v2)	
  
	
   	
  …	
  
	
   	
  zs	
  =	
  (x1,…,xn-­‐1,vs)	
  

(2)	
  Compute	
  yj	
  	
  =	
  f(zj)	
  for	
  each	
  j	
  	
  
(3)	
  Output	
  vj	
  that	
  maximizes 	
  	
  

sX

j=1

 
⇡(y, yj) ·

nY

i=1

p(zj [i])

!

Weight	
  by	
  error	
  	
   Independent	
  priors	
  

[Fredrikson,	
  Lantz,	
  Lin,	
  Jha,	
  Page,	
  R.	
  –	
  Security	
  `14]	
  

Linear	
  
regression	
  
model	
  f	
  

Realizes	
  MAP	
  es?mator	
  	
  
(op?mal	
  subject	
  to	
  info	
  available)	
  



y). Again, using the maximum entropy prior from before
gives the MAP estimate in the more general setting,

Pr [xt |xK ,ya , f ] =

q
x02X̂:x0t=xt

Pr [x0,y, f (x0)]
q

x02X̂ Pr [x0,y, f (x0)]
(6)

=

q
x02X̂:x0t=xt

Pr [y|x0, f (x0)] p(x0)
q

x02X̂ Pr [x0,y, f (x0)]
(7)

µ
q

x02X̂:x0t=xt
py, f (x0) (

r
i p(x0i)) (8)

The second step follows from the independence of the
maximum entropy prior in our setting, and the fact that x
determines f (x) so Pr [ f (x0),x0] = Pr [x0].

Application to linear regression. Recall that a linear
regression model assumes that the response is a linear
function of the attributes, i.e., there exists a coefficient
vector w 2 Rd and random residual error d such that
y = wT x+ b+ d for some bias term b. A linear regres-
sion model fL is then an estimate (ŵ, b̂) of w and the
bias term, which operates as: fL(x) = b̂+ ŵT x. It is typ-
ical to assume that d has a fixed Gaussian distribution
N (0,s2

) for some variance s . Most regression software
estimates s2 empirically from training data, so it is of-
ten published alongside a linear regression model. Using
this the adversary can derive an estimate of p ,

p̂(y,y0) = PrN (0,s2
)

[y� y0]

Steps 2 and 4 of Ap may be expensive to compute if
|X̂| is large. In this case, one can approximate using
Monte Carlo techniques to sample members of X̂. For-
tunately, in our setting, the nominal-valued variables all
come from sets with small cardinality. The continuous
variables have natural discretizations, as they correspond
to attributes such as age and weight. Thus, step 4 can be
computed directly by taking a discrete convolution over
the unknown attributes without resorting to approxima-
tion.

Discussion. We have argued that Ap is optimal in one
particular sense, i.e., it minimizes the expected misclas-
sification rate on the maximum-entropy prior given the
available information (the model and marginals). How-
ever, it is not hard to specify joint priors p for which
the marginals p1,...,d,y convey little useful information,
so the expected misclassification rate minimized here di-
verges substantially from the true rate. In these cases, Ap
may perform poorly, and more background information
is needed to accurately predict model inputs.

There is also the possibility that the model itself does
not contain enough useful information about the correla-
tion between certain input attributes and the output. For
illustrative purposes, consider a model taking one input
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Figure 3: Model inversion performance, as improvement
over baseline guessing from marginals, given a linear
model derived from the training data. Available back-
ground information specified by all and basic as dis-
cussed in Section 3.1.

attribute, that discards all information about that attribute
except a single bit, e.g., it performs a comparison with a
fixed constant. If the attribute is distributed uniformly
across a large domain, then Ap will only perform negli-
gibly better than guessing from the marginal. Thus, de-
termining how well a model allows one to predict sen-
sitive inputs generally requires further analysis, which is
the purpose of the evaluation that we discuss next (see
also Section 4).

Results on non-private regression. To evaluate Ap ,
we split the IWPC dataset into a training and validation
set (see Section 2), DT and DV respectively, use DT to de-
rive a least-squares linear model f , and then run Ap on
every a in DT with either of the two background infor-
mation types (all or basic, see Section 3.1) to predict both
genotypes. In order to determine how how well one can
predict these genotypes in an ideal setting, we built and
evaluated a multinomial logistic regression model (us-
ing R’s nnet package) for each genotype from the IWPC
data. This allows us to compare the performance of Ap
against “best-possible” results achieved using standard
machine learning techniques with linear models.

We measure performance both in terms of accuracy,
which is the percentage of samples for which the algo-
rithm correctly predicted genotype, and AUCROC, which
is the multi-class area under the ROC curve defined by
Hand and Till [17]. While accuracy is generally easier to
interpret, it can give a misleading characterization of pre-
dictive ability for skewed distributions—if the predicted
attribute takes a particular value in 75% of the samples,
then a trivial algorithm can easily obtain 75% accuracy
by always guessing this value. AUCROC does not suffer
this limitation, and so gives a more balanced character-
ization of how well an algorithm predicts both common
and rare values.

6
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The second step follows from the independence of the
maximum entropy prior in our setting, and the fact that x
determines f (x) so Pr [ f (x0),x0] = Pr [x0].

Application to linear regression. Recall that a linear
regression model assumes that the response is a linear
function of the attributes, i.e., there exists a coefficient
vector w 2 Rd and random residual error d such that
y = wT x+ b+ d for some bias term b. A linear regres-
sion model fL is then an estimate (ŵ, b̂) of w and the
bias term, which operates as: fL(x) = b̂+ ŵT x. It is typ-
ical to assume that d has a fixed Gaussian distribution
N (0,s2

) for some variance s . Most regression software
estimates s2 empirically from training data, so it is of-
ten published alongside a linear regression model. Using
this the adversary can derive an estimate of p ,

p̂(y,y0) = PrN (0,s2
)
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Steps 2 and 4 of Ap may be expensive to compute if
|X̂| is large. In this case, one can approximate using
Monte Carlo techniques to sample members of X̂. For-
tunately, in our setting, the nominal-valued variables all
come from sets with small cardinality. The continuous
variables have natural discretizations, as they correspond
to attributes such as age and weight. Thus, step 4 can be
computed directly by taking a discrete convolution over
the unknown attributes without resorting to approxima-
tion.

Discussion. We have argued that Ap is optimal in one
particular sense, i.e., it minimizes the expected misclas-
sification rate on the maximum-entropy prior given the
available information (the model and marginals). How-
ever, it is not hard to specify joint priors p for which
the marginals p1,...,d,y convey little useful information,
so the expected misclassification rate minimized here di-
verges substantially from the true rate. In these cases, Ap
may perform poorly, and more background information
is needed to accurately predict model inputs.

There is also the possibility that the model itself does
not contain enough useful information about the correla-
tion between certain input attributes and the output. For
illustrative purposes, consider a model taking one input
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Figure 3: Model inversion performance, as improvement
over baseline guessing from marginals, given a linear
model derived from the training data. Available back-
ground information specified by all and basic as dis-
cussed in Section 3.1.

attribute, that discards all information about that attribute
except a single bit, e.g., it performs a comparison with a
fixed constant. If the attribute is distributed uniformly
across a large domain, then Ap will only perform negli-
gibly better than guessing from the marginal. Thus, de-
termining how well a model allows one to predict sen-
sitive inputs generally requires further analysis, which is
the purpose of the evaluation that we discuss next (see
also Section 4).

Results on non-private regression. To evaluate Ap ,
we split the IWPC dataset into a training and validation
set (see Section 2), DT and DV respectively, use DT to de-
rive a least-squares linear model f , and then run Ap on
every a in DT with either of the two background infor-
mation types (all or basic, see Section 3.1) to predict both
genotypes. In order to determine how how well one can
predict these genotypes in an ideal setting, we built and
evaluated a multinomial logistic regression model (us-
ing R’s nnet package) for each genotype from the IWPC
data. This allows us to compare the performance of Ap
against “best-possible” results achieved using standard
machine learning techniques with linear models.

We measure performance both in terms of accuracy,
which is the percentage of samples for which the algo-
rithm correctly predicted genotype, and AUCROC, which
is the multi-class area under the ROC curve defined by
Hand and Till [17]. While accuracy is generally easier to
interpret, it can give a misleading characterization of pre-
dictive ability for skewed distributions—if the predicted
attribute takes a particular value in 75% of the samples,
then a trivial algorithm can easily obtain 75% accuracy
by always guessing this value. AUCROC does not suffer
this limitation, and so gives a more balanced character-
ization of how well an algorithm predicts both common
and rare values.
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Model	
  inversion	
  results	
  for	
  IWPC	
  model	
  
Linear	
  regression	
  model	
  
directly	
  trained	
  from	
  dataset	
  

Baseline	
  is	
  
guessing	
  without	
  
access	
  to	
  model	
  
(36%	
  accuracy)	
  

Model	
  aids	
  aBacker	
  in	
  predic?on	
  almost	
  
as	
  much	
  as	
  training	
  directly	
  on	
  data	
  set	
  

VKORC1	
  	
  

Everything	
  
but	
  genotype	
  Only	
  5%	
  lower	
  

Basic	
  	
  
demographics	
  
about	
  person	
  



New	
  privacy	
  concerns	
  in	
  ML	
  

(2)	
  Decision	
  trees	
  trained	
  from	
  lifestyle	
  surveys	
  
	
   	
  Predict	
  marital	
  infidelity	
  of	
  training	
  set	
  members	
  

(3)	
  Neural	
  networks	
  for	
  facial	
  recogni?on	
  
	
   	
  Recover	
  recognizable	
  images	
  of	
  training	
  set	
  members	
  	
  

Preliminary	
  inves?ga?on	
  of	
  countermeasures	
  
	
   	
  DifferenIal	
  privacy	
  
	
   	
  SensiIve-­‐feature-­‐aware	
  CART	
  
	
   	
  Rounded	
  confidence	
  values	
  

(1)	
  Linear	
  regression	
  for	
  personalized	
  medicine	
  
	
   	
  Predict	
  genotypes	
  of	
  paIents	
  

Model	
  inversion	
  aBacks:	
  



ML-­‐as-­‐a-­‐service	
  APIs	
  

Black-­‐box	
  (only	
  make	
  predic?ons)	
  
or	
  white-­‐box	
  (download	
  model)	
  

Free	
  or	
  pay-­‐per-­‐predic?on	
  



Sensi've	
  decision	
  tree	
  models	
  

538	
  steak	
  survey	
  
GSS	
  marital	
  happiness	
  study	
  	
  (see	
  paper)	
  

f	
  (	
  x1	
  ,	
  …	
  ,	
  xn	
  )	
  	
  =	
  	
  y	
  

Household	
  income	
  
Whether	
  person	
  gambles	
  
Whether	
  cheated	
  on	
  significant	
  other	
  
…	
  

Predic?on	
  of	
  how	
  person	
  
likes	
  steak	
  prepared:	
  
-­‐  rare	
  
-­‐  medium-­‐rare	
  
-­‐  medium	
  
-­‐  medium-­‐well	
  
-­‐  well-­‐done	
  

Survey	
  of	
  332	
  people	
  to	
  determine	
  if	
  	
  
“risky”	
  lifestyle	
  choices	
  correlates	
  with	
  	
  
steak	
  preferences	
  

De-­‐iden?fied	
  training	
  dataset	
  available,	
  we	
  use	
  to	
  simulate	
  aBacks	
  



Black-­‐box	
  warfarin-­‐like	
  aLack	
  for	
  538	
  survey	
  

Simple	
  black-­‐box	
  MAP	
  es'mator	
  (like	
  the	
  warfarin	
  one):	
  

Given:	
  	
  
x1	
  ,	
  …	
  ,	
  xn-­‐1	
  
Actual	
  steak	
  preference	
  y’	
  
Marginal	
  priors,	
  queries	
  to	
  f	
  
Confusion	
  matrix	
  C	
  for	
  f	
  

Predict:	
  
	
  
Infidelity	
  status	
  xn	
  

Cy’,y	
  =	
  #	
  training	
  instances	
  w/	
  steak	
  type	
  y’	
  predicted	
  as	
  y	
  

argmax

xn

C
y

0
,f(x1,...,xn)P
l2Y

C
y

0
,l

· Pr [x
n

]

Model	
  inversion	
  
algorithm	
  



Black-­‐box	
  warfarin-­‐like	
  aLack	
  for	
  538	
  survey	
  
Given:	
  	
  
x1	
  ,	
  …	
  ,	
  xn-­‐1	
  
Actual	
  steak	
  preference	
  y’	
  
Marginal	
  priors,	
  queries	
  to	
  f	
  
Confusion	
  matrix	
  C	
  for	
  f	
  

Predict:	
  
	
  
Infidelity	
  status	
  xn	
  

Cy’,y	
  =	
  #	
  training	
  instances	
  w/	
  steak	
  type	
  y’	
  predicted	
  as	
  y	
  

Accuracy	
   Precision	
   Recall	
  

Baseline	
  guessing	
   82.9%	
   0.0%	
   0.0%	
  

MI	
  aBack	
   85.8%	
   85.7%	
   21.1%	
  
Performance:	
  

Model	
  inversion	
  
algorithm	
  



BigML	
  reveals	
  confidence	
  values	
  

For	
  each	
  path:	
  
	
  
	
  
Confidence	
  =	
  	
   #	
  correct	
  matching	
  

#	
  total	
  matching	
  

#	
  rare	
  instances	
  matching	
  ,	
  	
  
#	
  medium-­‐rare	
  matching,	
  
...	
  	
  



New	
  MI	
  aLack	
  using	
  granular	
  confidence	
  data	
  
Given:	
  	
  
x1	
  ,	
  …	
  ,	
  xn-­‐1	
  
Actual	
  steak	
  preference	
  y’	
  
Marginal	
  priors,	
  queries	
  to	
  f	
  
Confusion	
  matrix	
  C	
  for	
  f	
  
Path	
  counts	
  

Predict:	
  
	
  
Infidelity	
  status	
  xn	
  

Cy’,y	
  =	
  #	
  training	
  instances	
  w/	
  steak	
  type	
  y’	
  predicted	
  as	
  y	
  

New	
  model	
  	
  
inversion	
  algorithm	
  

Accuracy	
   Precision	
   Recall	
  

Baseline	
  guessing	
   82.9%	
   0.0%	
   0.0%	
  

MI	
  aBack	
   85.8%	
   85.7%	
   21.1%	
  

MI	
  aBack	
  w/	
  
confidences	
  

86.4%	
   100%	
   21.1%	
  



New	
  privacy	
  concerns	
  in	
  ML	
  

(2)	
  Decision	
  trees	
  trained	
  from	
  lifestyle	
  surveys	
  
	
   	
  Predict	
  marital	
  infidelity	
  of	
  training	
  set	
  members	
  

(3)	
  Neural	
  networks	
  for	
  facial	
  recogni?on	
  
	
   	
  Recover	
  recognizable	
  images	
  of	
  training	
  set	
  members	
  	
  

Preliminary	
  inves?ga?on	
  of	
  countermeasures	
  
	
   	
  DifferenIal	
  privacy	
  
	
   	
  SensiIve-­‐feature-­‐aware	
  CART	
  
	
   	
  Rounded	
  confidence	
  values	
  

(1)	
  Linear	
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The image on the left is a face that was altered by computer processing. It may or may not correspond to one of the faces displayed to the

right of it.

If you believe that it does correspond to one of the other faces, please select the corresponding image. If you do not believe that it corresponds

to one of the other faces, select “Not Present”.

Altered Image

Fig. 10. Task shown to Mechanical Turk workers for reconstruction attack evaluation. The actual tasks shown to workers rendered the “altered” image above
the other images, while here we show them configured horizontally to save space.
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Fig. 11. Reconstruction attack results.

In 80% of the experiments, one of the five images contained
the individual corresponding to the label used in the attack.
As a control, 10% of the instances used a plain image from
the data set rather than one produced by MI-FACE. This
allowed us to gauge the baseline ability of the workers at
matching faces from the training set. In all cases, the images
not corresponding to the attack label were selected at random
from the training set. Workers were paid $0.08 for each task
that they completed, and given a $0.05 bonus if they answered
the question correctly, and workers were generally able to
provide a response in less than 40 seconds. They were allowed
to complete at most three tasks for a given experiment. As
a safeguard against random or careless responses, we only
allowed workers who have completed at least 1,000 jobs on
Mechanical Turk and achieved at least a 95% approval rating,
to complete the task.

algorithm time (s) epochs

Softmax 1.4 5.6
MLP 1298.7 3096.3
DAE 692.5 4728.5

Fig. 12. Attack performance.

1) Performance: We
ran the attack for each
model on an 8-core
Xeon machine with 16G
memory. The results are
shown in Figure 12.
Reconstructing faces out of the softmax model is very
efficient, taking only 1.4 seconds on average and requiring
5.6 epochs of gradient descent. MLP takes substantially
longer, requiring about 21 minutes to complete and on the
order of 3000 epochs of gradient descent. DAE requires less
time (about 11 minutes) but a greater number of epochs. This

Target Softmax MLP DAE

Fig. 13. Reconstruction of the individual on the left by Softmax, MLP, and
DAE.

is due to the fact that the search takes place in the latent
feature space of the first autoencoder layer. Because this has
fewer units than the visible layer of our MLP architecture,
each epoch takes less time to complete.

2) Accuracy results: The main accuracy results are shown
in Figure 11. In this figure, overall refers to all correct
responses, i.e., the worker selected the image corresponding
to the individual targeted in the attack when present, and
otherwise selected “Not Present”. Identified refers to instances
where the targeted individual was displayed among the test
images, and the worker identified the correct image. Excluded
referes to instances where the targeted individual was not
displayed, and the worker correctly responded “Not Present”.

Figure 11a gives results averaged over all responses,
whereas 11b only counts an instance as correct when a
majority (at least two out of three) users responded correctly.
In both cases, Softmax produced the best reconstructions,
yielding 75% overall accuracy and up to an 87% identifi-
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In 80% of the experiments, one of the five images contained
the individual corresponding to the label used in the attack.
As a control, 10% of the instances used a plain image from
the data set rather than one produced by MI-FACE. This
allowed us to gauge the baseline ability of the workers at
matching faces from the training set. In all cases, the images
not corresponding to the attack label were selected at random
from the training set. Workers were paid $0.08 for each task
that they completed, and given a $0.05 bonus if they answered
the question correctly, and workers were generally able to
provide a response in less than 40 seconds. They were allowed
to complete at most three tasks for a given experiment. As
a safeguard against random or careless responses, we only
allowed workers who have completed at least 1,000 jobs on
Mechanical Turk and achieved at least a 95% approval rating,
to complete the task.
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memory. The results are
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Reconstructing faces out of the softmax model is very
efficient, taking only 1.4 seconds on average and requiring
5.6 epochs of gradient descent. MLP takes substantially
longer, requiring about 21 minutes to complete and on the
order of 3000 epochs of gradient descent. DAE requires less
time (about 11 minutes) but a greater number of epochs. This
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is due to the fact that the search takes place in the latent
feature space of the first autoencoder layer. Because this has
fewer units than the visible layer of our MLP architecture,
each epoch takes less time to complete.

2) Accuracy results: The main accuracy results are shown
in Figure 11. In this figure, overall refers to all correct
responses, i.e., the worker selected the image corresponding
to the individual targeted in the attack when present, and
otherwise selected “Not Present”. Identified refers to instances
where the targeted individual was displayed among the test
images, and the worker identified the correct image. Excluded
referes to instances where the targeted individual was not
displayed, and the worker correctly responded “Not Present”.

Figure 11a gives results averaged over all responses,
whereas 11b only counts an instance as correct when a
majority (at least two out of three) users responded correctly.
In both cases, Softmax produced the best reconstructions,
yielding 75% overall accuracy and up to an 87% identifi-
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Figure 1: Mortality risk (relative to current clinical practice)
for, and VKORC1 genotype disclosure risk of, e-differentially
private linear regression (LR) used for warfarin dosing (over
five values of e , curves are interpolated). Dashed lines corre-
spond to non-private linear regression.

Model inversion. We study the degree to which these
models leak sensitive information about patient geno-
type, which would pose a danger to genomic privacy. To
do so, we investigate model inversion attacks in which
an adversary, given a model trained to predict a specific
variable, uses it to make predictions of unintended (sensi-
tive) attributes used as input to the model (i.e., an attack
on the privacy of attributes). Such attacks seek to take
advantage of correlation between the target, unknown at-
tributes (in our case, demographic information) and the
model output (warfarin dosage). A priori it is unclear
whether a model contains enough exploitable informa-
tion about these correlations to mount an inversion at-
tack, and it is easy to come up with examples of models
for which attackers will not succeed.

We show, however, that warfarin models do pose a
privacy risk (Section 3). To do so, we provide a gen-
eral model inversion algorithm that is optimal in the
sense that it minimizes the attacker’s expected mispre-
diction rate given the available information. We find that
when one knows a target patient’s background and stable
dosage, their genetic markers are predicted with signifi-
cantly better accuracy (up to 22% better) than guessing
based on marginal distributions. In fact, it does almost as
well as regression models specifically trained to predict
these markers (only ˜5% worse), suggesting that model
inversion can be nearly as effective as learning in an
“ideal” setting. Lastly, the inverted model performs mea-
surably better for members of the training cohort than
others (yielding an increased 4% accuracy) indicating a
leak of information specifically about those patients.

Role of differential privacy. Differential privacy (DP)
is a popular framework for designing statistical release
mechanisms, and is often proposed as a solution to pri-
vacy concerns in medical settings [10, 12, 45, 47]. DP is
parameterized by a value e (sometimes referred to as the

privacy budget), and a DP mechanism guarantees that the
likelihood of producing any particular output from an in-
put cannot vary by more than a factor of ee for “similar”
inputs differing in only one subject.

Following this definition in our setting, DP guaran-
tees protection against attempts to infer whether a subject
was included in the training set used to derive a machine
learning model. It does not explicitly aim to protect at-
tribute privacy, which is the target of our model inversion
attacks. However, others have motivated or designed DP
mechanisms with the goal of ensuring the privacy of pa-
tients’ diseases [15], features on users’ social network
profiles [33], and website visits in network traces [38]—
all of which relate to attribute privacy. Furthermore, re-
cent theoretical work [24] has shown that in some set-
tings, including certain applications of linear regression,
incorporating noise into query results preserves attribute
privacy. This led us to ask: can genomic privacy benefit
from the application of DP mechanisms in our setting?

To answer this question, we performed the first end-
to-end evaluation of DP in a medical application (Sec-
tion 5). We employ two recent algorithms on the IWPC
dataset: the functional mechanism of Zhang et al. [47]
for producing private linear regression models, and Vin-
terbo’s privacy-preserving projected histograms [44] for
producing differentially-private synthetic datasets, over
which regression models can be trained. These algo-
rithms represent the current state-of-the-art in DP mech-
anisms for their respective models, with performance re-
ported by the authors that exceeds previous DP mecha-
nisms designed for similar tasks.

On one end of our evaluation, we apply a model in-
verter to quantify the amount of information leaked about
patient genetic markers by e-DP versions of the IWPC
model. On the other end, we quantify the impact of
e on patient outcomes, performing simulated clinical
trials via techniques widely used in the medical litera-
ture [4, 14, 18, 19]. Our main results, a subset of which
are shown in Figure 1, show a clear trade-off between
patient outcomes and privacy:

• “Small e”-DP protects genomic privacy: Even though
DP was not specifically designed to protect attribute
privacy, we found that for sufficiently small e ( 1),
genetic markers cannot be accurately predicted (see the
line labeled “Disclosure, private LR” in Figure 1), and
there is no discernible difference between the model
inverter’s performance on the training and validation
sets. However, this effect quickly vanishes as e in-
creases, where genotype is predicted with up to 58%
accuracy (0.76 AUCROC). This is significantly (22%)
better than the 36% accuracy one achieves without the
models, and not far below (5%) the “best possible” per-
formance of a non-private regression model trained to
predict the same genotype using IWPC data.
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Figure 9: Reconstruction attack results from Mechanical Turk surveys. “Skilled workers” are those who

completed at least five MTurk tasks, achieving at least 75% accuracy.
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on decision trees trained on FiveThirtyEight data

with the sensitive feature at each priority level `.

For this data, the optimal placement of the sensi-

tive feature is at the first level, achieving the best

classification accuracy while admitting MI accuracy

only 1% greater than baseline.

the level at which the sensitive feature occurs may a↵ect the
accuracy of the attack. To test this hypothesis, we imple-
mented a variant of CART learning that takes a parameter
` which specifies the priority at which the sensitive feature is
considered: the feature is only considered for splitting after
`�1 other features have already been selected, and removed
from consideration afterwards. We then sampled 90% of the
FiveThirtyEight dataset 100 times, and used this algorithm
to train a decision tree on each sample for every value of `.
We evaluated the classification accuracy of the tree alongside
white-box inversion performance.

The results are displayed in Figure 11 (we observed similar
trends for black-box performance). The e↵ectiveness of the
attack in this case is clearly a↵ected by the depth at which
the sensitive feature appears in the tree. When the feature
appears near the top or bottom of the tree, the attack fails
with greater probability than otherwise. Furthermore, al-
though prioritizing placement of the sensitive feature at a
particular level does impact model accuracy, there is an op-
timal placement in this case: when the feature is placed at
the top of the tree, classification accuracy is maximized while
inversion accuracy is only 1% greater than baseline guess-
ing. This suggests that it may be possible to design more
sophisticated training algorithms that incorporate model in-
version metrics into the splitting criteria in order to achieve
resistance to attacks without unduly sacrificing accuracy.

no rounding r = 0.001 r = 0.005 r = 0.01 r = 0.05

Figure 12: Black-box face reconstruction attack

with rounding level r. The attack fails to produce a

non-empy image at r = 0.1, thus showing that round-

ing yields a simple-but-e↵ective countermeasure.

To understand why attack performance is not monotone
in `, we counted the number of times each tree used the
sensitive feature as a split. This measure increases until it
reaches its maximum at ` = 8, and steadily decreases until
` = 12. The di↵erence in split frequency between ` = 8 and
` = 12 is approximately 6⇥. This is most likely because once
most of the features have been used, the training algorithm
deems further splitting unnecessary, thus omitting the sen-
sitive feature from many subtrees. The inversion algorithm
is unable to do better than baseline guessing for individu-
als matching paths through these subtrees, thus making the
attack less e↵ective.

Facial Recognition. Our attacks on facial recognition
models are all based on gradient descent. One possible de-
fense is to degrade the quality or precision of the gradient
information retreivable from the model. There is no obvious
way to achieve this in the white-box setting while preserv-
ing model utility, but in the black-box setting this might be
achieved by reducing the precision at which confidence scores
are reported. We tested this approach by rounding the score
produced by the softmax model, and running the black-box
reconstruction attack. The results are presented in Figure 12
for rounding levels r = {0.001, 0.005, 0.01, 0.05}; the attack
failed to produce an image for r = 0.1. “No rounding” corre-
sponds to using raw 64-bit floating-point scores to compute
numeric gradients. Notice that even at r = 0.05, the attack
fails to produce a recognizable image. This suggests that
black-box facial recognition models can produce confidence
scores that are useful for many purposes while remaining
resistant to reconstruction attacks.
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Fig. 10. Task shown to Mechanical Turk workers for reconstruction attack evaluation. The actual tasks shown to workers rendered the “altered” image above
the other images, while here we show them configured horizontally to save space.
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Fig. 11. Reconstruction attack results.

In 80% of the experiments, one of the five images contained
the individual corresponding to the label used in the attack.
As a control, 10% of the instances used a plain image from
the data set rather than one produced by MI-FACE. This
allowed us to gauge the baseline ability of the workers at
matching faces from the training set. In all cases, the images
not corresponding to the attack label were selected at random
from the training set. Workers were paid $0.08 for each task
that they completed, and given a $0.05 bonus if they answered
the question correctly, and workers were generally able to
provide a response in less than 40 seconds. They were allowed
to complete at most three tasks for a given experiment. As
a safeguard against random or careless responses, we only
allowed workers who have completed at least 1,000 jobs on
Mechanical Turk and achieved at least a 95% approval rating,
to complete the task.
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Fig. 12. Attack performance.

1) Performance: We
ran the attack for each
model on an 8-core
Xeon machine with 16G
memory. The results are
shown in Figure 12.
Reconstructing faces out of the softmax model is very
efficient, taking only 1.4 seconds on average and requiring
5.6 epochs of gradient descent. MLP takes substantially
longer, requiring about 21 minutes to complete and on the
order of 3000 epochs of gradient descent. DAE requires less
time (about 11 minutes) but a greater number of epochs. This
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Fig. 13. Reconstruction of the individual on the left by Softmax, MLP, and
DAE.

is due to the fact that the search takes place in the latent
feature space of the first autoencoder layer. Because this has
fewer units than the visible layer of our MLP architecture,
each epoch takes less time to complete.

2) Accuracy results: The main accuracy results are shown
in Figure 11. In this figure, overall refers to all correct
responses, i.e., the worker selected the image corresponding
to the individual targeted in the attack when present, and
otherwise selected “Not Present”. Identified refers to instances
where the targeted individual was displayed among the test
images, and the worker identified the correct image. Excluded
referes to instances where the targeted individual was not
displayed, and the worker correctly responded “Not Present”.

Figure 11a gives results averaged over all responses,
whereas 11b only counts an instance as correct when a
majority (at least two out of three) users responded correctly.
In both cases, Softmax produced the best reconstructions,
yielding 75% overall accuracy and up to an 87% identifi-
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